激光—感应复合熔覆工艺及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光—感应复合熔覆技术是将感应电磁加热与激光熔覆实时复合的新型熔覆技术。作为激光熔覆的升级技术,它能够弥补单纯激光熔覆能量不足及热源分布不利的缺点,具有熔覆速度快、熔覆沉积率高、工艺稳定性好、易于形成冶金结合、容易获得无裂纹的熔覆涂层等优点。激光—感应复合熔覆技术不是激光和感应热源的简单相加,感应加热的引入使熔覆过程中的物理化学变化更加复杂,因而对熔覆工艺、熔覆层的组织及性能等产生很大的影响。然而,国内外有关激光—感应复合熔覆技术的机理很少研究,阻碍了该技术的发展。本文对激光—感应复合熔覆的设备、工艺及机理进行了研究,获得的主要研究结果如下:
     构建了一个由高功率CO_2激光器、自动送粉器、数控工作台和高频感应器等部件组成的激光—感应复合熔覆系统。在此基础上,系统研究了激光—感应复合熔覆的基础工艺。结果表明:感应能量对熔覆层的宏观尺寸有明显的影响,随着感应能量的增加,熔覆层宽度W增大,高度H变化较小;复合熔覆层宏观尺寸与送粉速率、激光比能及感应能量密度等参数呈多元线性关系。
     系统研究了激光—感应复合熔覆中两种热源的作用方式。研究结果表明,对于氧乙炔热喷涂层、冷预涂层和自动送粉式激光—感应复合熔覆,激光和感应两种热源的作用方式是不同的。氧乙炔热喷涂层复合熔覆的感应涡流主要作用于熔覆层,随着感应加热的持续进行,感应涡流从熔覆层表面向下延伸,激光束的能量也是首先被熔覆层表面吸收,再通过热传导作用到熔覆层下部和基体;在冷预涂复合熔覆中,感应涡流主要作用于界面处基体表层,而激光直接作用于冷预涂层表面,激光热能通过热传导到达预涂层下部及基体;在自动送粉式复合熔覆中,感应涡流直接作用于界面处基体表层,一部分激光直接作用在粉末颗粒上,另一部分激光透过粉末云空隙作用于基材和熔融合金组成的熔池表面,它使基体和熔覆层更易熔化,改善了结合面及熔覆层表面的润湿性,提高了熔覆粉末材料的沉积率,是一种效率最高、对熔覆层结合性能最好的复合熔覆方式。
     通过引入无量纲参数激光—感应复合熔覆能量增益率Φ来定量评价各种工艺参数对复合熔覆效率的影响程度。定量分析结果表明,感应加热使复合熔覆能量显著增加。当其它工艺参数一定时,随着感应加热能量的增加,Φ值呈增大趋势,最大值Φ_(max)为20%,且存在一个获得Φ_(max)的极小感应能量值,这是由感应加热的特点及涡流的作用方式决定的;Φ值随送粉速率增大而明显增大,Φ_(max)达到110%。此外,与单纯激光熔覆相比,激光—感应复合熔覆效率大幅增加,Φ可达到341%以上,这意味着复合熔覆时的送粉速率和扫描速度可以大幅度提高。
     提出了适用于激光—感应复合熔覆的几何稀释率简化表达式,研究了激光—感应复合熔覆层的稀释率随工艺参数的变化规律。结果表明:随着扫描速度的增加,稀释率是一个呈马鞍形的变化过程;随着感应能量密度的增加,稀释率增大,当感应能量密度达到一定值时,稀释率基本保持不变。该研究结果对激光—感应复合层的稀释率控制及质量保证具有一定的实践指导意义。
     系统开展了激光—感应复合熔覆镍基自熔合金熔覆层的组织特征及性能研究。研究表明,复合熔覆层底部组织为树枝晶,随激光扫描速度加大及激光比能的减小,激光—感应复合熔覆层微观组织细小,显微硬度与抗拉强度提高,且快速扫描复合熔覆的显微组织结构和物相分布与单纯激光熔覆基本相同。另一方面,碳钢基材上单纯激光熔覆的热影响区为淬火组织。当感应能量较大时,激光—感应复合熔覆层中热影响区上部为过热区,热影响区下部为正火区;在一定的感应能量作用下,热影响区上部可得到正火组织。激光—感应复合熔覆层的热影响区中马氏体组织的消除,对于降低熔覆层的开裂程度十分有利。当激光—感应复合熔覆镍基自熔合金时,在合适的复合熔覆能量作用下,可以获得完全无裂纹的高性能熔覆层。
The laser-induction hybrid cladding represents a novel surface treatment technology, which combines the induction heat source and laser beam simutaneously. This technology not only can overcome the weakness of heat distribution by laser cladding with single heat source, but also has the advantages such as higher scanning speed, bigger powder deposition rates, better processing stability and better metallurgical bond state. Especially, it is easy to fabricate the free-cracking cladding coating with high performance. However, laser-induction hybrid cladding processing is not a simple plus of laser and induction heat source. Compared with the individual laser cladding or pure induction cladding, the microstructures and properties of the hybrid coatings have been changed greatly due to the complexity of physical and chemical reactions in the processing of hybrid cladding. However, there have been few reports about the mechanisms of laser-induction heating hybrid cladding up to now. In this dissertation, the equipment, technology and mechanisms of laser-induction hybrid cladding have been studied systematically. The following are the main results:
     Firstly, a system of laser-induction hybrid cladding was set up, which was comprised of a CO_2 laser system, a powder auto-feeding apparatus, a 4-aixis working table with CNC controller and a high frequency induction heater, etc. Based on the system, the effects of processing parameters on the quality of the hybrid cladding coatings were studied systematically. The results demonstrate that the induction energy has big influence on the dimensions of hybrid cladding coating. With the increase of the induction energy, the coating width increases and the height keeps almost unchanged. Furthermore, the dimensions of hybrid coatings have a linear relationship with the powder feeding rate, laser specific energy and inducton energy density.
