苯乙烯类嵌段共聚物及其共混物的黏弹行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Studies on the Viscoelastic Behaviors of Styrene Block Copolymers and Their Blends
  • 作者:王万杰
  • 论文级别:博士
  • 学科专业名称:材料学
  • 学位年度:2006
  • 导师:郑强
  • 学科代码:080502
  • 学位授予单位:浙江大学
  • 论文提交日期:2006-04-01
摘要
苯乙烯类嵌段共聚物作为一类重要的热塑性弹性体,广泛地被应用于汽车部件及工具手柄、电线电缆包皮或绝缘带、医疗制品及食品容器、密封胶、粘合剂、涂料以及聚合物共混改性等领域。对上述应用目标而言,黏弹行为不仅影响制品的加工性能,而且是决定制品最终性能的重要的因素之一。
     本文选择四种苯乙烯类嵌段共聚物作为研究对象,系统考察了其线性、非线性黏弹行为以及热流变行为。鉴于它们在聚合物合金方面的广泛应用,还考察了尼龙/弹性体共混合金的线性和非线性黏弹行为。
     动态应变扫描的结果表明四种嵌段共聚物的临界剪切应变(γ_c)的变化规律为,γ_c(SBS791)≈γ_c(SBS796)>γ_c(SEEPS)>γ_c(SEBS)。首次发现SEBS和SBS796嵌段共聚物的动态损耗模量(G”)~γ曲线中,在γ=24%和γ=61%处呈现最大值,这种现象与粒子填充橡胶体系相似。我们认为,当PS相区的尺寸与填充橡胶中的无机粒子尺寸在相同数量级时,嵌段共聚物的交联网络结构发生了类似于填充橡胶中填料网络的变化,这从SBS796的TEM照片得到了证实。动态时间扫描发现,动态应变扫描破坏的样品结构随着时间延长逐渐修复。
     除SEBS嵌段共聚物外,其它三种嵌段共聚物均可从不同温度的动态频率(ω)扫描得到较宽ω的主曲线。分别用WLF方程和Arrhenius方程对移动因子(α_T)随温度的变化进行了模拟,得到了SEEPS和SBS的黏流活化能。基于不同温度的logG'~logG”曲线,考察了温度对嵌段共聚物微结构的影响,发现由于存在微相分离结构,嵌段共聚物的主曲线与均聚物不同,不是一条直线,而是一条在高ω区域上翘的曲线。此外,从动态损耗正切(tan δ)的最小值和交叉模量分别计算得到四种嵌段共聚物的平台模量和缠结分子量。长时应力松弛曲线证实了嵌段共聚物复杂的松弛行为,并从这些松弛曲线计算得到了四种嵌段共聚物的松弛时间谱。修正的BSW模型可以很好地模拟得到松弛时间谱,得到四种嵌段共聚物的最长松弛时间。
     对四种嵌段共聚物的非线性黏弹行为进行了研究,并用Wagner模型对非线性黏弹行为进行了预测。结果表明,四种嵌段共聚物的线性松弛行为可用
As a kind of popular thermoplastic elastomers, the styrene block copolymer has been widely applied in many fields, such as automobile parts, toolholders, casings of electrical wire and cable, medical appliances, food containers, encapsulant, adhesive, coating, polymer blend materials. It is well-known that viscoelasticity is an important factor to determine processing and ultimate properties for polymeric materials, especially for block copolymers. In this dissertation, we choose four styrene block copolymers as models to investigate their linear and nonlinear viscoelastic behaviors and thermorheological behaviors. On the other hand, we also investigate the linear and nonlinear viscoelastic behavior of nylon / elastomer blends in view of their having extensive widely applications.From the dynamic strain sweep test, the critical shear strains (γ_c) of four block copolymers have been determined. The results show the following ranks as y_c(sBS791) ~ γ_c(sbs796) > γ_c(seeps) > γ_c(sebs). It is found that SEBS and SBS796 block copolymers exhibit peaks in the dynamic loss modulus (G') ~frequency (ω) curves at γ = 24 % and γ = 61 %, respectively. These phenomena are similar to that of the rubber system filled with inorganic particles. We believe that cross linking networks of block copolymers have the similar change with the networks in filled rubber systems when the dimensions of PS phase is in the same level with those of inorganic particles, which has been conformed by the TEM micrograph of SBS796. The curves of dynamic time sweep test indicate that the structure of samples destroyed by the cumulating shear strain is repairable repair gradually with increase of time.Except SEBS block copolymer, the master curves of other three block copolymers with relatively large ω ranges were obtained from the curves of dynamic ω sweep based on time-temperature principal. It is found that WLF equation and Arrhenius equation can be applied to simulate the curves of shift factors (α_T) ~ (T) temperature well, and the fluid activation energy of SEEPS and SBS block copolymers can be obtained. The examination of the effects of temperature on the microstructures of
    block copolymers based on the curves of logG' vs. logG" shows that the master curves is not a straight line but a curves with upturn in the high ? because of the micro-phase separation structures. In addition, the plateau modulus and the entanglement molecular weight were calculated from the minimum of tan8 and cross modulus (Gc). The long time relaxation curves show the complex relaxation behaviors, from which the relaxation spectrums of block copolymers were calculated. A modified BSW model can be used to predict the spectrums well and obtain the longest relaxation times.The nonlinear viscoelastic behavior of block copolymer were investigated and simulated by a nonlinear Wagner model. The results show that the linear relaxation behaviors of block copolymer can be evaluated by the Maxwell model, and the predictions give the characteristic relaxation time and corresponding modulus of different relaxation modes. Moreover, it is found that melts of block copolymer follows the time-strain separation