地下变电站通风空调系统的节能性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市供电设施是城市基础设施的重要组成部分,城市居民生活水平的日益提高和上海建设国际一流现代化城市的步伐不断加快,使上海市区用电需求量飞速增长,供电紧张形势日趋严重,城市供电设施建设已经进入了一个新阶段。而市中心往往为繁华的商业用地,有着极高的商业价值,土地资源十分有限和宝贵,因此变电站站址难觅,即使能征得用地,面积也非常小,设计难度大、与周围环境协调的要求高,强调建筑的格调与景观和环境要融为一体。形势的严峻迫使我们寻求新的思路,在市区内建设大电压等级(110 kV、220 kV、500 kV)的地下变电站、结合民用建筑的变电站等适应上海城市发展需要的新型变电站建设模式应运而生。静安(世博)地下变电站是国内首座500kV全地下变电站,站内设备种类多、散热量大,设备安全运行保证要求高。据调查:某110kV全户内变电站变压器室的故障67.09%是因设备热没有及时排出去造成的。并且目前此类大型全地下变电站通风空调系统设计标准,也缺乏相应的实践经验和参考工程。因此在建设全地下变电站的通风空调系统时,有必要通过相应软件对其工况进行模拟研究,找到最优化的设计参数,保证设备在使用的过程中安全可靠的运行。研究的成果不仅服务于本工程,而且还为类似后续工程提供技术支持。
     地下变电站顾名思义就是所有的设备均位于地下,但通风空调系统需要与外界进行质的交换,所以本文主要研究地下各个设备房间的通风空调系统,以及地上的总进、排风口之间的相互作用。地下部分的首要研究对象是发热量最大的220kV主变压器室,运用Fluent软件对变压器室的流场及温度场进行数值模拟,湍流模拟采用Realizable k-ε模型,温度项采用Boussinesq假设。通过设置比较有无辐射条件,得出有辐射条件时的温度场更接近实际情况。在此基础上改变送风口有效面积,得出室内温度场分布合理时送风口有效面积分布的区间;且模拟分析不同送风温度下的流场及温度场;以及对低温送风时的送风量进行优化,分析模拟结果知当温度低于某一值时,可以减少房间的额定通风风量,使通风方案更加人性化。用类似模拟方法研究了其它设备间(电抗器、接地变室),由于电抗器和接地变室均为自然进风、机械排风,模拟结果显示当引入的室外新风低于某一值时,在热压下自然进风就可消除室内的余热。
     地上部分为大空间模拟,主要研究排风的扩散路径及其对进风温度的影响,对室外环境进行简化处理。在考虑太阳辐射因素的情况下,模拟无外界因素干扰时,通过不断改变下垫面(石灰、土壤、草)进行研究,分析不同下垫面的情况下排风对进风温度的影响的程度。以及有外界因素(主导风向)干扰下,通过尝试各种方法(改变进风井位置、地面种植不同植被)使排风的扩散路径达到最优化,即排风温度对进风温度影响的程度最低。
The city power supply facilities were an important component of urban infrastructure. With the rising living standards and the accelerated construction process of Shanghai to build a world-class modern city, the electricity demand in Shanghai area had a rapid growth and the power supply shortage also got more and more serious, therefore, the city power supply facilities needed to be improved. The ground of downtown had a high commercial value and was very limited, so the site of transformer substation was hard to find. Even after the site was determined, the area of the transformer substation was extremely small, which caused a difficulty of design and coordinate problem with the surrounding environment, which demanded style and landscape of the architecture to be integrated with environment. Seriousness of the situation compelled us to seek new ideas, the construction of large underground transformer substation in the voltage (110 kV,220 kV,500 kV) and the transformer substation combined with civil construction were presented, which could suit the needs of urban development. The Jing'an underground transformer substation (Expo project) was the nation's first 500kV underground transformer substation. The transformer substation had many kinds of equipment, to ensure the safe operation of equipment the cooling load was designed very high. According to the result of the investigation,67.09% failures of 110kV indoor transformer substation room full of equipment were due to heat caused by failure to make timely discharge. And now the large-scale underground transformer substation design standards of ventilation and air conditioning system were lack of appropriate practical experience and reference works. Therefore, it was necessary to simulate the conditions of ventilation and air conditioning system in the underground transformer substation through the appropriate software to find the optimal design parameters, to ensure safe and reliable operation of the equipment used. Research results not only served the project, but also for a similar follow-up project to provide technical support.