     It is significant to study the interaction mode of two heat sources between the laser and induction heating source in the laser-induction hybrid cladding processing. The results demonstrate that the interaction modes of two heat sources are totally different from each others for different cladding methods, i.e. pre-placed coating by thermal spraying, pre-placed coating by organic binder and powder feeding in laser-induction hybrid cladding. As far as the laser-induction hybrid cladding with thermal spraying pre-placed coatings, the induction eddy current is mainly produced in the coatings. The induction eddy current moves from the top to bottom of the coating in the course of induction heating, while the laser is directly absorbed by the surface of coating and then is conducted to the substrate subsequently. As far as the laser induction hybrid cladding with the pre-placed coatings by organic binder, the induction eddy current generates primarily on the surface of substrate, while the laser is absorbed by the surface of coating. As far as the laser induction hybrid coating with powder feeding, however, the induction eddy current is entirely produced on the surface of substrate, while the laser beam irradiates on the surface of molten pool simultaneously. This energy action mode improves the wetting capability of interface and increases powder deposition rates greatly, and thus has the highest cladding efficiency and the best bond strength with the substrate among above three hybrid cladding processing methods.
     A quantitative analysis method was developed to express the interaction extent of the laser and indution heat source during the laser-induction hybrid cladding processing. A dimensionless parameterΦwas introduced to denote the changes of the effective cladding energy. The dimensionless parameterΦwas defined as energy increase rate of laser-induction hybrid cladding. The biggerΦ, the stronger influence extent of cladding parameter on hybrid cladding energy. The results of quantitative analysis demonstrate that the induction heat enhances the cladding deposition rates distinctly. For low induction energy, the parameterΦand surface temperature of workpiece increase with the increasing of induction energy. When the inducton energy exceed a critical value, the parameterΦand surface temperature of workpiece will keep unchanged. On the other hand, the parameterΦincreases evidently with the increasing of powder feeding rate. When the powder rates exceed a critical value, the parameterΦwill be kept unchanged. In addition, compared with the individual laser cladding, the hybrid cladding energy is greatly enhanced and theΦcan exceed 341 %, which means that the powder feeding and scanning speed are obviously increased.
     The dilution expression of laser-induction hybrid cladding was put forward. Moreover, the relationship between the dilution and process parameters of hybrid cladding was investigated. The dilution is a saddle shape with the increasing of scanning speed. In addition, the dilution increases with the increasing of induction energy density. For high induction energy density, the dilution retains invariable. The above conclusions are crucial for controlling the dilution and dominating the quality of cladding coating in laser-induction hybrid cladding.
