Cu-Zn-In-S纳米晶的合成与性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
荧光半导体纳米晶由于其良好的光电性质,在生物荧光标记、LEDs、太阳能电池等领域都有重要的应用,相对于传统的含有剧毒重金属二元荧光半导体纳米晶,四元CuZnInS_3纳米晶是一种“绿色”环保的半导体材料,因此更具实际应用价值。在本文中,我们发展了一种合成高质量的四元CuZnInS_3纳米晶的方法,这种方法简单,制备的纳米晶尺寸、组成可控,光学性能在可见和近红区可调。获得的纳米晶具有良好的化学和热稳定性,在LEDs等领域有着广泛的应用前景。
     在不同实验条件下研究了Cu,Zn,In三种金属前体的成核温度,对三种前体的反应活性进行系统研究,为多元纳米晶合成提供了一种普适的方法。基于反应单体活性实验的结果,我们以四元CuZnInS_3纳米晶为模型体系,通过反应温度的调控和配体的复合作用,制备了尺寸可调、组成一致的四元CuZnInS_3纳米晶,它的荧光光谱发光范围可从620nm调节到780nm,发光效率可达65%左右。
     通过调节Zn/Cu反应单体的比率,在相同的反应温度下合成了尺寸相同,带隙高度可调的四元纳米晶,粒子的发光范围可从可见区覆盖到近红外区(500nm到900nm),纳米晶的发光效率随着组分的改变最高可达70%。瞬态荧光光谱表征证明四元纳米晶分别来自本征态激子发光和缺陷发光,晶体中锌的含量增加可有效的减少多元纳米晶中的缺陷,提高了纳米晶的发光效率。
     CuZnInS_3纳米晶的化学稳定性、光化学稳定性和热稳定性的研究结果表明:粒子的稳定性随着样品中各元素组分的变化而改变,当锌含量较多时,粒子具有良好的稳定性,而当粒子中铜的含量较多时,粒子的稳定性则较差。采用热循环表面离子层吸附反应法,在铜含量较多的样品外面包覆了宽带隙的ZnS壳层,进一步改善了其稳定性和荧光效率。在应用方面,将所得的黄光CuZnInS_3纳米晶制备成膜,铺展到蓝光LEDs上,得到了发暖白光的LEDs发射器,显示了该材料在照明领域应用的可行性。
Luminescent Colloidal semiconductor nanocrystals are of significant technology interest as they impact many applications including light emitting diodes (LEDs), biomedical labeling,lighting, etc. While existing examples of light emitting semiconductor nanocrysal s such as II-VI, II-V, III-V, IV-IV are numerous, most suffer from a number of disadvantages such as containing highly toxic elements, using extremely expensive and hazard raw materials, needing to surface modification to improve their properties. At an extend work, I-III-VI semiconductor nanocrysal s such as CuInS_2 have been successfully prepared recently due to their avoiding some of disadvantages as described above. The progress on the synthesis of such nanocrysal emitters brought the quality of I-III-VI nanocrysal s, especially the optical properties (quantum yield of about 5%) could not up to a level comparable to that of CdSe NCs,Therefore, it is a big challenge for scientists to develop greener, stable, high emissive semiconductor nanocrystals now.
     CuInS_2 is a direct band gap semiconductor material with a band gap of 1.45 eV, which means that it would be possible to develop color-tunable CuInS_2 nanocrystal emitters from the visible to near-infrared(NIR) regions ,the near-infrared fluorescence materials are a better biological fluorescent labeling materials due to its near-infrared fluorescence is suitble for in vivo deep tissue imaging. More importantly, the nanoctrystals do not contain the toxic elements. At present, the ternary quantum dots have poor fluorescence quantum yield (<5%) and size distribution, poor chemical stability. Although our previous work have synthesized nearly monodisperse CuInS_2 (from 2 to 20nm) using greener approach. Nevertherless the resulted nanocrystals had poor quntum yield and stability. Forther studies indicxates that the emissive efficiency of nanocrystals can reach up to 30% and the stability of nanocrysals is also greatly improved after the growth of ZnS shell on the surface of nanocrysals. Therefore, it is still chanlenge on synthesis of CuInS_2 quantum dots with high quanum yield. ,It is found that the introduction of zinc can increase the fluorescence efficiency and stability of CuInS_2 Nanocrystals. In this article we systematically studied the reaction activity of three metal precursors under different experimental conditions, synthesized nearly monodisperse quaternary CuZnInS_3 nanocrystals with adjustable sizes and compositions. To improve the stability and quantum yield, we prepared CuZnInS_3 /ZnS core/shell nanocrystals. Preliminary application on preparation of QDs-LEDs white light emitter by using CuZnInS_3 nanoctysals. The main content of the thesis as following:
     1. To avoid phase separation on synthesis of multinary nanocrystals, we systematically studied the reaction activity of three metal precursors (Cu, Zn, In) under different experimental conditions. Experimental results showed that the formation temperature of CuxS, ZnS, In2S3 respectively are 80℃, 120℃, 160℃in the absence of dodecanethiol. It is noted that the reaction temperature is adopted to quatitaify the reactivity of three metal precursors. Thus, the reactivity of three metal precursors is Cu > In> Zn. When dodecanethiol is used as ligand, the formation temperature of Cu2S, ZnS, In2S3 respectively are 60℃, 100℃, 140℃(Cu> In> Zn), indicating that dodecanethiol further balanced the reactivity of three metals. Therefore, the formation temperature of quaternary nanocrystals is above 140℃. This conclusion is necessary for choosing sutable reaction temperatures to prepare quaternary CuZnInS_3 nanocrystlas.
