高温储热过程中含湿土壤的热湿迁移特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤高温储热作为太阳能跨季节储热技术的一种高效、实用的方式,逐渐得到了广泛的关注。在高温储热过程中,通过研究土壤的热湿迁移现象对其储热性能的影响,不仅完善了土壤热湿迁移的理论还可以指导优化太阳能土壤储热系统的设计,也是太阳能跨季节储热技术能否广泛应用的关键。本文主要采用数值模拟与试验相结合的方法,对土壤的热湿迁移进行了研究。
     在实验室的二维轴对称高温储热试验台上,以非饱和含湿土壤为研究对象,对于不同的储热温度和不同初始含水率的土壤,进行了59℃、79℃高温储热和8℃取热试验研究。重点分析了排热温度和初始含水率对土壤储热速率和取热速率的影响。
     试验结果表明,排热温度和土壤初始含水率对土壤储热有较大影响。排热温度对储热速率的影响还与土壤初始含水率有关。初始含水率低的土壤,高储热温度会使储热速率增大,而当土壤初始含水率达到一定数值时排热温度的高低对于土壤的储热影响很小。取热速率却总是受排热温度的影响明显。在相同排热温度,高初始含水率的土壤有利于传递热量,表现出更高的储热速率和取热速率。
     本文还以质量和能量守恒为基础,建立了二维非稳态的热湿迁移模型,并与实验数据比较验证模型,同时开展了部分数值模拟。模拟结果表明:与纯导热相比,考虑土壤的热湿迁移过程,使土壤整体温度降低,更加接近实验值;验证了在不同初始含水率和不同排热温度对土壤储热的影响的规律;相对于低温储热,土壤的热湿迁移过程对土壤高温储热影响较大。
Thermal energy storage in soil is an efficient and practical way for solar seasonal thermal storage, and has got the attention widely. Through the study of the phenomenon that coupled heat and moisture transfer on the thermal performance of soil under high temperature ground storage, not only perfected heat and moisture migration theory in the soil also guide the optimization of the design of solar seasonal thermal storage system. It is also a key that favor solar seasonal thermal storage system be widely applied. Theoretical and experimental methods were used to research the heat and moisture transfer in the soil.
     The experiments of charging heat (79℃or 59℃) and discharging heat (8℃) in unsaturated soil storage with different initial water content were done in a two-dimensional experimental setup. The effects of charging temperature and initial moisture content on the heat and moisture behaviors in unsaturated soil were analyzed. The temperature and moisture variation and the heat rejection or extraction abilities in various cases of heat source temperature and/or initial volumetric moisture content were analyzed.
     The results show that the charging and discharging behaviors in watery soil are drastically affected by temperature and initial moisture content. For soil with lower initial moisture content, the ability of thermal storage in the soil increases with the rejection temperature. On the other hand, the rejection temperature has nearly no influence on the soil storage ability when the initial moisture content is large enough. However, the rejection temperature always has influence on the heat extraction ability. Under the same rejection temperature, higher initial moisture content of the soil can result in higher heat rejection and extraction ability.
     A two-dimensional unsteady heat and moisture transfer numerical was built, which based on the mass and energy conservation. The numerical model was validated by comparing the results with experimental data, while some of the numerical simulations were carried out. Simulated results show that compared with the case of the thermal conductivity only, the heat and moisture transfer during high-temperature thermal storage has reduced the soil temperature, and the simulated results closer to the experimental value. And the results also prove the conclusion for the charging behaviors in watery soil are drastically affected by temperature and initial moisture content. Compared with the low-temperature thermal storage, the heat and moisture transfer has greater influence for the high-temperature thermal storage.
引文
[1] BP世界能源统计2009.
    [2]国家能源发展“十一五”规划.国家发改委.2007,04.
    [3] Sanner B, Karytsas C, Mendrinos D, et al. Current status of ground source heat pumps and underground thermal energy storage in Europe[J]. Geothermics, 2003,3(2):579-588.