     As the name suggests underground transformer substation was that all the equipment were located underground, but the ventilation and air conditioning systems still needed to exchange heat and mass with the outside world, so this paper mainly studied the underground ventilation and air conditioning system of each equipment rooms, and the interaction between the main over ground air suction port and exhaust port. The primary object to the underground part of study is the largest heat of 220kV main transformer cabin. By using Fluent software, the flow field and temperature field were numerical simulated. The turbulence simulation and temperature term were simulated with Realizable k-s model and the Boussinesq hypothesis, respectively. The result showed the temperature is closer to the actual situation when the radiation conditions were considered. On this basis, the effective area of outlet was changed to optimize the effective area to obtain the best outlet. The simulation result of the flow and temperature fields under different supply air temperature was analyzed. The analysis showed when the temperature is below a certain value, the ventilation air flow rate in the room could be reduced, which made the ventilation program more user-friendly. Other device rooms (reactors, grounding transformer room) were studied with similar process, because the reactor and change rooms were natural air inlet and mechanical exhaust, the simulation results showed that when the outdoor fresh air temperature below a certain value, air could flow into the equipment room under the natural pressure and eliminated the indoor waste heat.
     Because of the ground part was a large space, so the simulation studied main diffusion path of the exhaust and its impact on the inlet air temperature. When the outdoor environment was simplified, the case of solar radiation factors were also considered, and ignored external factors, by changing the underlying surface (lime, soil, grass), the impact of the underlying surface was analyzed. When external factors were considered, for example, prevailing winds, by trying different methods, changing downcast shaft location and ground planting of vegetation, the diffusion path of the exhaust was optimized. Namely, the exhaust temperature on the influence of the inlet temperature was in the lowest level.
引文
[1]秦杰.城市地下与地上变电站造价分析[J].输变电工程环境.2005,2:155-157
    [2]房岭锋,田毅,赵桂兰.地下变电站建设现状分析[J].山西建筑.2008,34(6):205-206
    [3]陈涛,李武兴.梁向东.35kv变压器室通风系统选型与改造[J].供用电.2009,4:52-55
    [4]王红,贾丽敏.110kv全户内城市变电站通风设计的改进[J].供用电.2009,12:46-59
    [5]邹声华.复杂下垫面建筑自然通风热湿特性研究.上海大学博士论文.2009
    [6]龚光彩.CFD技术在暖通空调制冷工程中的应用[J].暖通空调.1999,29(6):25-27
    [7]莫文雄.室内变电站主变通风散热问题的分析及对策.技术改进与创新.
    [8]顾峰.浅谈高压/低压预装式变电站的现状及发展趋势[J].电器应用.2006,25(7):16-18
    [9]苏和梅.箱式变电站的通风.东北电力技术.1997.12
    [10]徐智勇等.地下变电站建设现状分析.山西建筑.2008.2
    [11]房岭锋等.500 kV地下变电站深入市中心综述.2007.5;
    [12]曲友立,变电所通风设计浅析[J],暖通空调,2005,35(8):83-85;
    [13]舒凯,黄琰波,张绍志,变压器室复合通风方式的合理配置及数值分析研究,建筑节能,2010.1:34-38;
    [14]林爱晖,夏季变压器室内流场的理论及数值模拟研究,建筑节能,2009,11:22-25
    [15]金立军,韩露.变压器室对流换热的研究[J].变压器,1999,36(5):16-19.
    [16]Nanstell M W and Grief R. Natural convection in undivided and partially divided rectangular enclosures. Journal of Heat Transfer,1981,(103):623-629.
    [17]Keith H W. Laminar natural convection in a partially divided cavity. Numerical Mathod in Thermal Problems,1983.
    [18]彭金能.变压器室通风探讨[J].电网建设,2005,4:14-15.
    [19]陈华山.干式变压器室的通风计算[J].变压器,,2000,37(12):14-15.