     2. We study the effects of ligand, reaction additives, reaction temperature on the size control of quaternary CuZnInS_3 nanocrystals. The experimental results showed that the size of particles is independent of the variety of ligand concentrations and reaction additives. Based on the understanding the growth mechanism of quaternary nanocrystals, we finally synthesized nearly monodisperse CuZnInS_3 nanocrystals (2 nm - 7.5 nm) by aid of reaction temperature. The resulted nanocrystals have identical element composition (Cu:Zn:In =1:1:1 in particle), the fluorescence spectra can range from 620 nm to 780 nm, and the emissive efficiency can reach up to 65%. The experimental results reveal that the growth mechanism of quatunary nanoctysals is simiar to that reported on preparation of InAs nanocrystals where reaction temperature is dominatant the size of nanocrystals.
     3. In order to prepared quaternary nanocrystals with wide emission range, we preared the quaternary nanocrystals with different compositions by simple changing the ratio of precursors and particle sizes. As as result the as prepared nanocrysgtals exhigled a wide the emission range which cover the whole visible region to NIR (500 nm to 900 nm). Importantly, the photoluminescence quantum yield of nanocrystals can reach up to 70% without any surface modification such as wide band gap ZnS shell used. It is noted that quntum yield of nanocrystals varied with different elemental composition where the almost constant quantum yields of 70% was observed with increase of the ratio of Zn vs Cu from1:1 to 20:1, and subsequently decreased significantly below the ratio of 1:1. It should be noted that these particles had similar sizes as determined by TEM, and were under the radius of their Bohr exciton, which excluded the sizes contributed the variety of quantym yields of nanocrystals. This fact indicates that the notable characterization of multinary NCs differencing binary NCs is that quantum yields of particles fluctuated depending on their composition defects and surface defects, and improve the emission efficiency of nanocrystals. PL decay of the sample with Zn:Cu ratio of 1:2 and 3:1 were characterized, indicating that the extensive elimination of the internal defects and thus suppressed non-radiative recombination process for high Zn vs Cu ratuio. As a result the plain NCs presented emission efficiency as high as 70%
     4. Stabilites experimental showed that the CuZnInS_3 nanocrystals possese well chemical photochemical and thermal stabilities. However, the nanocrysals with high ratio Cu vs Zn showed poor stabilities. To resolve this problem, a wide band gap semiconductor was used to passivate the surface of nanoctrysals for improvment the stabilities and quantum yields of nanocrystals. For example, CuZnInS_3/ZnS core/shell nanocrystals was prepared by using thermal- cycling and successive ionic layer adsorption and reaction (TC-SILAR). As a result, the stability of paticle was successfully improved. Meanwhile, the photoluminescence quantum yield of CuZnInS_3/ZnS core/shell nanocrystals can reach up to 60%. Finally, a simple QDs-LED lighting device was fabricated by coating CuZnInS_3 nanocrystals on the surface of the blue LEDs to produce war white light, indicating the feasibilities in lighting field.
引文
1. K. Eberl. Physics World 1997, 47.
    2. M. Muhammed; K. Rao; B. Kear. Book of Abstracts of Fourth International Conference on Nanostructured Materials. Sweden, 1998, 159.
    3.张立德,纳米材料,化学工业出版社,2000。
    4. M. C. Roco; R. S. Williams; A.P. Alivisatos. Nanotechnology Research Dirctions, Kluwer Academic Publishers, 2001.
    5. C. M. Niemeyer. Nanoparticles, Proteins, and Nucleic Acids: Biotechnology Meets Materials Science. Angew. Chem. Int. Ed. 2001, 40, 4128-4158.
    6. A. Henglein. Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles.Chem. Rev., 1989, 89, 1861.
    7. M.G. Bewendi, M. L. Steigerwald, L.E. Brus. The quantum mechanics of large semiconductor clusters. Ann. Rev. Phys. Chem. 1990, 41, 477-495.
    8. Wang Y. Nonlinear optical properties of nanometer-sized semiconductor clusters Acc. Chem. Res., 1991, 24, 133.
    9. Wang y. Local field effect in small semiconductor clusters and particles. J. Phys. Chem., 1991, 95, 1119-1124.
    10. Alivisatos A. P. Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science, 1996, 271, 933-937.
    11. Alivisatos A. P. Perspectives on the Physical Chemistry of Semiconductor Nanocrystals. J. Phys. Chem., 1996, 100, 13226-13239.
    12. Robert T. W.; N. J. Cherepy,; J. Z. Zhang. Nature of the power-dependent ultrafast relaxation process of photoexcited charge carriers inⅡ-Ⅵsemiconductor quantum dots:Effects of particle size, surface, and electronic structure. J. Chem. Phys.1998, 108, 2143-2151.
    13. Steigerwald, M. L.; Brus, L. E. Synthesis, Stabilization, and Electronic Structure of Quantum Semiconductor Nanoclusters. Annu. Reu. Mater. Sci. 1989, 19, 471-495.
    14. Steigerwald, M. L.; Brus, L. E. Semiconductor crystallites: a class of largemolecules. Acc. Chem. Res. 1990, 23, 183.
    15. Henglein, A. Mechanism of reactions on colloidal microelectrodes and size quantization effects. Top. Curr. Chem. 1988, 143, 113.
    16. Wang, Y.; Herron, N.; Mahler, W.; Suna, A. Linear- and nonlinear-optical properties of semiconductor clusters. J . Opt. Soc. Am. B, 1989, 6, 808.
    17.Alivisatos, A. P. Nanocrystals: Building blocks for modern materials design. Endeavour. 1997, 21, 56–60.
    18. Qu, L. H.; Peng, X.G. Control of Photoluminescence Properties of CdSe Nanocrystals in Growth. J. Am. Chem. Soc. 2002, 124, (9), 2049-2055.
    19. Brus, L. E. Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J . Chem. Phys. 1984, 80, 4403.
    20.Kayanuma, Y. Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape. Phys. Rev. B. 1988, 38, 9797-9805.
    21.Wang, Y.; Suna, A,; Mahler, W.; Kasowski, R. PbS in polymers. From molecules to bulk solids. J . Chem. Phys. 1987, 87, 7315.
    22.Wang, Y.; Herron, N. Quantum size effects on the exciton energy of CdS clusters. Phys. Rev. B., 1990.42, 7253.