principle and the damping functions of block copolymer calculated from nonlinear relaxation modulus can be simulated well by Wagner function, Soskey-Winter function, Laun function and Papanastasiou function. In additon, the successive start-up of shear behavior, the steady-up shear behavior and the relaxation of steady-up shear behavior are investigated, respectively. The results show that Wagner model, derived from the K-BKZ (Kearsley-Bernstein, Kearsley, Zapas) constitutive equation, can simulate the experiment data of SEEPS block copolymers well, but underpredict the nonlinear viscoealstic behaviors of SEBS block copolymer and overpredict the nonlinear viscoelastic behaviors of SBS. The reason for failure is believed to be that the damping functions obtained are not precise.The studies on the thermorheological behavior of block copolymer demonstrate that block copolymers are thermorheological complex materials. From the co corresponding to maximum of tan5 and Gc, the mean relaxation times of segmental relaxation process and terminal relaxation process were calculated. The VTF function was used to predict the curves of mean relaxation time and a satisfactory prediction was obtained. It is known from analysis of parameters in VTF function that VTF function is unsuitable to describe the segmental relaxation behaviors of block
    copolymers but can describe the terminal relaxation behavior well.The results from dynamic temperature sweep torsion test show that the glass transition temperature (T%) of PS block is lower than that PS homopolymer, and a shoulder peak appears at 115°C, which is perhaps the relaxation behavior of polystyrene macromolecular chains under the effect of interaction between hard block and soft block. The results from dynamic temperature sweep in parallel plate mode show that when the shear strain is low, the curves of viscoelastic parameters ~ T have relatively finely symmetrical, which demonstrates that shear strain don't destroy the structures of sample but induce the structures to be perfect in the process of temperature circulation. When the shear strain is high, the structure breakdowns and the obvious repaired process of structures also can be observed.Studies on the linear viscoelastic behavior of nylonl212 toughened with SEEPS (styrene-[ethylene- (ethylene-propylene)]-styrene block copolymer) elastomer were carried out. For the virgin polymers, the complex viscosity of nylonl212 increases as the (o decreases and approaches a constant at the low a, exhibiting a behavior of Newtonian fluid;while for SEEPS elastomer no Newtonian plateau appears in the (o observed. For the blends, curves of G'~a> are located between those of virgin nylon and SEEPS within o> range measured, and the G' of blends increase with the content of SEEPS increasing and show self-similarity viscoelastic behavior. Furthermore, Palierne emulsion model was used to describe the viscoelastic behaviors of blends. The results of prediction show that it is not decent to describing the viscoelastic behaviors of the double phase system toughened with elastomer, especially for the high content of elastomer.The positive deviation observed in the plot of C versus blend composition shows that the blends are immiscible. From the point of phase transition, the phase-inversion region for these blends was predicted to be in the range of 30 % ~ 50 % weight fractions of SEEPS, which agrees with the morphology analysis of nylonl212 / SEEPS blends. Furthermore, it can be found that from the curves of G*(co) ~ r/*(a>) that the blends don't exhibit stress yield behavior but SEEPS elastomer show the character of stress yield behavior. However, the cole-cole plots of modulus show that
    the microstructures of blends are unstable in the phase transition region. In addition, the weighted relaxation spectrums were calculated based on the Schwarzl and Staverman differential equation and present the particular relaxation behavior of virgin polymers and their blends.The nonlinear Wagner model can give a satisfactory prediction of nonlinear viscoelastic behaviors for virgin nylonl212 and their blends with SEEPS (90 / 10), but cannot predict the nonlinear viscoelastic behaviors of other blends with high content of SEEPS. Studies on the thermorheological behaviors of blends show that modulus is sensitive to temperature in the melting and crystal processes.