     The microstructures and properties of Ni-based coating prepared by laser-induction hybrid cladding were studied in detail. The results show that the basic microstructures of hybrid cladding coating are dendrites. The microstructures of the hybrid coating become finer with the increasing of scanning speed and the decreasing of laser specific energy. At the same time, the microhardness and tensile strength increase. Furthermore, the microstructures of hybrid coating are similar to Ni-based coating prepared by individual laser cladding. One very important experimental phenomena is that for individual laser cladding performed on steel substrate, the microstructures of the heat affected zone are martensite as the cooling speed is beyond the critical quenching speed. However, only normalization zone can be found in the heat affected zone in laser-induction hybrid cladding, which is highly helpful to reduce the cracking of cladding coating.
     Usually, the crack susceptibility is a serious problem in laser cladding due to the high heating and cooling speed. In laser-induction hybrid cladding of Ni-based coating, cracking is relatively low due to the preheating effect by induction energy. Furthermore, the appropriate hybrid cladding energy can fully eliminate the cracking of Ni-based coating in laser-induction hybrid cladding.
引文
[1]曾晓雁,吴懿平.表面工程学[M].北京:机械工业出版社,2001:92-112
    [2]陈志刚,朱小蓉,汤小丽等.火焰喷涂重熔Ni基WC复合涂层的耐磨性能试验研究[J].物理学报,2007,56(12):7320-7329
    [3]Schweissen,Schneiden.Innovations in welding technology in 2000[J].Welding Research Abroad,2001,47(7):8-9
    [4]Suleimanov.S.Kh,Baizakov.B.B.Cladding of stainless on carbon steel[J].Journal De Physique Ⅳ,1999,9(3):447-452
    [5]苏贤涌,周香林.冷喷涂技术的研究进展[J].表面工程,2007,36(5):17-21
    [6]童洪辉.物理气相沉积硬质涂层技术进展[J].金属热处理,2008,33(1):19-21
    [7]刘俊玲.涂层的感应重熔工艺[J].焊接学报,1994,15(1):1-7
    [8]中国腐蚀与防护学会.热喷涂[M].北京:化学工业出版社,1992:96-120
    [9]Grilloud,Roger,Gonseth,etc.Apparatus for producing a surface layer on a metallic workpiece[P].US Patent 5224997,1993:1-16
    [10]Gary VAsilash.Laser processing meets induction heating[J].Automotive Manufacture & Production,1997,109(7):54-55
    [11]J.A.Forkes.Devolopments in laser surface modification and coating[J].Surface and Coating Technology,1994,Vol 63:65-71
    [12]C.Navas,A.Conde.Laser coatings to improve wear resistance of mould steel[J].Surface and Coatings Technology,2005,Vol 194:136-142
    [13]Douglas.E.W,Jogender.Set al.Laser clad composite coating[J].Adavanced Materials & Presses,2002,8:41-44
    [14]Vilar.R.Laer cladding[J].Journal of Laser Applications,1999,11(2):64-79
    [15]Sextona.L,Lavina.S,Byrnea.G;et al.Laser cladding of aerospace materials[J].Journal of Materials Processing Technology,2002,122:63-68
    [16]Shepeleva L,Medres B,Kaplan W D,et al.Laser cladding of turbine blades[J].Surface and Coatings Technology,2000,125:45-48
    [17]Zum Gahr K H,Schneider J.Surface modification of ceramics for improved tribological properties[J].Ceramics International,2000,26:363-370
    [18]LIM L C,QING Ming,CHEN Z D.Microstructure of laser-clad nickel-based hardfacing alloys[J].Surface and Coatings Technology,1998,106:183-192