    23.Shinojima, H.; Yumoto, J.; Uesugi, N.; Omi, S.; Asahara, Y. Microcrystamte size dependence of absorption and photoluminescence spectra in CdS_xSe_(1-x) doped glass. Appl. Phys. Lett. 1989, 55, 1519-1521.
    24.Lippens. P. E.; Lannoo, M. Calculation of the band gap for small CdS and ZnS crystallites. Phys. Rev. B, 1989, 39, 10935-10942.
    25.Lippens, P. E.; Lannoo, M. Comparison between calculated and experimental values of the lowest excited electronic state of small CdSe crystallites. Phys. Rev. B, 1990, 41, 6079-6081.
    26. Haase, M.; Weller, H.; Henglein, A. Photochemistry of colloidal semiconductors.Photoelectron emission from cadmium sulfide particles and related chemical effects. J. Phys. Chem. 1988, 92,4706-4712.
    27. Hilinski, E.; Lucas, P.; Wang, Y. A picosecond bleaching study of quantum-confined cadmium sulfide microcrystallites in a polymer film. J . Chem. Phys. 1988, 89, 3435.
    28. Wang, Y.; Suna, A.; McHugh, J.; Hilinski, E.; Lucas, P.; Johnson, R. D. Optical transient bleaching of quantum-confined CdS clusters: The effects of surface-trapped electron-hole pairs. J . Chem. Phys. 1990, 92, 6927-6939.
    29. Murray, C. B.; Norris, D. B.; Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706-8715.
    30. Becerra, L.; Murray, C. B.; Griffin, R. G.; Bawendi, M. G. Investigation of the surface morphology of capped CdSe nanocrystallites by~(31) P nuclear magnetic resonance. J. Chem. Phys. 1994, 100, 3297-3330.
    31. Peng, Z.A.; Peng, X. G. Formation of High-Quality CdTe, CdSe, and CdS Nanocrystals Using CdO as Precursor. J. Am. Chem. Soc, 2001, 123,183-184.
    32. Peng, Z.A.; Peng, X.G. Nearly Monodisperse and Shape-Controlled CdSe Nanocrystals via Alternative Routes: Nucleation and Growth. J. Am. Chem. Soc, 2002, 124, 3343-3353.
    33. W. William Yu; Y. Andrew Wang; Peng, X. G. Formation and Stability of Size-, Shape-, and Structure-Controlled CdTe Nanocrystals: Ligand Effects on Monomers and Nanocrystals Chem. Mater. 2003, 15, 4300-4308.
    34. Jason Thessing; Qian J. H.; Chen H. Y.; Narayan Pradhan; Peng, X. G.. Interparticle Influence on Size/Size Distribution Evolution of Nanocrystals. J. Am. Chem. Soc., 2007, 129, 2736–2737.
    35. Kim Y-H; Jun Y-W; Jun B-H; Lee S-M; Cheon J. Sterically Induced Shape and Crystalline Phase Control of GaP Nanocrystals. J. Am. Chem. Soc .2002, 124, 13656-13657.
    36. Lee S-M; Jun Y-W; Cho S-N; Cheon J. Single-Crystalline Star-Shaped Nanocrystals and Their Evolution: Programming the Geometry of Nano-Building Blocks. J. Am. Chem. Soc. 2002, 124, 11244-11245
    37. Rossetti R; Brus, L. E. Electron-hole recombination emission as a probe ofsurface chemistry in aqueous cadmium sulfide colloids. J. Phys. Chem. 1982, 86, 4470-4472.
    38. Talapin, D. V.; Rogach, A. L.; Shevchenko, E. V.; Kornowski, A.; Haase, M.;Weller, H. Dynamic Distribution of Growth Rates within the Ensembles of Colloidal II-VI and III-V Semiconductor Nanocrystals as a Factor Governing Their Photoluminescence Efficiency. J. Am. Chem. Soc. 2002, 124, 5782-5790.
    39. Qu, L. H.; Peng, Z. A.; Peng, X. G. Alternative Routes toward High Quality CdSe Nanocrystals. Nano. Lett. 2001, 1:333-337.
    40. Yu, W. W.; Peng, X. G. Formation of High-Quality CdS and Other II-VI Semiconductor Nanocrystals in Noncoordinating Solvents:T unable Reactivity of Monomers. Angew. Chemie. Int. Ed. 2002, 41, 2368-2371.
    41. Peng,Z. A.; Peng, X. G. Mechanisms of the Shape Evolution of CdSe Nanocrystals. J. Am. Chem. Soc., 2001, 123, 1389–1395.
    42. Xie, R. G.; Li, Z.; Peng, X. G. Nucleation Kinetics vs Chemical Kinetics in the Initial Formation of Semiconductor Nanocrystals. J. Am. Chem. Soc., 2009, 131, 15457–15466.
    43. Ji, X. H.; Copenhaver, D.; Sichmeller, C.; Peng, X. G. Ligand Bonding and Dynamics on Colloidal Nanocrystals at Room Temperature: The Case of Alkylamines on CdSe Nanocrystals. J. Am. Chem. Soc. 2008, 130, 5726–5735.
    44. Narayan Pradhan; Danielle Reifsnyder; Xie, R. G.; Jose Aldana; Peng, X. G. Surface Ligand Dynamics in Growth of Nanocrystals. J. Am. Chem. Soc., 2007, 129 , 9500–9509.
    45. Wang,Y. A.; Li, J. J.; Chen, H. Y.; Peng, X. G. Stabilization of Inorganic Nanocrystals by Organic Dendrons. J. Am. Chem. Soc., 2002, 124, 2293–2298.
    46. Guo, W. Z.; Li, J. J.; Wang, Y.A.; Peng, X. G. Luminescent CdSe/CdS Core/Shell Nanocrystals in Dendron Boxes: Superior Chemical, Photochemical and Thermal Stability. J. Am. Chem. Soc., 2003, 125, 3901–3909.