引文
[1] Holden, G., Legge, N. R., Quirk, P. R., Schroeder, H. E. Thermoplastic Elastomers, Hansen Publisher: Munich, 1996.
    [2] Semon W. L. US1 929 453, 1933.
    [3] 舒文艺,秦怀德.国外热塑性弹性体的进展,化工新型材料 1994.11:1-6.
    [4] 王德禧.热塑性弹性体的现状和发展,塑料 2004,33:46-52.
    [5] 韩志东,韦春,张显友.热塑性弹性体的研究进展,化学与粘合 1999.2:88-92.
    [6] 于清溪.热塑性弹性体的新进展,橡塑技术与装备 2004,30:8-10.
    [7] 徐帜焕.热塑性弹性体进展[J].现代塑料加工应用,2001,(1):61-65.
    [8] 郭晶.国外热塑性弹性体研究进展,石油化工动态 1998,6:41-47.
    [9] 王德充.苯乙烯类热塑性弹性体国内现状和发展趋势,石化技术 1998,5:233-236.
    [10] 王德充,刘青.国外苯乙烯类热塑性弹性体现状和发展趋势,中国塑料 1990,4:5-15.
    [11] 金关泰.聚苯乙烯类热塑性弹性体的新发展,弹性体 1991,1:51-55.
    [12] 罗志河.我国热塑性苯乙烯类弹性体的前景,弹性体 1994,4:34-37.
    [13] 李玉芳 SBS的生产应用与市场前景,四川化工与腐蚀控制 2003,6:52-58.
    [14] Kraus G., Childers C. W., Gruver J. T. Properties of Random and Block Copolymers of Butadiene and Styrene. I. Dynamic Properties and Glassy Transition Temperatures, J. Appl. Polym. Sci. 1976, 11: 1581-1591.
    [15] Angelo R. J., Ikeda R. M., Wallach M. L. Multiple Glass Transitions of Block Polymers, Polymer 1965, 6: 141-156.
    [16] Hendus H., Illers K. H., Ropte E. Macro-lattice from Segregated Amorphous Phases of a Three Block Copolymer, Polymere 1967, 110: 216-217.
    [17] Beecher J. F., Marker L., Bradford R. D., Aggarwal S. L. Morphology and Mechanical Behavior of Block Polymers, J. Polym. Sci. Part C 1969, 26: 117-134.
    [18] Fesko D. G., Tschoegl N. W. The influence of molecular weight on the large deformation behavior of SBS triblock copolymer Int. J. Polym. Mater. 1974, 3: 51-68.
    [19] Vanzo E. Ordered Structures of Styrene-Butadiene Block Copolymers, J. Polym. Sci. A-1 1966, 1727-1736.
    [20] Bradford E. B., Vanzo E. J. Polym. Sci. A-2 1968, 6: 1727-1735.
    [21] Meier D. J. Theory of Block Copolymer. I. Domain Formation in A-B Block Copolymers, J. Polym. Sci. Part C 1969, 26: 81-98.
    [22] Bi L. K., Fetters L. J. Domain Morphology of Star Block Copolymers of Polystyrene and Polyisoprene, Macromolecules 1975, 8: 90-92.
    [23] Baily E. T., Bishop E. T., Hendricks W. R., Holden G., Legge N. R. Rubber Age 1966, 98: 69.
    [24] Holder G., Bishop E. T., Legge N. R. Thermoplastic Elastomers, J. Polym. Sci. Part C 1969, 26: 37-57.
    [25] Morton M., McGrath J. E. Juliano P. C. Structure-Property Relationships for Styrene-Diene Thermoplastic Elastomers, J. Polym. Sci. Part C 1969, 26: 99-115.
    [26] Zelinski R. P., Childers C. W. Linear Elastomeric Block Polymers, Rubber Chem. Technol. 1968, 41: 161-179.
    [27] Gergen W. P. 124th Meeting of the ACS Rubber Division, Houston, TX, 1985, 57.
    [28] Gyor M., Fodor Zs., Wang H., Faust R. Living Carbocationic Polymerization and Sequential Block Copolymerization of Styrene with Isobutylene, Polym. Preprints 1993, 2: 562-563.
    [29] 高军,佘万能.新型热塑性弹性体SEBS,化工新型材料 2004,32:21-24.
    [30] 董汝秀,金关泰.SEBS热塑性弹性体,化工进展 1987,1:32-35.
    [31] Bare(?)ov(?) V., Szil(?)g(?)i L., Danusso F. Influence of Entanglements on Viscoelastic Properties of Polyisoprenes, J. Polym. Sci.: Part A-2 1972, 10: 945-956.