    [4]旷玉辉,王如竹,于立强.太阳能热泵供热系统的实验研究[J].太阳能学报,2002,23(4):1–6
    [5] Metz P D. The use of ground-coupled tanks in solar assisted heat pump system [J].Journal of Solar Energy Engineering, 1982,104(4):366-372
    [6]余延顺,廉乐明.寒冷地区太阳能-土壤源热泵系统运行方式的探讨[J].太阳能学报,2003,24(1):111-115
    [7] G.Oliveti,N.Arcuri,Prototype experimental plant for the seasonal storage of solar energy for the winter heating of buildings: Description of plant and its functions,Solar Energy,1995,2(54):85-97.
    [8] Inalli.M.Thermal and economical analysis of a central solar heating system with underground seasonal storage in Turkey Ucar,A.(Department of Mechanical Engineering,Firat University),Source:Renewable Energy,v 30,n 7,June,2005.
    [9] H.O.Paksoy,O.Andersson,S.Abaci,et a1.Heating and cooling of a hospital using solar energy coupled with seasonal thermal energy storage in an aquifer [J].Renewable Energy,2000,19:ll7-12.
    [10] F.gabus,P.Semt. Aquifer Thermal Energy Storage for the Berlin Reichstag building new seat of the German Parliament[A].In:Proceedings World Geothermal Congress 2000 [C]. Kyushu-Tohoku, Japan ,2000:3611-3615.
    [11] Reuss M, Beck M and Müller J P, Design of a seasonal thermal energy storage in the ground[J], Solar Energy, 1997, 59(4-6): 247-257.
    [12] Lottner V, Schulz M E and Hahne E, Solar-Assisted District Heating Plants: Status of the German Programme Solarthermie-2000[J],Solar Energy, 2000, 69(6): 449-459.
    [13] G.Oliveti,N.Arcuri,Prototype experimental plant for the seasonal storage of solar energy for the winter heating of buildings: Description of plant and its functions[J],Solar Energy,1995,2(54):85-97.
    [14]王华军,赵军,宋著坤,李丽梅,跨季节蓄热太阳能集中供热技术[J],太阳能,2005,(4):27-31
    [15] M.Reuss,M.Beck,J.Muller.Design of a seasonal thermal energy storage in the ground[J],Solar Energy,1997,59(4-6):247-257.
    [16] Bo Nordell,Goran Hellstrom,High temperature solar heated seasonal storage system for low temperature heating of buildings[J],Solar Energy,2000,69(6):511-523
    [17] ANDERSSONO,RYDELLL,ALGOTSSONT. Industrial energy conservation with U TES a cass study from ITT flygt emmaboda in Sweden[J],9th International Conference on Thermal Energy Storage,Warsaw,2003,1:359-366.
    [18]严永红,张兴国,李金畅.加拿大卡尔加里市Okotoks小镇太阳能小区建设[J],新建筑,2005,(6):26-28
    [19] Bert Gysen,Vito. High temperature storage in Belgium by use of vertical heat exchangers:First experiment-tessas project[J].Energy engineering,2003,100(5):61-80.
    [20] S.Raab,D.Mangold, H. Müller-Steinhagen.Validation of a computer model for solar assisted district heating systems with seasonal hot water heat store[J],Solar Energy,2005, 79(5): 531-543.
    [21] P.D. Lund, M.B. ?stman. A numerical model for seasonal storage of solar heat in the ground by vertical pipes[J], Solar Energy,1985, 34(4-5): 351-366.
    [22] Aynur Ucar, Mustafa Inalli.Thermal and economic comparisons of solar heating systems with seasonal storage used in building heating[J], Renewable Energy,2008,33(12):2532-2539.
    [23] A.Ucar, M.Inalli. Thermal and economical analysis of a central solar heating system with underground seasonal storage in Turkey[J], Renewable Energy,2005,30(7):1005-1019.
    [24]杨睿,韩敏霞.太阳能-地源热泵组合空调/热水系统的设计与应用[J],中国建设动态:阳光能源,2006,6:22-24
    [25] Huajun Wang,Chengying Qi.Performance study of underground thermal storage in a solar-ground coupled heat pump system for residential buildings[J].Energy and Buildings,2008,40(7):1278-1286.
    [26]赵军,陈雁,李新国.基于跨季节地下蓄热系统的模拟对热储利用模式的优化[J].华北电力大学学报,2007,34(2):74-77.