    47. Liu, Y. C.; Myeongseob Kim; Yunjun Wang, Y. J.; Wang, Y. A.; Peng, X. G.Highly Luminescent, Stable, and Water-Soluble CdSe/CdS Core-Shell Dendron Nanocrystals with Carboxylate Anchoring Groups. Langmuir, 2006, 22, 6341–6345.
    48. Blackman, B.; Battaglia, D.; Peng, X. G. Bright and Water-Soluble Near IR-Emitting CdSe/CdTe/ZnSe Type-II/Type-I Nanocrystals, Tuning the Efficiency and Stability by Growth. Chem. Mater., 2008, 20, 4847–4853.
    49. Peng, X. G. Band Gap and Composition Engineering on a Nanocrystal (BCEN) in Solution. Acc. Chem. Res., 2010, 43, 1387–1395.
    50. Hines, M. A.; Guyot-Sionnest, P. Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals. J. Phys. Chem. 1996, 100, 468- 471.
    51. Mews, A.; Eychmueller, A.; Giersig, M.; Schooss, D.; Weller, H. Preparation, characterization, and photophysics of the quantum dot quantum well system cadmium sulfide/mercury sulfide/cadmium sulfide. J. Phys. Chem., 1994, 98, 934–941.
    52. Gu, H. W.; Zheng, R. K.; Zhang, X. X.; Xu, B. Facile one-pot synthesis of bifunctional heterodimers of nanoparticles: A conjugate of quantum dot and magnetic nanoparticles. J. Am. Chem. Soc., 2004, 126, 5664–5665.
    53. Bhargava, R. N.; Gallagher, D.; Hong, X.; Nurmikko, A. Optical properties of manganese-doped nanocrystals of zinc sulfide. Phys. Rev. Lett., 1994, 72, 416– 419.
    54. Pradhan, N.; Goorskey, D.; Thessing, J.; Peng, X. G. An Alternative of CdSe Nanocrystal Emitters: Pure and Tunable Impurity Emissions in ZnSe Nanocrystals. J. Am. Chem. Soc., 2005, 127, 17586–17587.
    55 Talapin, D. V.; Rogach A. L.; Kornowski A., Haase M.; Weller H. Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine-Trioctylphosphine Oxide-Trioctylphospine Mixture. Nano.Lett., 2001, 1, 207-211.
    56 Talapin, D. V.; Haubold, S.; Rogach, A. L.; Kornowski, A.; Haase,M.; Weller, H. A Novel Organometallic Synthesis of Highly Luminescent CdTe Nanocrystals. J.Phys. Chem. B, 2001, 105, 2260-2263.
    57. Herron, N.; Wang, Y.; Eckert, H. Synthesis and characterization of surface-capped, size-quantized cadmium sulfide clusters. Chemical control of cluster size. J. Am. Chem. Soc., 1990, 112, 1322-1326.
    58. Herron, N; Calabress, J. C.; Farneth, W. E.; Wang, Y. Crystal Structure and Optical Properties of Cd32S14(SC6H5)36. DMF4, a Cluster with a 15 Angstrom CdS Core. Science, 1993, 259, 1426-1428.
    59. Cumberland S. L.; Hanif, K. M.; Javier, A.; Khitrov, G. A.; Strouse, G. F.; Woessner, S. M.; Yun, C. S. Inorganic Clusters as Single-Source Precursors for Preparation of CdSe, ZnSe, and CdSe/ZnS Nanomaterials. Chem Mater, 2002, 14, 1576-1584.
    60. Jun Y-W; Jung Y-Y; Cheon, J. Architectural Control of Magnetic Semiconductor Nanocrystals. J. Am. Chem. Soc., 2002, 124,615-619.
    61. Hanif, K. M.; Meulenberg, R. W.; Strouse, G. F. Magnetic Ordering in Doped Cd1-xCoxSe Diluted Magnetic Quantum Dots. J. Am. Chem. Soc., 2002, 124, 11495-11502.
    62. Raola, O. E.; Strouse, G. F. Synthesis and Characterization of Eu-Doped Cadmium Selenide Nanocrystals. Nano. Lett., 2002, 2,1443-1447.
    63. Spanhel, L.; Haase, M.; Weller, H.; Henglein, A. Photochemistry of colloidal semiconductors. 20. Surface modification and stability of strong luminescing CdS particles. J. Am. Chem. Soc., 1987, 109, 5649-5655.
    64. Rogach, A. L.; Katsikas, L.; Kornowski, A.; Su, D.; Eychmüller, A.;Weller, H. Synthesis and Characterization of Thiol-Stabilized CdTe Nanocrystals. Ber. Bunsen-Ges. Phys. Chem., 1996, 100, 1772-1778.
    65. Rockenberger, J.; Tr?ger, L.; Rogach, A. L.; Tischer, M.; Grundmann, M.; Eychmüller, A.; Weller, H. The contribution of particle core and surface to strain, disorder and vibrations in thiolcapped CdTe nanocrystals. J. Chem. Phys., 1998, 108, 7807-7815.
    66. Kapitonov, A. M.; Stupak, A. P.; Gaponenko, S. V.; Petrov, E. P.; Rogach, A. L.; Eychmüller, A. Luminescence Properties of Thiol-Stabilized CdTe Nanocrystals.J. Phys. Chem. B., 1999, 103, 10109-10113.
    67. Gao, M.; Kirstein, S.; M?hwald, H.; Rogach, A. L.; Kornowski, A.; Eychmüller, A.; Weller, H. Strongly Photoluminescent CdTe Nanocrystals by Proper Surface Modification. J. Phys. Chem. B, 1998, 102, 8360-8363.
    68. Gaponik, N.; Talapin, D. V.; Rogach, A. L.; Hoppe K.; Shevchenko, E. V.; Kornowski, A.; Eychmüller, A.; Weller, H. Thiol-Capping of CdTe Nanocrystals: An Alternative to Organometallic Synthetic Routes. J. Phys. Chem. B., 2002, 106, 7177-7185.