    [32] Squires A. M., Tajbakhsh A. R., Terentjev E. M. Dynamic Shear Modulus of Isotropic Elastomers, Macromolecules 2004, 37: 1652-1659.
    [33] Wood-Adams P. M., Costeux S. Thermorheological Behavior of Polyethylene: Effects of Microstructure and Long Chain Branching, Macromolecules 2001, 34: 6281-6290.
    [34] Wood-Adams P. M., Dealy J. M., Degroot A. W., Redwine O. D. Effect of Molecular Structure on the Linear Viscoelastic Behavior of Polyethylene, Macromolecules 2000, 33: 7489-7499.
    [35] Wood-Adams P. M., The Effect of Long Chain Branches on the Shear Flow Behavior of Polyethylene, J. Rheol. 2000, 45: 203-210.
    [36] Levine A. J., Milner S. T. Star Polymers and the Failure of Time-Temperature Superposition, Macromolecules 1998, 31: 8623-8637.
    [37] Majest(?) J. C., Carrot C., Stanescu P. From Linear Viscoelasticity to the Architecture of Highly Branched Polyethylene, Rheol. Acta 2003, 42: 432-442.
    [38] Robertson C. G, Rademacher C. M. Coupling Model Interpretation of Thermorheological Complexity in Polybutadiene with Varied Microstructure, Macromolecules 2004, 37: 10009-10017.
    [39] Ruymbeke E. Van, Keunings R., St(?)phenne V., Hagenaars A., Bailly C. Evaluation of Reptation Models for Predicting the Linear Viscoelastic Properties of Entangled Linear Polymers, Macromolecules 2002, 35: 2689-2699.
    [40] Tsenoglou C. Non-Newtonian Rheology of Entangled Polymer Solutions and Melsts, Macromolecules 2001, 34: 2148-2155.
    [41] Marrucci G., Greco F., Ianniruberto G. Possible Role Force Balance on Entanglements, Macromol. Symp. 2000, 158: 57-64.
    [42] Garcia-Leiner M., Manero O., Herrera R. Rheological Characterization and Modeling of End-functionalized Polybutadienes Rheol. Acta 2003, 42: 171-183.
    [43] Yoshida J., Christian F. Thermorheological Properties of Hydrogenated Pseudorandom Styrene-Butadiene Copolymers, Macromolecules 2005, 38: 7164-7173.
    [44] Chen H. Y., Stepanov E. V., Chum S. P., Hiltner A., Baer E. Creep Behavior of Amorphous Ethylene-styrene Interpolymers in the Glass Transition Region, J. Polym. Sci. Part B: Polym. Phys. 1999, 37: 2373-2382.
    [45] Chen H. Y., Stepanov E. V., Chum S. P., Hiltner A., Baer E. Linear Stress Relaxation Behavior of Amorphous Ethylene-Styrene Interpolymers, Macromolecules 2000, 33: 8870-8877.
    [46] Chen H. Y., Stepanov E. V., Chum S. P., Hiltner A., Baer E. Viscoelastic properties of poly(ethylene-co-styrene) copolymers, Macromolecules 1999, 32: 7587-7593.
    [47] Lobbrecht A., Friedrich CHR., Sernetz F. G, M(?)lhaupt R. Viscoelastic Properties of Poly(ethylene-styrene) copolymers, J. Appl. Polym. Sci. 1997, 65: 209-215.
    [48] Benavente R., Pere(?)a J. M., P(?)rez E., Bello A., Ribeiro R. M., Portel M. F. Dynamic Mechanical Relaxations and Microhardness Indentations of styrene-ethylene Copolymers Obtained with Heterogeneous Catalysts, Eur. Polym. J. 2000, 36: 879-887.
    [49] Ferri D., Castellani L. Fine Structure and Thermorheolgoical Complexity of the Softening Dispersion in Styrene-Based Copolymers, Macromolecules 2001, 34: 3973-3981.
    [50] Sato T., Watanabe H., Osaki K., Yao M. L. Relaxation of Spherical Micellar Systems of Styrene-Isoprene Diblock Copolymers. 1. Linear Viscoelastic and Dielectric Behavior, Macromolecules 1996, 29: 3881-3889.
    [51] Watanabe H., Sato T., Osaki K., Yao M. L. Relaxation of Spherical Micellar Systems of Styrene-Isoprene Diblock Copolymers. 2. Nonlinear Stress Relaxation Behavior, Macromolecules 1996, 29: 3890-3897.
    [52] Matsumiya Y., Watanabe H. Nonlinear Relaxation Behavior of Diblock Copolymer Micellar Dispersions: Effects of Corona-Matrix and Corona-Corona Entanglements, Macromolecules 2004, 37: 9861-9871.