    [19]姚宁娟,陆伟,陈铠,左铁钏.激光熔覆技术制造热轧辊钴基合金层研究[J].中国激光,2003,30(8):759-762
    [20]王家金.激光加工技术[M].北京:中国计量出版社,1992:99-185
    [21]关振中.激光加工工艺手册[M].北京:中国计量出版社,1998:236-306
    [22]R.Villar.Laser cladding[J].Proceedings of SPIE,2003,5147:385-392
    [23]祝柏林,胡木林等.激光熔覆层开裂问题的研究现状[J].金属热处理,2000,25(7):1-4
    [24]钟敏霖,刘文今.Stellite和NiCrSiB合金激光送粉熔覆裂纹倾向的比较研究[J].中国激光,2002,A29(11):1031-1036
    [25]曾大文,夏辉,谢长生.Ni基合金激光熔覆层组织特征及凝固过程的研究[J].稀有金属材料与工程,2000,25(2):109-113
    [26]D.Oliverira C.M,Slva C.P da,Vilar M.C.Microstructural feature of consecutive layers of Stellite 6 deposited by laser cladding[J].Surface and Coating Technology,2002,153:203-209
    [27]X.D Lu,H.M.Wang.High-temperature sliding wear behaviors of laser clad Mo2Ni3Si/NiSi meatal silicide composite coatings[J].Applied Surface Science,2003,214(4):190-195
    [28]Wang H.M.,Duan G.Wear and corrosion behavior of laser clad Cr3Si reinforced intermetallic composite coatings[J].Intermetallics,2003,11(8):755-762
    [29]Ghosh.S,Choi.J.Three-dimensional transient residua stress finite element analysis for a laser clad surface[J].American Society of Mechanical Engineers,Heat Transfer Division,2003,Vol 374(3):99-107
    [30]Jendrzejewski.R,Sliwinski.G,Krawczuk.M.Laser cladding of protective coating of limited cracking susceptibility[J].Proceedings of SPIE,2005,V5777,Part Ⅱ:925-928
    [31]Kagawa.A,Ohta.Y,Nakayama.K.Mechanism of crack generation in carbide surface layer of laser clad iron alloy[J].Materials Transactions,2002,V43(6):1261-1265
    [32]Bendeich.P,Carr.D,Ken.S.Residual stress measurements in laser clad repaired low pressure turbine blades for the power industry[J].Materials Transactions,2004,V56(11):1314-1319
    [33]赵海欧,李春华.激光熔覆工艺特性及裂纹敏感性研究[J].金属热处理,2001(1):18-21
    [34]吴萍,周昌轵,唐西南.激光和金花熔覆制备耐磨陶瓷梯度涂层[J].金属学报,1994,25(1):39-42
    [35]Frenk A,Marsden C.F,Wagniere J.D et al.Influence of an intermediate layer on the residual stress layer in a laser clad[J].Surface and Coatings Technology,1991,45(3):435-441
    [36]Song Wulin,Zhu Beidi,Cui Kun.Effect of content on cracking susceptibility and microstructure of laser clad FeCrNiBSi alloy[J].Surface and Coatings Technology,1996,80(3):279-282
    [37]Song Wulin,J.Echigoya,Zhu Beidi,Xie Changsheng etal.Effect of Co on the cracking susceptibility and the microstructure of FeCrNi laser clad layer[J].Surface and Coatings Technology,2001,138(3):291-295
    [38]K.L.Wang,Q.B.Zhang,M.L.Sun et al.Rare earth elements modification of laser clad nickel-based alloy coatings[J].Applied Surface Science,2001,174(3):191-200
    [39]潘应君,许伯藩,张细菊.La_2O_3激光熔覆TiC/Ni基复合涂层德影响[J].稀土,2003,24(4):49-52
    [40]尚丽娟,才庆魁,刘常升等.用稀土改性钴基激光熔覆层[J].稀有金属,2002,26(3):173-178
    [41]Rafal Jendrzejewski,Gerard Sliwinski,Ana Conde et al.Inlufence of the base preheating on cracking of the laser-cladded coatings[J].Processing of SPIE,2003,5121:356-361
    [42]沈庆通.感应热处理技术的发展[J].金属热处理,2002,27(1):39-42
    [43]LOVL ESS Don.Advanced non-rotational induction crankshaft hardening technology introduced to automotive industry[J].Industrial Heating,2000,11:731-737