    69. Xie, R. G.; Zhang, J. X.; Zhao, F.; Yang, W. S.; Peng, X. G. Synthesis of Monodisperse, Highly Emissive, and Size-Tunable Cd3P2 Nanocrystals. Chem. Mater., 2010, 22, 3820–3822.
    70. Battaglia, D.; Peng, X. G. Formation of High Quality InP and InAs Nanocrystals in a Noncoordinating Solvent Nano Lett., 2002, 2, 1027–1030.
    71. Bailey, S. G.; Flood, D. J. Space Photovoltaics. Prog. PhotoVolt. Res. Appl. 1998, 6, 1-14.
    72. Schock, H. W.; Noufi, R. CIGS-based solar cells for the next millennium. Prog. PhotoVolt. Res. Appl. 2000, 8, 151-160.
    73. Schock, H. W.; Bogus, K. Development of CIS solar cells for space applications. In Proceedings of the Second World Conference on Photo-Voltaic Energy; Schmid, J., Ossenbrink, H. A., Helm, P., Ehmann, H., Dunlop, E. D., Eds.; EC Joint Research Center: Luxembourg, July 1998, 3586-3589.
    74. Klaer, J.; Bruns, J.; Henninger, R.; To¨pper, K.; Klenk, R.; Ellmer, K.; Bra¨unig, D. A tolerant two step process for efficient CuInS2 solar cells. In Proceedings of the Second World conference on PhotoVoltaic Solar Energy ConVersion; Schmid, J.; Ossenbrink, H. A.; Helm, P.; Ehmann, H.; Dunlop, E. D.; Eds.; EC Joint Research Center: Luxembourg, July 1998, 537-540.
    75. Miguel, A.; Contreras; Brian Egaas; Ramanathan, K.; Hiltner, J.; Swartzlander, A.;Hasoon, F.; Rommel Noufi. Progress Toward 20%Efficiency Cu(In,Ga)Se_2 Thin-Film Solar Cells. Prog. Photovolt: Res. Appl, 1999. 7, 311-316.
    76. Jehad, A. M.; AbuShama1y; Johnston, S.; Moriarty, T.; Teeter, G.; Ramanathan,K.; Noufi, R. A 21.5%Efficiency in Cu(In,Ga)Se_2 Thin-Film Concentrator Solar Cell. Prog. Photovolt: Res. Appl. , 2002, 10, 40-46.
    77. Ingrid Repins; Miguel, A.; Contreras; Egaas, B.; Clay DeHart; John Scharf; Perkins, C. L.; Bobby To ; Rommel Noufi. 19.9%-efficient ZnO/CdS/CuInGaSe_2 Solar Cell with 81.2% Fill Factor. Prog. Photovolt: Res. Appl., 2008, 16, 235–239.
    78. Yoshino, K.; Ikari, T.; Shirakata, S.; Miyake, H.; Hiramatsu, K. Sharp band edge photoluminescence of high-purity CuInS_2 single crystals. Appl. Phys. Lett., 2001,
    78, 742-744.
    79. Torimoto, T.; Adachi, T.; Okazaki, K. i.; Sakuraoka, M.; Shibayama, T.; Ohtani, B.; Kudo, A.; Kuwabata, S. Facile Synthesis of ZnS-AgInS_2 Solid Solution Nanoparticles for a Color-Adjustable Luminophore. J. Am. Chem. Soc. 2007, 129,12388-12389.
    80. Castro, S. L.; Bailey, S. G.; Banger, K. K.; Hepp, A. F. Nanocrystalline Chalcopyrite Materials (CuInS_2 and CuInSe_2) via Low-Temperature Pyrolysis of Molecular Single-Source Precursors. Chem. Mater., 2003, 15, 3142-3147.
    81. Castro, S. L.; Bailey, S. G.; Banger, K., K.; Hepp, A. F. Synthesis and Characterization of Colloidal CuInS_2 Nanoparticles from a Molecular Single-Source Precursor. J. Phys. Chem. B., 2004, 108, 12429-12435.
    82. Nairn, J. J.; Schapiro, P. J.; Twamley, B.; Pounds, T.; Wandruszka, R. V.; Williams, M.; Wang, C. M.; Notton, M. G. Preparation of Ultrafine Chalcopyrite Nanoparticles via the Photochemical Decomposition of Molecular Single-Source Precursors. Nano Lett., 2006, 6, 1218-1223.
    83. Jiang, Y.; Wu, Y.; Mo, X.; Yu, W. C.; Xie, Y.; Qian, Y. T. Elemental Solvothermal Reaction To Produce Ternary Semiconductor CuInE_2 (E= S, Se) Nanorods. Inorg.Chem., 2000, 39, 2964-2695.
    84. Lu, Q. Y.; Hu, J. Q.; Tang, K. B.; Qian, Y. T.; Zhou, G. E.; Liu, X. M. Synthesis of Nanocrystalline CuMS_2 (M =In or Ga) through a Solvothermal Process. Inorg. Chem., 2000, 39, 1606-1607.
    85. Xiao, J.; Xie, Y.; Xiong, Y.; Tang, R.; Qian, Y. T. A mild solvothermal route tochalcopyrite quaternary semiconductor CuIn(Se_xS_(1-x))_2 nanocrystallites. J. Mater. Chem., 2001, 11, 1417-1420.
    86. Ahn, S.; Kim, K. H.; Chun, Y. G.; Yoon, K. G. Nucleation and growth of Cu(In,Ga)Se_2 nanoparticles in low temperature colloidal process. Thin Solid Films., 2007, 515, 4036-4040.
    87. Panthani, M. G.; Akhavan, V.; Goodfellow, B.; Schmidtke, J. P.; Dunn, L.; Dodabalapur, A.; Barbara, P. F.; Korgel, B. A. Synthesis of CuInS_2, CuInSe_2, and Cu(In_xGa_(1-x))Se_2 (CIGS) Nanocrystal“Inks”for Printable Photovoltaics. J. Am. Chem. Soc., 2008, 130, 16770-167777.