    [53] Hilmqvist P., Castelletto V., Hamley I. W., Hermsdorf N., Almdal K. Stess Relaxation Experiments on a lamellar Polystyrene-Polyisoprene Diblock Copolymer Melt, Polymer 2001, 42: 7203-7208.
    [54] Han C. D., Kim J. K. On the Use of Time-Temperature Superposition on Multicomponent/Multiphase Polymer System, Polymer 1993, 34: 367-375.
    [55] Bates F. S., Rosedale J.H., Fredrickson G. H. Fluctuation Effects in a Symmetric Diblock Copolymer near the Oder-Disorder Transition, J. Chem. Pyhs. 1990, 92: 6255-6270.
    [56] Zhang Y., Wiesner U. Rheology of Lamellar Polystyrene-block-Polyisoprene Diblock Copolymers, Macromol. Chem. Phys. 1998, 199: 1771-1784.
    [57] Zhang Y., Wiesner U. Symmetric Diblock Copolymers under Large Amplitude Oscillatory Shear Flow: Entanglement Effect, J. Chem. Phys. 1995, 103: 4784-4793.
    [58] Zhang Y., Wiesner U., Spiess H. W. Frequency Dependence of Orientation in Dynamically Sheared Diblock Copolymers, Macromolecules 1995, 28: 778-781.
    [59] Wiesner U. Lamellar Diblock Copolymers under Large Amplitude Oscillatory Shear Flow: Order and Dynamics, Macromol. Chem. Phys. 1998, 198: 3319-3352.
    [60] Fredrickson G. H. Steady Shear Alignment of Block Copolymers near the Isotropic-Lamellar Transition, J. Rheol. 1994, 38: 1045-1067.
    [61] Yanovsky Y. G. Polymer Rheology: Theory and Practice, London: Chapman & Hall, 1993, Chap4.
    [62] Widmaier J. M., Meyer G. C. Structural Evolution of an ABA Poly(styrene-b-isoprene) Block Copolymer with Temperature J. Polym. Sci. Part B: Polym. Phys. 1980, 18: 2217-2225.
    [63] Mathew I., George K. E., Joseph Francis D. Viscous and Elastic Behavior of SEBS Triblock Copolymer, Die Angew. Makromol. Chem. 1994, 217: 51-59.
    [64] Aoki Y. Dynamic Viscoelastic Properties of ABS Polymers in the Molten State. J. Soc. Rheol. Jpn. 1979, 7: 20-26.
    [65] Aoki Y. Dynamic Viscoelastic Properties of ABS Polymers in the Molten State. Ⅱ. Relaxation Spectra, J. Rheol. 1981, 25: 351-356.
    [66] Aoki Y., Nakayama K. Dynamic Viscoelastic Properties of ABS Polymers in the Molten State. Ⅲ. Effects of the Composition of Grafted AS Copolymer, J. Soc. Rheol. Jpn. 1981, 9: 39-43.
    [67] Aoki Y., Nakayama K. Dynamic Viscoelastic Properties of ABS Polymer in the Molten State. Ⅳ. Effect of Rubber Particle Size, Polym. J. 1982, 14: 951-958.
    [68] Aoki Y. Dynamic Viscoelastic Properties of ABS Polymers in the Molten State. 5. Effect of Grafting Degree, Macromolecules 1987, 20: 2088-2213.
    [69] Aoki Y., Akira H., Tanaka T., Watanabe H. Nonlinear Stress Relaxation of ABS Polymers in the Molten State, Macromolecules 2001, 34: 3100-3107.
    [70] Han C. D., Kim J., Kim J. K. Determination of the Order-Disorder Transition Temperature of Block Copolymers, Macromolecules 1989, 22: 383-394.
    [71] Han C. D., Kim J. Rheological Technique for Determining the Order-disorder Transition of Block Copolymers, J. Polym. Sci. PartB: Polym. Phys. 1987, 25: 1741-1764.
    [72] Han C. D., Back D. M., Kim J. K. Effect of Microdomain Structure on the Order-Disorder Transition Temperature of Polystyrene-block-Polyisoprene-block- Polystyrene Copolymers, Macromolecules 1990, 23: 561-570.
    [73] Sakamoto N., Hashimoto T., Kim D., Vaidya N. Y. order-order and Order-Disorder Transitions in a Polystyrene-block Polyisoprene-block-Polystyrene Copolymer, Macromolecules 1997, 30: 1621-1632.