    [44]杨雪春.冷轧工作辊双频感应淬火工艺研究[J].湖北汽车工业学院学报,2006,20(4):37-40
    [45]Matsubara Y,Tomiguchu A.Post treatment of plasma aprayed WC-Co-Ni coatings by high frequency induction heating[C].Proceedings of ITSC'95:1415-1418
    [46]Matsubara Y,Kumaguwa M.Application of self-fused alloy coating by HF induction heatings[C].Proceedings of ITSC'95:1001-1004
    [47]付瑞东,马丽心.免喷涂涂层的感应重熔工艺[J].焊接,2000,11:26-29
    [48]朱润生.自熔合金涂层高频感应重熔工艺技术研究[J].粉末冶金工业,2001,11(4):12-17
    [49]张增志,韩桂泉,付跃文等.高频感应熔覆Ni60合金粉末涂层的研究[J].金属热处理,2003,28(3):43-46
    [50]张增志,牛俊杰出,付跃文.感应熔覆镍基合金粉末涂层工艺和性能研究[J].材料热处理学报,2004,25(2):31-34
    [51]Zhang Zengzhi,Han Guiquan,Zhang Buomin.Study on wear resistance of GNi2WC25 coatings by HF induction heating[C].Proceedings of International Thermal Spraying Seminar'02,Beijing,China,2002:54-59
    [52]Zhang Zengzhi,Han Guiquan,Zhou Yongjun.Study on microstructure of Ni60 coating by HF induction heating[C].Proceedings of International Thermal Spraying Seminar'02,Beijing,China,2002:67-72
    [53]张增志.高效快速感应熔涂技术[M].北京:冶金工业出版社,2001:34-130
    [54]E.J.w.ter Maten.Simulation of induction heating[J].IEEE Transactions on Magnetics,1992,(2):1287-1290
    [55]K.Sadeghipour,J.A.Dopkin.A Computer aided finite element/experimental analysis of induction heating process of steel[J].Computers in Industry,1996,8:195-205
    [56]C.Chaboudel,R.Clain.Numerical in induction heating for axisymmtric geometries[J].IEEE Transactions on Magnetics,1997,1:739-745
    [57]Wolfgang Andrea.3D eddy current computatin in transverse flux induction heating equipment[J].IEEE Transactions on Magnetics,1994,5:3072-3075
    [58]Z.Wang,W.Huang.3D multifields FEM computation of transverse flux induction heating for moving-srdeips[J].IEEE Transactions on Magnetics,1999,3:1642-1645
    [59]Zanming Wang,Xiaoguang Yang.Eddy current and temperature field computation in transverse flux induction heating equipment for galvanizing line[J].IEEE Transactions on Magnetics,2001,5:3437-3439
    [60]刘浩,陈立亮,周建新.连铸坯感应加热过程数值模拟的研究[J].冶金自动化,2007,1:23-26
    [61]周跃庆,高忠科,武猛.移动式平板感应加热磁热耦合的数值模拟[J].热加工工艺,2007,36(14):55-58
    [62]储乐平,马骏,刘玉君等.钢板感应加热机理及电磁—热耦合场的数值模拟[J].中国造船,2005,46(1):98-105
    [63]王存山.18Cr2Ni4WA钢渗碳激光强化复合处理组织的研究[J].金属热处理,1999,2:14-16
    [64]汤光平.激光重熔处理对渗硼层脆性的影响[J].理化检验物理分册,2003,2:603-608
    [65]王华明.球铁激光表面重熔热处理制备新型铁基耐磨材料[J].材料研究学报,1998,12(1):99-101
    [66]花银群.激光淬火+冲击复合强化处理QT800-2的实验研究[J].中国激光,2003,7:655-658
    [67]St.Nowothy,S.Scharek,T.Naumann et al.Laser based hybrid techniques for surface coating[C].ICALEO 2002,Section B:1-4
    [68]张海鸥,钱应平,王桂兰,郑启光.等离子体激光复合直接成形的弧柱形态与成形特性[J].中国科学E,2006,36(5):497-506
    [69]H.Hiraga,T.Inoue,H.Shimura,A.Matsunawa,Cavitation.erosion mechanism of NiTi coatings made by LPHS Wear[J].Surface & Coating Technology,1999,231:272-278
    [70]Hitoshi Hiraga,Takashi Inoue,Shigeharu Kamado.Fabrication of NiTi intermetallic comound coating made by laser plasma hybrid spraying of mechanically alloyed powders[J].Surface & Coating Technology,2001,139:93-100
    [71]H.Hiraga,T.Inoue,A.Matsunawa,H.Shimura.Effect of laser irradiation condition on bonding strength in LPHS[J].Surface & Coating Technology,2001,138:284-290