    [27]崔俊奎,赵军等.跨季节蓄热地源热泵地下蓄热特性的理论研究[J].太阳能学报,2008,29(8):920-926.
    [28]杨卫波,施明恒,陈振乾.太阳能-U形埋管土壤蓄热特性数值模拟与实验验证[J],东南大学学报,2008,38(4):651-656.
    [29]韩宗伟,郑茂余,白天.潜热蓄热对太阳能-土壤源热泵系统影响[J],哈尔滨工业大学学报,2009,41(6):57-61.
    [30]林密.地下蓄能和太阳能复合系统工程应用分析: [硕士学位论文],吉林:吉林大学,2007.
    [31] Ingersoll L R,Plass H J,Theory of the ground pipe heat source for the heat pump, HPAC, 1948, 20(7): 119-122.
    [32] S.P. Kvaanuagh, Simulation and experimental verification of vertical ground-coupled heat pump systems: [Ph.D. dissertation], Oklahoma: Oklahoma State University,1985.
    [33] Mei. V C. . Theoretical Heat Pump Ground Coil Analysis with Variable Ground Far-field Boundary Conditions[J]. AICHE Journal, 1986, 32(7): 1211-1215.
    [34] Tarnawski V R , Leong W H,Computer analysis,Design and simulation of Horizontal ground heat exchangers[J].International Journal of Energy Research,1993,177:467-477.
    [35] M Piechowski,Heat and mass transfer model of a ground heat exchanger,Validation and sensitivityanalysis[J].International Journal of Energy Research,1998,22:965-979.
    [36]刘宪英,丁勇,胡鸣明,浅埋竖管换热器地热源热泵夏季供冷试验研究[J],暖通空调,2000,(4):1-4.
    [37]连小鑫,刘金祥,陈晓春.土壤源热泵垂直U型地埋管换热的数值模拟[J].建筑热能通风空调,2009,28(4): 45-47.
    [38]唐志伟,时晓燕,黄俊惠.地源热泵U型管地下换热器的数值模拟[J]. 2006, 32(1):62-65.
    [39]崔萍,刁乃仁,方肇洪,地热换热器间歇运行工况分析[J],山东建筑工程学院学报,2001,16(1):52-57.
    [40]曾和义,方肇洪. U型管地热换热器中介质轴向温度的数学模型[J].山东建筑工程学院学报,2002,17(1):7-11.
    [41]李新国.埋地换热器内热源理论与地源热泵运行特性研究:[博士学位论文],天津:天津大学,2004.
    [42] T.K.Sherwood. Application of the theoretical diffusion equation to the drying of Solids[J]. Trans. AICHE,1931,27:190-222.
    [43] N.H. Cealgske, O.A.Hougen. Drying granular solids[J]. Int.Eng.Chem,1937,29:805-813.
    [44] C.G. Gurr,T.J. Marshall. Movement of Water in soil due to a temperature gradient[J]. Soil Sci., 1952,74:335-345.
    [45] P.S.A. Henry. Diffusion in absorbing media[J]. Proc.R.Soc.,London,1939,A171: 215-241.
    [46] Philip.J.R,de Vries.D.A.Moisture Movement in Porous Materials Under Temperature Gradients[J].Trans.American Geophysical Union,1957:222-232.
    [47] Milly, P. C. D. A simulation analysis of thermal effects on evaporation from soil[J]. Water Resources Res., 1984, 20(8): 1087-1098.
    [48] Charles Schroeder, Don W. DeMichele,William Ray Teague,et al. Modeling heat and moisture flow in soils [J]. Simulation Counclls, Ins.,1978, 173-179.
    [49] Taylor S. A.,Lary J. W., Linear equations for the simultaneous flux of mater and energy in a continuous soil system [J].Soil Soc. Am.Proc., 1964,28:167-172.
    [50] B.J. Dempsey.A mathematical model for predicting coupled heat and water movement in unsaturated soil[J], Int. J. Numer. Anal. Meth. Geomech, 1978, 2: 319-324.
    [51] Walker, W. R., et al. Studies of Heat Transfer and Water Migration in Soils[J] , Colorado State University Report ,1981.