    [74] Winter H. H., Scott D. B., Gronski W., Okamoto S., Hashimoto T. Ordering by Flow near the Disorder-Order Transition of a Triblock Copolymer Styrene-Isoprene-Styrene, Macromolecules 1993, 26: 7236-7244.
    [75] Stangler S., Abetz V. Orientation Behavior of AB and ABC Block Copolymers under Large Amplitude Oscillatory Shear Flow, Rheol. ACTA 2003, 42: 569-577.
    [76] Neumann C., Loveday D. R., Abetz V., Stadler R. Morphology, Dynamic Mechanical Properties, and Phase Behavior of ABC-Triblock Copolymers with Two Semicompatible Elastomer Blocks, Macromolecules 1998. 31: 2493-2500.
    [77] Kraus G, Gruver J. T. Properties of random and block copolymers of butadiene and styrene. Ⅱ. Melt flow, J. Appl. Polym. Sci. 1967, 11: 2121-2129.
    [78] Kraus G., Naylor F. E., Rollman K. W. Steady Flow and Dynamic Viscosity of Branched Butadiene-Styrene Block Copolymers, J. Polym. Sci. A-2 1971, 9: 1839-1849.
    [79] Arnold K. R., Meier D. J. A Rheological Characterization of SBS Block Copolymers, J. Appl. Polym. Sci. 1970, 14: 427-440.
    [80] Chung C. I., Gale J. C. Newtonian Behavior of a Styrene-Butadiene-Styrene Block Copolymer, J. Polym. Sci. Part B: Polym. Phys. 1976, 14: 1149-1156.
    [81] Gouinlock E. V. Porter R. S. Linear Dynamic Mechanical Properties of an SBS Block Copolymer, Polym. Eng. Sci. 1977, 17: 535-543.
    [82] Futamuta S., Meinecke E. A. Effect of Center Block Structure on the Physical and Rheological Properties of ABA Block Copolymer. Part Ⅱ. Rheological Properties, Polym. Eng. Sci. 1977, 17: 563-569.
    [83] Baer M. Anionic Block Polymerization. Ⅱ. Preparation and Properties of Block Copolymers, J. Polym. Sci. A-2 1964, 2: 417-436.
    [84] Shen M., Hansen D. R. Viscoelastic Relaxation Times of a Homogeneous Block Copolymer. J. Polym. Sci. Part C 1974, 46: 55-67.
    [85] Rouse P. E. A Theory of the Linear Viscoelastic Properties of Dilute Solutions of Coiling Polymers, J. Chem. Phys. 1953, 21: 1272-1280.
    [86] Bueche F. The Viscoelastic Properties of Plastics, J. Chem. Phys. 1954, 22: 603-609.
    [87] Zimm B. Dynamics of Polymer Molecules in Dilute Solution: Viscoelasticity, Flow Birefringence and Dielectric Loss, J. Chem. Phys. 1956, 24: 269-278.
    [88] Hansen D. R., Shen M. Viscoelastic Retardation Time Computations for Homogeneous Block Copolymers, Macromolecules 1975, 8: 343-348.
    [89] Hall W. F., Dewames R. E. Analytical Relations for Block Copolymer Relaxation Times in the Rouse Model, Macromolecules 1975, 8: 349-350.
    [90] Stockmayer W. H., Kennedy J. W. Viscoelastic Spectrum of Free-Draining Block Copolymers, Macromolecules 1975, 8: 351-355.
    [91] Wang F. W. Dynamics of Block-Copolymer Molecules in Dilute Solution, Macromolecules 1975, 8: 364-371.
    [92] Hansen D. R., Shen M. Viscoelastic Properties of Homogeneous Triblock Copolymers of Styrene-α-Methylstyrene and Their Polyblends with Homopolymers, Macromolecules 1975, 8: 903-909.
    [93] Shen M., Hansen D. R. Viscoelastic Properties of Homogeneous Block Copolymers, Polym. Eng. Sci. 1977, 17: 560-562.
    [94] Lawson D. F., Hergenrother W. L., Matlock M. G. Preparation and Characterization of Heterophase Blends of Polycaprolactam and Hydrogenated Polydienes, J. Appl. Polym. Sci. 1990, 39: 2331-2352.
    [95] Borggreve R. J. M., Gaymans R. J., Schuijer J., Ingen Housz J. F. Brittle-tough Transition in Nylon-rubber blends: Effect of Rubber Concentration and Particle Size, Polymer 1987, 28: 1489-1496.
    [96] Borggreve R. J. M. Gaymans R. J., Schuijer J. Impact Behaviour of Nylon-rubber Blends: 5. Influence oftbe Mechanical Properties of the Elastomer, Polymer 1989, 30: 71-79.