    88. Pan, D. C.; An, L. J.; Sun, Z. M.; Hou, W.; Yang, Y.; Yang, Z. Z.; Lu, Y. F. Synthesis of Cu-In-S Ternary Nanocrystals with Tunable Structure and Composition. J. Am. Chem. Soc., 2008, 130, 5620-5621.
    89. Malik, M. A.; O’Brien, P.; Revaprasadu, N. A Novel Route for the Preparation of CuSe andCuInSe_2 Nanoparticles. Adv. Mater., 1999, 11, 1441-1444.
    90. Czekelius, C.; Hilgendorff, M.; Spanhel, L.; Bedja, I.; Lerch, M.; Muller, G.; Bloeck, U.; Su, D. S.; Giersig, M. A Simple Colloidal Route to NanocrystallineZnO/CuInS_2 Bilayers. Adv. Mater., 1999, 11, 643-646.
    91. Nakamura, H.; Kato, W.; Uehara, M.; Nose, K.; Omata, T.; Matsuo, O., S.; Miyazaki, M.; Maeda, H. Tunable Photoluminescence Wavelength of Chalcopyrite CuInS_2-Based Semiconductor Nanocrystals Synthesized in a Colloidal System. Chem. Mater. 2006, 18, 3330-3335.
    92. Zhong, H. Z.; Zhou, Y.; Ye, M. F.; He, Y. J.; Ye, J. P.; He, C.; Yang, C. H.; Li, Y. F. Controlled Synthesis and Optical Properties of Colloidal Ternary Chalcogenide CuInS_2 Nanocrystals. Chem. Mater., 2008, 20, 6434-6443.
    93. Arici, E.; Sariciftci, N. S.; Meissner, D. Hybrid Sollar Cells Based on Nanoparticles of CuInS_2 in Organic Matrices. Adv. Funct. Mater. 2003, 13, 165-171.
    94. Hirpo, W.; Dhingra, S.; Sutorik , A. C.;Kanatzidis,M. G. Synthesis of Mixed Copper-Indium Chalcogenolates. Single-Source Precursors for the Photovoltaic Materials CuInQ_2 (Q = S, Se). J. Am. Chem. SOC.,1993, 115,1597-1599.
    95. Norako, M. E.; Franzman, M. A.; Brutchey, R. L. Growth Kinetics of Monodisperse Cu-In-S Nanocrystals Using a Dialkyl Disulfide Sulfur Source. Chem. Mater., 2009, 21, 4299–4304.
    96. Katsuhiro Nose;Yuki Soma; Takahisa Omata; Shinya Otsuka-Yao-Matsuo. Synthesis of Ternary CuInS_2 Nanocrystals; Phase Determination by Complex Ligand Species. Chem. Mater. 2009, 21, 2607–2613.
    97. Pan, D. C.; Weng, D.; Wang, X. L.; Xiao, Q. F.; Chen, W.; Xu, C. L.;Zhengzhong Yang, Z. Z.; Lu, Y. F. Alloyed semiconductor nanocrystals with broad tunable band gaps. Chem. Commun., 2009, 4221–4223.
    98. Xie, R. G.; Rutherford, M.; Peng, X. G. Formation of High-Quality I-III-VI Semiconductor Nanocrystals by Tuning Relative Reactivity of Cationic Precursors. J. Am. Chem. Soc. 2009, 131, 5691–5697.
    99. Li, L.; Daou, J.; Texier, B.;Tran Thi Kim Chi; Liem, N. Q.;Reiss, P. Highly Luminescent CuInS_2/ZnS Core/Shell Nanocrystals:Cadmium-Free Quantum Dots for In Vivo Imaging. Chem. Mater. 2009, 21, 2422–2429.
    100.Thomas Pons, T.; Emilie Pic, E.;Lequeux, N.;Cassette, E.; Bezdetnaya, L.;Guillemin, F.; Marchal, F.;Dubertret, B. Cadmium-Free CuInS_2/ZnS Quantum Dots for Sentinel Lymph Node Imaging with Reduced Toxicity. ACSNANO. 2010, 4, 2531-2538.
    101. Shay, J.L.; Tell, B. Visible Stimulated Emission in Ternary Chalcopyrite Sulfides and Selenides. Appl. Phys. Lett. 1971, 19, 366-368.
    102. Shay, J. L.; Tell, B.; Kasper, H. M.; Schiavone, L. M. p-d Hybridization of the Valence Bands ofⅠ-Ⅲ-ⅥCompound. Phys. Rev. B, 1972, 5, 5003-5005.
    1. Xie, R. G.; Rutherford, M.; Peng, X. G. Formation of High-Quality I-III-VI Semiconductor Nanocrystals by Tuning Relative Reactivity of Cationic Precursors. J. Am. Chem. Soc. 2009, 131, 5691–5697.
    2. Nakamura, H.; Kato, W.; Uehara, M.; Nose, K.; Omata, T.; Matsuo, O., S.; Miyazaki, M.; Maeda, H. Tunable Photoluminescence Wavelength of Chalcopyrite CuInS_2-Based Semiconductor Nanocrystals Synthesized in a Colloidal System. Chem. Mater. 2006, 18, 3330-3335.
    3. Zhong, H. Z.; Zhou, Y.; Ye, M. F.; He, Y. J.; Ye, J. P.; He, C.; Yang, C. H.; Li, Y. F. Controlled Synthesis and Optical Properties of Colloidal Ternary Chalcogenide CuInS_2 Nanocrystals. Chem. Mater., 2008, 20, 6434-6443.
    4. Norako, M. E.; Franzman, M. A.; Brutchey, R. L. Growth Kinetics of Monodisperse Cu-In-S Nanocrystals Using a Dialkyl Disulfide Sulfur Source. Chem. Mater., 2009, 21, 4299–4304.
    5. Katsuhiro Nose;Yuki Soma; Takahisa Omata; Shinya Otsuka-Yao-Matsuo. Synthesis of Ternary CuInS_2 Nanocrystals; Phase Determination by Complex Ligand Species. Chem. Mater. 2009, 21, 2607–2613.