    [20]宋岩,钟如君,孟繁宇.超大空间气流组织CFD模拟[J].黑龙江科技学院学报,,2004,14(5):293-296.
    [21]张耀华.李汛.地下箱式变电站内通风换热的模拟计算[J].科学技术与工程.2006.33(7):25-28.
    [22]曹健伟,陈淑玲,邸亚涛等.置换通风空调室内气流分布的数值模拟[J].制冷与空调,2006,6(6):101-104.
    [23]Jianming He,Charles CS Song. Evaluation of Pedestrian Winds in Urban Area by Numerical Approach. J Wind Eng Indus Aerodyne.1999,81:295-309.
    [24]Ferreira AD, Sousa ACM, Vie gas DX. Pediction of Building Interference Effects on Pedestrian Level Comfort. J Wind Eng Indus Aerodyne.2002,90:305-315.
    [25]陈建国,钱炜祺,符松.蓝旗营住宅楼群风环境数值模拟[J].清华大学学报.2003,3(8):1074-1078.
    [26]郁有礼.高层建筑物扰流风场的数值模拟研究.西安建筑科技大学硕士论文2005
    [27]任东峰,田苗,肖晓妮等.建筑物周围风绕流水平运动的数值模拟[J].工业建筑.2006,36:131-133
    [28]Jan M.Herbert, Glenn T. Johnson,, A.John Arnfield.. Modeling the Thermal Climate in City Canyons. Environmental Modeling&Software.1998,(13):267-277.
    [29]抠利,袁丽丽,谢平等.不同风向下城市街区风环境的模拟[J].洁净与空调技术.2008,4:21-25.
    [30]魏建明,王晓云等.应用Fluent软件模拟城市小区流场特性[J], Fluent第二届中国用户大会.191-195.
    [31]张晓伟.住宅小区污染物扩散的数值模拟及分析.哈尔滨工业大学硕士论文2007.
    [32]张爱社,张陵,周锦雄.两个相邻建筑物周围风环境的数值模拟[J].计算力学学报.2003,,20(5):553-558.
    [33]王辉,陈水福,唐锦春.建筑风场模拟计算的边界处理[J].科技通报.2006,22(5):661-675.
    [34]国家气象信息中心.中国地面国际交换站气候标准值数据集[DB/OL]. http://cdc.cma.gov.cn/shuju/index.jsp?tpcat=SURF&pageid=3,1971-01/2000-12
    [35]Jore Facao, Armando C.Oliveira, Thermal Behaviour of Closed Wet Cooling Towers for Use with Chilled Ceilings. Applied Thermal Engineering,2000,20: 1225-1236;
    [36]林宏.利用冷却塔技术的初探.制冷空调与电力机械,2002,21(3):19-21;
    [37]马最良.孙宇辉.冷却塔供冷技术的原理及分析.暖通空调,1998,,28(6):27-30;
    [38]周松.用冷却塔代替制冷机供冷及应用及分析.安装,2004.4:14-15;
    [39]康乳国.时海,张宠宠等.宝钢2050热轧电气室空调冬季冷却水供冷节能改造.宝钢技术.2004.1:10-13;
    [40]王丽慧,黄晨,谢仲华等,某电影院过渡季节通风节能潜力分析.流体机械.2008,Vol.36,No.12,:28-33;
    [41]周淑贞.束炯编著.《城市气象学》.气象学出版社.1994;
    [42]韩焕金.城市绿化树种生态功能研究.东北林业大学硕士论文.2002,5:
    [43]林波荣.绿化对室外热环境影响的研究.清华大学博士论文.2004,4;
    [44]Akira Hoyano, Climato logical Use of Plan for Solar Control and the Effects on the Thermal Environment of a Building, Energy and Buildings,1998,11:181-199;
    [45]Horiguchi Takeshi, A New System for Roof-top Planting and its Thermal Characteristics Part 2,日本建筑学大会学术讲演梗概集,1993,3;
    [46]Onmura Sadayuki et al., A Study on Evaporative Cooling Effect by roof Lawn Garden, Part 2 Wind Tunnel Test and Analysis,日本建筑学会大会学术讲演梗概集,1993,9;
    [47]Akira Hoyano,Jiang He, Takeshi Horiguchi and Ger Wang, Experimental Study of Heat Budget for Foliage Layer of Lawn-Planting, Effect of Rooftop Lawn-Planting on Thermal Environment Part 1. Journal of Architecture, Planning and Environmental Engineering, AIJ, No.462,31-39,Aug.,1994;