    [97] Okada O., Keskkula H., Paul D. R. Fracture Toughness of Nylon 6 Blends with Maleated Ethylene/propylene Rubbers, Polymer 2000, 41: 8061-8074.
    [98] Oshinski A. J., Keskkula H., Paul D. R. Rubber Toughening of Polyamides with Functionalized Block Copolymers: 1. Nylon-6, Polymer 1992, 33: 268-283.
    [99] Oshinski A. J., Keskkula H., Paul D. R. The Role of Matrix Molecular Weight in Rubber Toughened Nylon 6 Blends: 2. Room Temperature Izod Impact Toughness, Polymer 1996, 37: 4909-4918.
    [100] Yu Z. Z. Ou Y. C., Qi Z. N., Hu G. H. Toughening of Nylon 6 with a Maleated Core-shell Impact Modifier J. Polym. Sci. Part B: Polym. Phys. 1998, 36: 1987-1994.
    [101] Kudva R. A., Keskkula H., Paul D. R. Properties of Compatibilized Nylon 6/ABS Blends: Part Ⅱ. Effects of Compatibilizer Type and Processing History, Polymer 2000, 41: 239-258.
    [102] Xu J. T., Xu X. R., Zheng Q., Feng L. X. Chen W. Dynamic Rheological Behaviors of Metallocene-based Ethylene-Butene Copolymers and Their Blends with Low-Density Polyethylene, Eurp. Polym. J. 2002, 38: 365-375.
    [103] Zheng Q., Cao Y. x., Du M. Preparing Temperature-Dependent Dynamic Rheological Properties of Polypropylene Filled with Ultra-time Powdered Rubber, J. Mater. Sci. 2004, 39: 1813-1814.
    [104] Cao Y. X., Du M., Zheng Q. Rheological Behavior for Mica-filled Polypropylene Composite Melts, Chinese Chem. Lett., 2004, 15: 567-570.
    [105] 曹艳霞.聚丙烯基多相体系相形态与动态流变行为研究,浙江大学博士学位论文,2004.
    [106] Roland C. M. Rheology of a Miscible Polymer Blend, J. Polym. Sci. Part B: Polym. Phys. 1988, 26: 839-856.
    [107] Roland C. M. Entropically Driven Miscibility in a Blend of High Molecular Weight Polymers, Macromolecules 1987, 20: 2557-2563.
    [108] Han C. D., Chuang H. K. Criteria for Rheological Compatibility of Polymer Blends, J. Appl. Polym. Sci. 1985, 30: 4431-4454.
    [109] Cai H. J., Ait-Hadi A., Brisson J. Dynamic Rheological Analysis of a Miscible Blend Showing Strong Interactons, Polymer 2003, 44: 1481-1489.
    [110] Joseph S., Rutkowska M., Jastrz(?)bska M., Janik H., Haponiuk J. T., Thomas S. Polystyrene/Polybutadiene Blends: An Analysis of the Phase-Iversion Region and Cophase Continuity and a Comparison with Theoretical Predictions, J. Appl. Polym. Sci. 2003, 89: 1007-1016.
    [111] Tyagi S., Ghosh A. K. Linear Viscoelastic and Transient Behavior of PolyPropylene and Ethylene Vinyl Acetate Blends: An Evaluation of the Linear Palieme and a Nonlinear Viscoealstic Model for Dispersive Mixtures, Polym. Eng. Sci. 2002, 42: 2107-2119.
    [112] Masuda T., Nakajima A., Kitarnura M., Aoki Y., Yamauchi N., Yoshioka A. Viscoelastic Properties of Rubber-Modified Polymeric Materials at Elevated Temperatures, Pure & Appl. Chem., 1984, 56: 1457-1475.
    [113] Fr(?)d(?)rique M., Pierre J. C., Alain M. Morphology and Rheological Properties of Polypropylene/reactive Elastomer Blends, Polym. Eng. Sci. 2002, 42: 1941-1955.
    [114] Cassagnau P., Espinasse I., Michel A. Viscoelastic and Elastic Behavior of Polypropylene and Ethylene Copolymer Blends, J. Appl. Polym. Sci. 1995, 58: 1393-1399.
    [115] Oderkerk J., Groeninckx G. Investigation of the Deformation and Recovery Behavior of Nylon-6/Rubber Thermoplastic Vulcanizates on the Molecular Level by Infrared-Strain Recovery Measurements, Macromolecules 2002, 35: 3946-3954.
    [116] Ara(?)jo E. M., Hage JR. E., Carvalho A. J. F. Morphological, Mechanical and Rheological Properties of Nylon6/Acrylonitrile-Butadiene-Styrene Blends Compatibilized with MMA/MA Copolymers, J. Mater. Sci. 2003, 38: 3515-3520.