    6. Chen, D. A.; Viswanatha, R.; Ong, G. L.; Xie, R. G.; Balasubramaninan, M.; Peng, X. G. Temperature Dependence of“Elementary Processes”in Doping Semiconductor Nanocrystals. J. Am. Chem. Soc., 2009, 131, 9333–9339.
    7. Vladimir A. Karavanskii, V. A.; Klimov, V. I. Mechanisms for optical nonlinearities and ultrafast carrier dynamics in Cu_xS nanocrystals. Phys. Rev. B. 1996, 54, 8087-8094.
    8. Chen,Y. B.; Chen,L.; Wu, L. M. The Structure-Controlling Solventless Synthesis and Optical Properties of Uniform Cu_2S Nanodisks. Chem. Eur. J. 2008, 14, 11069– 11075.
    9. Li, S.; Wang, H. Z.; Xu, W. W.; Si, H. L.; Tao, X. J.; Lou, S. Y.; Du, Z. L.; Li, L. S. Synthesis and assembly of monodisperse spherical Cu_2S nanocrystals. J. Colloid Interface Sci. 2009, 330, 483–487.
    10. Tang, A. W.; Qu, S. C.; Li, K.; Hou, Y. B.; Teng, F.; Cao, J.; Wang, Y. S.; Wang, Z. G. One-pot synthesis and self-assembly of colloidal copper(I) sulfide nanocrystals. Nanotechnology, 2010, 21, 1-9.
    11. Wang, Y.; Hu, Y. X.; Zhang, Q.; Ge, J. P.; Lu, Z. D.; Hou, Y. B.; Yin, Y. D. One-Pot Synthesis and Optical Property of Copper(I) Sulfide Nanodisks. Inorg. Chem. 2010, 49, 6601–6608.
    12. Zhuang, Z. B.; Peng, Q.; Zhang, B. C.; Li, Y. D. Controllable Synthesis of Cu2S Nanocrystals and Their Assembly into a Superlattice. J. Am. Chem. Soc. 2008, 130, 10482–10483.
    13. Li, L. S.; Pradhan, N.; Wang, Y. J.; Peng, X. G. High Quality ZnSe and ZnS Nanocrystals Formed by Activating Zinc Carboxylate Precursors. Nano Lett., 2004, 4, 2261-2264.
    14. Kang Hyun Park; Kwonho Jang; Seung Uk Son. Synthesis, Optical Properties, and Self-Assembly of Ultrathin Hexagonal In_2S_3 Nanoplates. Angew. Chem. Int. Ed. 2006, 45, 4608–4612.
    15. Liu, Y.; Xu, H. Y.; Qian, Y. T. Double-Source Approach to In_2S_3 Single Crystallites and Their Electrochemical Properties. Crystal Growth & Design, 2006, 6, 1304-1307.
    16. Du, W.; Zhu, J.; Li, S. X.; Qian, X. F. Ultrathinβ-In_2S_3 Nanobelts: Shape-Controlled Synthesis and Optical and Photocatalytic Properties. Crystal Growth & Design, 2008, 8, 2130-2136.
    17. Franzman, M. A.; Brutchey, R. L. Solution-Phase Synthesis of Well-Defined Indium Sulfide Nanorods. Chem. Mater. 2009, 21, 1790–1792.
    18. Ning, J. J.; Men, K. K.; Xiao, G. J.; Zhao, L. Y.; Wang, L.; Liu, B. B.; Zou, B. Synthesis, optical properties and growth process of In_2S_3 nanoparticles. J. Colloid Interface Sci. 2010, 347, 172–176.
    1. Xie, R. G.; Rutherford, M.; Peng, X. G. Formation of High-Quality I-III-VI Semiconductor Nanocrystals by Tuning Relative Reactivity of Cationic Precursors. J. Am. Chem. Soc. 2009, 131, 5691–5697.
    2. Chen, D. A.; Viswanatha, R.; Ong, G. L.; Xie, R. G.; Balasubramaninan, M.; Peng, X. G. Temperature Dependence of“Elementary Processes”in Doping Semiconductor Nanocrystals. J. Am. Chem. Soc., 2009, 131, 9333–9339.
    3. Alivisatos A. P. Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science, 1996, 271, 933-937.
    4. Alivisatos A. P. Perspectives on the Physical Chemistry of Semiconductor Nanocrystals. J. Phys. Chem., 1996, 100, 13226-13239.
    5. Yu, W. W.; Peng, X. G. Formation of High-Quality CdS and Other II-VI Semiconductor Nanocrystals in Noncoordinating Solvents:T unable Reactivity of Monomers. Angew. Chemie. Int. Ed. 2002, 41, 2368-2371.
    6. Narayan Pradhan; Danielle Reifsnyder; Xie, R. G.; Jose Aldana; Peng, X. G. Surface Ligand Dynamics in Growth of Nanocrystals. J. Am. Chem. Soc., 2007, 129 , 9500–9509.
    7. Thessing, J.; Qian, J. H.; Chen, H. Y.; Pradhan, N.; Peng, X. G. Interparticle Influence on Size/Size Distribution Evolution of Nanocrystals. J. Am. Chem. Soc., 2007, 129, 2736–2737.
    8. Xie, R. G.; Li, Z.; Peng, X. G. Nucleation Kinetics vs Chemical Kinetics in the Initial Formation of Semiconductor Nanocrystals. J. Am. Chem. Soc., 2009, 131, 15457–15466.
    9. Xie, R. G.; Peng, X. G. Synthetic Scheme for High-Quality InAs Nanocrystals Based on Self-Focusing and One-Pot Synthesis of InAs-Based Core–Shell Nanocrystals. Angew. Chem. Int. Ed. 2008, 47, 7677–7680.
    10. Pan, D. C.; An, L. J.; Sun, Z. M.; Hou, W.; Yang, Y.; Yang, Z. Z.; Lu, Y. F. Synthesis of Cu?In?S Ternary Nanocrystals with Tunable Structure andComposition. J. Am. Chem. Soc., 2008, 130, 5620-5621.