    [48]Hisaya Ishino, Jun Tanimito, Masahide Yanagi, Study on the Evaporation from Foliage Plant in Indoor Environment. Journal of Architecture, Planning and Environmental Engineering. AIJ,No.457, Mar.,1994
    [49]Tadahisa Katayama, Akio Morikawa, Shoichi Masuda, Investigatation on the Formation of Thermal Environment in an Urban Canyon, Journal of Architecture, Planning and Environmental Engineering,(Transactions of AIJ) No.372,February,1987;
    [50]Weijun Gao, Hirokatsu Sugiyama, Toshio Ojima, Field Study of Effect of Street and Its Trees on Thermal Engineering,AIJ,No.469,53-64.Mar.,1995;
    [51]Weijun Gao,Thermal Effect of Open Space with a Green Area on Urban Environment, Part1:a Theoretical Analysis and its Application, Journal of Architecture, Planning and Environmental Engineering, AIJ, No.448, June,1993;
    [52]Haruhisa Shudo, Jyunji Sugiyama, Noriyoshi Yokoo, Tatsuo Oka, A Study on Temperature Distribution Influenced by Various Land Uses, Energy and Buildings, 1997,26:199-205;
    [53]M.A. Canton, J.L. Cortegoso and C. De Rosa, Solar Permeability of Urban Trees in Cities of Western Argentina, Energy and Building and Building,1994,20:219-230
    [54]陈健等,北京夏季绿地小气候效应,《绿化环境效应研究》,中国环境科学出版社,1992,1-8;
    [55]蒋国碧,试说重庆城市绿化的降温效应,《绿化环境效应研究》,中国环境科学出版社,1992,9-15;
    [56]吴饮传,南京城市绿化树木改善小气候的效应,《绿化环境效应研究》,中国环境科学出版社,1992,16-18:
    [57]蒋美珍等,园林绿化改善小气候的功能,《绿化环境效应研究》,中国环境科学出版社,1992,19-22;
    [58]杨小平,地下变电站通风空调系统的研究及节能优化,东华大学研究生论文,2010,12;
    [59]李勇,刘志友,安亦然.介绍计算流体力学通用软件—Fluent.水动力学研究与进展[J],,2001,16(2):424-425.
    [60]刘霞,葛新锋.FLUENT软件及其在我国的应用[J],能源研究与利用.2003,23(3):36-38.
    [61]赵琴,王倩.Fluent在暖通空调领域中的应用[J],制冷与空调,2003(1):15-18.
    [62]赵琴,Fluent软件的技术特点及其在暖通空调领域的应用[J],计算机用.2003,23(12):424-425.
    [63]付详钊,苏亚星,计算流体力学[M],重庆:重庆大学出版社2007.3.
    [64]Kindangen J.Efects of roof shapes on wind-induced air motion inside buildings[J].Building and Environment,1997,32:1-11
    [65]赵彬,李先庭,彦启森.百叶风口送风射流的数值模拟[J].暖通空调,2001,31(6):86-89
    [66]Nielsen P V. Description of supply openings in numerical models for room air distribution [J].ASHRAE Transaction,1992:963-971.
    [67]孙德兴,水力直径作为当量直径的使用范围、缺欠和修正[J],工程热物理学报.1987(4):357-362;
    [68]Helmut E.Feustel.COMIS-An International Multizone Airflows and Contaminant Transport Model.Environment Energy Technologies Division.1998,8.
    [69]邓天福等.小区风环境数值模拟方法[J].绿色建筑大会选登.2008.
    [70]R.H.Shaw and I.Seginer. The dissipation of turbulence in plant canopies,7th Symp. American Meteorological Society on Turbulence and diffusion.Boulder,CO,1985.
    [71]Guan D, Zhang Y. Zhu T. A wind-tunnel study of windbreak drag. Agric For Meteorol.2003,118:75-84.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700