    [117] Radhesh Kumer C., Nair S. V., George K. E., Oommen Z., Thomas S. Blends of Nylon/Acrylonitrile Butadiene Rubber: Effects of Blend Ratio, Dynamic Vulcanization and Reactive Compatibilization on Rheology and Extrudate Morphology, Polym. Eng. Sci. 2003, 43: 1555-1565.
    [118] George S., Ramamurthy K., Anand J. S. Groeninckx G., Varughese K. T., Thomas S. Rheological Behavior of Thermoplastic Elastomers from Polypropylene/Acrylonitrile-Butadiene Rubber Blends: Effects of Blend Ratio, Reactive Compatibilization and Dynamic Vulcanization, Polymer 1999, 40: 4352-4344.
    [119] Oommen Z., Zachariah S. R., Thomas S., Groeninckx G., Moldenaers P., Mewis J. Melt Rheology and Morphology of Uncompatibilized and In Situ Compatibilized Nylon-6/Ethylene Propylene Rubber Blends, J. Appl. Polym. Sci. 2004, 92: 252-264.
    [120] Moly K. A., Oommen Z., Bhagawa n S. S., Groeninckx G., Thomas S. Melt Rheology and Morphology of LLDPE/EVA Blends: Effect of Blend Ratio, Compatibilization, and Dynamic Crosslinking, J. Appl. Polym. Sci. 2002, 86: 3210-3225.
    [121] Oommen Z., Thomas S. Melt Rheological Behaviour of Natural Rubber/Poly(methyl methacrylate)/Natural Rubber-g-Poly(methyl methacrylate) Blends, Polymer 1997, 38: 5611-5621.
    [122] Balakrishnan S., Neelakantan N. R., Nabi Saheb D., Jog J. P. Rheological and Morphological Behaviour of Blends of Polycarbonate with Unmodified and Maleic Anhydride Grafted ABS. Polymer 1998, 39: 5765-5711.
    [123] Massa D. J., Schrag J. L., Ferry J. D. Dynamic Viscoelastic Properties of Polystyrene in High-viscosity Solvents. Extrapolation to Inf'mite Dilution and High-Frequency Behavior, Macromolecules 1971, 4: 210-214.
    [124] Ninomiya K., Ferry J. D. Viscoelastic Proterties of Properties of Polyvinyl acetates. Ⅰ. Creep Studies of Fractions, J. Phys. Chem. 1963, 67: 2292-2296.
    [125] Ferry, J. D. Viscoelastic Properties of Polymers;Wiley: New York, 1980.
    [126] Berge J. W., Saunders P. R., Ferry J. D. J. Colloid. Sci. 1958, 13: 103.
    [127] Iwayanagi S. On the Viscoelastic Properties of Polymethyl Methacrylate, J. Sci. Res. Inst. Jpn. 1955, 49: 4-16.
    [128] Sara K., Nakane H., Hideshima T., Iwayanagi S. Creep of Polymethylmethacrylate at Low Temperature, J. Phys. Soc. Jpn. 1954, 9: 413-420.
    [129] Cunninhgham J. R., Ivey D. G. Dynamic Properties of Various Rubbers at High Frequencies, J. Appl. Phys. 1956, 27: 967-974.
    [130] Payne A. R., Mason P. Wookey N. Rheology of Elastomers, Pergamon: London, 1958.
    [131] Mancke R. G., Ferry J. D. Trans. Soc. Rheol. 1968, 12: 335.
    [132] Pearson D. S., Graessley W. W. The Structure of Rubber Networks with Multifunctional Junctions, Macromolecules 1978, 11: 528-533.
    [133] Faucher J.A. Viscoelastic Behaviour of Polyethylene and Polypropylene, Trans. Soc. Rheol. 1959, 3: 81-89.
    [134] Mckirmey J. E., Belcher H. V. Dynamic Compressibility of Poly(vinyl acetate) and Its Relation to Free Volume, J. Res. Nat. Bur. Stand. 1963, 67A: 43-53.
    [135] Beret S., Prausnitz J. M. Densities of Liquid Polymers at High Pressure. Pressure-Volume-Temperature Measurements for Polythylene, Polyisobutylene, Poly(vinyl acetate), and Poly(dimethylsiloxane)to 1 kbar, Macromolecules 1975, 8: 536-538.
    [136] Shih H., Flory P. J. Equation-of-State Parameters for Poly(dimethylsiloxane), Macromolecules 1972, 5: 758-761.
    [137] Ashare E. Rheological Properties of Narrow Distribution Polystyrene Solutions, Trans. Soc. Rheol. 1968, 12: 535-557.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700