    [52] M. P. Deru, A. T. Kirkpatrick.Ground-Coupled Heat and Moisture Transfer From Buildings Part 1–Analysis and Modeling[J]. American Solar Energy Society (ASES)National Solar Conferences Forum,2001.
    [53] Luikov A V,Thermal conductivity of porous system[J].Heat and mass transfer,1968,11:117-140.
    [54] Slegel, D. L., Transient Heat and Mass Transfer in Soils in the Vicinity of Heated Porous Pipes[J], Ph.D.Thesis, Oregon State University ,1975,74:29-33.
    [55] Hans Janssen, Jan Carmeliet, Hugo Hens. The influence of soil moisture transfer on building heat loss viathe ground [J]. Building and Environment , 2004, 39 :825–836.
    [56] Liu B C, Liu W, Peng S W.Study of heat and moisture transfer in soil with a dry surface layer[J],International Journal of Heat and Mass Transfer, 2005, 48(21-22): 4579-4589.
    [57]赵绪新,刘伟,朱光明.蒸发状况下土壤中热湿迁移的非稳态数值模拟[J],华中理工大学学报,2000,28(10):105-107.
    [58]刘炳成,刘伟,李庆领.温度效应对非饱和土壤中湿分迁移影响的实验[J],华中理工大学学报,2006,34(4):106-108.
    [59]蔡树英,张瑜芳.温度影响下土壤水分蒸发的数值分析[J],水力学报,1991,(11):1-8.
    [60]陈振乾,施明恒.研究土壤热湿迁移特性的非平衡热力学方法[J],土壤学报,1998,35(2):218-226.
    [61]刘伟,王崇琦,杨金宝等.非饱和多孔介质热湿传输的一般数学模型[J],华中理工大学学报,1996,24(1):8-11.
    [62]雷树业,杨荣贵,杜建华.非饱和含湿多孔介质传热传质的渗流模型研究[J],清华大学学报(自然科学版),1999,39(6):74-77.
    [63]张玲.土壤热湿传递与土壤源热泵的理论与实验研究.[浙江大学博士学位论文],2007.
    [64]李丽梅.埋地换热器土壤内热湿迁移与地表能源特性研究.[天津大学硕士学位论文],2007.
    [65]李学桓.土壤化学[M].北京:高等教育出版社,2001.
    [66]李法虎.土壤物理化学[M].北京:化学工业出版社,2006.
    [67]屠传经,沈珞婵,吴子静.热传导[M].高等教育出版社(北京),1992:20-40.
    [68]雷志栋,杨诗秀,谢森传.土壤水动力学[M].清华大学出版社(北京),1988:1-74.
    [69]陈振乾,施明恒等.研究土壤热湿迁移特性的非平衡热力学方法[J].土壤学报,1998,35(2): 218-226
    [70] ASHRAE,Design/Data manual for closed-loop ground-coupled heat pump systems[J],1985.
    [71] Chung S Q.,Horton R.Soil Heat and Water Flow with a Partial Surface Mulch[J].Water Resour.Res.,1987,23(12):2175-2186.
    [72] Gardner,W. R.ect,Postirrigation movement of soil water[J],Water Resource Research,1970,6:851-860.
    [73] Childs E. C., George N. C.,The permeability of porous metierials[J],Proc. Roy. Soc.,1950,201 (A): 392-405.
    [74] Vara Prasad P. V., Craufurd P. Q., Summerfield R. J.. Sensitivity of peanut to timing of heat stress during reproductive development [J], Crop Sci. , 39: 1352-1357 , 1999.
    [75]刘新平,张铜会等.不同粒径沙土水分扩散率[J].干旱区地理,2008,31(2):249-253.
    [76]康永昌.含湿土壤高温热湿迁移的分析研究:[硕士学位论文],天津:河北工业大学, 2009.
    [77]杜红普.土壤高温热湿迁移过程中的温/湿度峰值现象研究:[硕士学位论文],天津:河北工业大学,2009.
    [78] H.-J. Steeman, M. Van Belleghem, A. Janssens, M. De Paepe. Coupled simulation of heat and moisturetransport in air and porous materials for the assessment of moisture related damage[J], Building and Environment 44: 2176–2184, 2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700