    11. Katsuhiro Nose;Yuki Soma; Takahisa Omata; Shinya Otsuka-Yao-Matsuo. Synthesis of Ternary CuInS2 Nanocrystals; Phase Determination by Complex Ligand Species. Chem. Mater. 2009, 21, 2607–2613.
    12. Pan, D. C.; Weng, D.; Wang, X. L.; Xiao, Q. F.; Chen, W.; Xu, C. L.;Zhengzhong Yang, Z. Z.; Lu, Y. F. Alloyed semiconductor nanocrystals with broad tunable band gaps. Chem. Commun., 2009, 4221–4223.
    13. Norako, M. E.; Franzman, M. A.; Brutchey, R. L. Growth Kinetics of Monodisperse Cu-In-S Nanocrystals Using a Dialkyl Disulfide Sulfur Source. Chem. Mater., 2009, 21, 4299–4304.
    1. Pan, D. C.; Weng, D.; Wang, X. L.; Xiao, Q. F.; Chen, W.; Xu, C. L.;Zhengzhong Yang, Z. Z.; Lu, Y. F. Alloyed semiconductor nanocrystals with broad tunable band gaps. Chem. Commun., 2009, 4221–4223.
    2. Gao, J. H.; Chen, K.; Xie, R. G.; Xie, J.; Yan, Y. J.; Cheng, Z.; Peng, X. G.; Chen, X. Y. In Vivo Tumor-Targeted Fluorescence Imaging Using Near-Infrared Non-Cadmium Quantum Dots. Bioconjugate Chem., 2010, 21 , 604–609.
    3. Xie, R.G.; Peng, X. G. Synthesis of Cu-Doped InP Nanocrystals (d-dots) with ZnSe Diffusion Barrier as Efficient and Color-Tunable NIR Emitters. J. Am. Chem. Soc., 2009, 131, 10645–10651.
    4. Xie, R. G.; Battaglia, D.; Peng, X. G. Colloidal InP Nanocrystals as Efficient Emitters Covering Blue to Near-Infrared. J. Am. Chem. Soc., 2007, 129 , 15432–15433.
    5. Chen, D. A.; Viswanatha, R.; Ong, G. L.; Xie, R. G.; Balasubramaninan, M.; Peng, X. G. Temperature Dependence of“Elementary Processes”in Doping Semiconductor Nanocrystals. J. Am. Chem. Soc., 2009, 131, 9333–9339.
    6. Xie, R. G.; Li, Z.; Peng, X. G. Nucleation Kinetics vs Chemical Kinetics in the Initial Formation of Semiconductor Nanocrystals. J. Am. Chem. Soc., 2009, 131, 15457–15466.
    1. Xie, R. G.; Rutherford, M.; Peng, X. G. Formation of High-Quality I-III-VI Semiconductor Nanocrystals by Tuning Relative Reactivity of Cationic Precursors. J. Am. Chem. Soc. 2009, 131, 5691–5697.
    2. Blackman, B.; Battaglia, D. M.; Mishima, T. D.; Johnson, M. B.; Peng, X. G. Control of the Morphology of Complex Semiconductor Nanocrystals with a Type II Heterojunction, Dots vs Peanuts, by Thermal Cycling. Chem. Mater. 2007, 19, 3815–3821.
    3. Li, J. J.; Wang, Y. A.; Guo, W. Z.; Keay, J. C.; Mishima, T. D.; Johnson, M. B.; Peng, X. G. Large-Scale Synthesis of Nearly Monodisperse CdSe/CdS Core/Shell Nanocrystals Using Air-Stable Reagents via Successive Ion Layer Adsorption and Reaction. J. Am. Chem. Soc. 2003, 125, 12567–12575.
    4. Chen, D. A.; Viswanatha, R.; Ong, G. L.; Xie, R. G.; Balasubramaninan, M.; Peng, X. G. Temperature Dependence of“Elementary Processes”in Doping Semiconductor Nanocrystals. J. Am. Chem. Soc., 2009, 131, 9333–9339.
    5. Chen, D. A.; Fei Zhao, F.; Qi, H.; Rutherford, M.; Peng, X. G. Bright and Stable Purple/Blue Emitting CdS/ZnS Core/Shell Nanocrystals Grown by Thermal Cycling Using a Single-Source Precursor. Chem. Mater., 2010, 22, 1437–1444.
    6. Aldana, J.; Wang, Y. A.; Peng, X. G. Photochemical Instability of CdSe Nanocrystals Coated by Hydrophilic Thiols. J. Am. Chem. Soc. 2001, 123, 8844-8850.
    7. Wang,Y. A.; Li, J. J.; Chen, H. Y.; Peng, X. G. Stabilization of Inorganic Nanocrystals by Organic Dendrons. J. Am. Chem. Soc., 2002, 124, 2293–2298.
    8. Guo, W. Z.; Li, J. J.; Wang, Y.A.; Peng, X. G. Luminescent CdSe/CdS Core/Shell Nanocrystals in Dendron Boxes: Superior Chemical, Photochemical and Thermal Stability. J. Am. Chem. Soc., 2003, 125, 3901–3909.
    9. Mikulec, M. C.; Kuno, M.; Bennati, M.; Hall, D. A.; Griffin, R. G.; Bawendi, M. G. Organometallic Synthesis and Spectroscopic Characterization of Manganese-Doped CdSe Nanocrystals. J. Am. Chem. Soc., 2000, 122, 2532–2540.
    10. Colvin, V. L.; Schlamp, M. C.; Alivisatos, A. P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature ,1994, 370, 354.
    11. Klimov, V. I.; Ivanov, S. A.; Nanda, J.; Achermann, M.; Bezel, I.; McGuire, J. A.;Priryatinski, A. Single-exciton optical gain in semiconductor nanocrystals. Nature, 2007, 447, 441.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700