    [72]Sang Ok Chwa,Akira Ohmori.Microstructures of ZrO2-Y2O3 coatings prepared by plasma laser hybrid spraying technique[J].Surface & Coating Technology,2002,153:304-312
    [73]Jyrli Suutala,Fari Tuominen,Petri Vuoristo.Laser-assisted spraying and laser treatment of thermally sprayed coatings[J].Surface & Coating Technology,2006,201:1981-1987
    [74]Yu Zhang.Eliminating Cladding Cracks:Pre-Heating and Stress Analysis[C].ICALEO 2001,Proceedings,Section D:1-10
    [75]F.Bruckner,D.Lepski,E.Beyer.Finite element studies of stress evolution inf induction assisted laser cladding[C].Processings of SPIE Vol.6346,63461D:1-8
    [76]丁向东,连建设,关振中等.圆柱体中频感应重熔与激光强化的复合新工艺[J].焊接学报,2000,21(4):5-8
    [77]Davim JP,Oliveira CR,Cardoso A.Predicting geometric form of clad in Laser cladding by powder using multiple analysis regression (MRA)[J].Materials & Design,2008,29:554-557
    [78]Onwubolu GC,Davim JP,Oliveira CR.Prediction of clad angle in laser cladding by powder using response surface methodology and scatter search[J].Optics & Laser Technology,2007,39:1130-1134
    [79]Liu J,Li L.Study on cross-section clad profile in coaxial single-pass cladding with a low power laser[J].Optics & Laser Technology,2005,37:478-482
    [80]S.Sun,Y.Durandet,M.Brandt.Melt pool temperature and its effect on clad formation in pulsed Nd:yttrium-aluminum-garnet laser cladding of Stellite 6[J].Journal of Laser Application,2007,19:32-40
    [81]Liu J.Formation of cross-sectional profile of a clad bead in coaxial laser cladding[J].Optics & Laser Technology,2007,39:1532-1536
    [82]张庆茂,王忠东,刘喜明等.工艺参数对送粉激光熔覆层几何形貌的影响[J].焊接学报,2000,21(2):43-46
    [83]朱履冰.表面与界面物理[M].天津:天津大学出版社,1992:130-139
    [84]Oliveira U,Ocelik V,De Hosson J.Analysis of coaxial laser cladding processing conditions[J].Surface & Coatings Technology,2005,197:127-136
    [85]刘志儒.金属感应热处理[M].北京:机械工业出版社,1985:13-18
    [86]邰淑彩.应用数理统计[M].武汉:武汉大学出版社,2005:135-153
    [87]Lin J.A simple model of powder catchment in coaxial laser cladding[J].Optics & laser Technology 1999,31:233-238
    [88]Diniz Nero.Physical-computational model to describe the interaction between a laser beam and a powder jet in laser surface processing[J].Journal of Laser Applications 2002,14(1):46-51
    [89]陶锡麒,潘邻.激光熔覆用钴基合金粉末的研究[J].材料保护,2002,35(10):28-29
    [90]曾晓雁.激光熔覆金属陶瓷复合层中陶瓷相的行为研究[D].武汉:华中理工大学博士学位论文,1993:24-99
    [91]Ready J.F.Industrial applications of lasers[M].New york:Academic Press,1978:380-382
    [92]田莳.金属物理性能[M].北京:国防工业出版社,1985:79-101
    [93]刘继全.感应加热的热计算模型[J].大型铸锻件,2003,3:16-20
    [94]H.Gedda,J.Powell,G.Wahlstrom,H.Engstrom.Energy redistribution during CO_2 laser cladding[J].Journal of Laser Applications,2002,14(2):78-82
    [95]吴新伟,曾晓雁,朱蓓蒂等.激光熔覆金属陶瓷技术研究概况[J].金属热处理,1995,4:40-44
    [96]Lopez B,Gutierrez I,Urco la.J.J.Micro structural A nalysis of Steel-Nickel Alloy Clad Interfaces[J].Materials Science and Technology,1996,12 (6):45-55
    [97]刘喜明,连建设.送粉激光熔覆界面特性及熔覆层稀释率[J].机械工程学报,2001,37(4):38-43
    [98]李文,关振中.激光熔覆技术及界面问题发展评述[J].金属热处理学报,1997,18(2):45-50
    [99]张三川,姚建铨.送粉激光熔覆结合界面组织结构与特性[J].激光杂志,2003,24(3):58-59
    [100]朱蓓蒂,曾晓雁,陶曾毅.激光工艺参数对熔覆层稀释率的影响[J].材料研究学报,1994,8(4):315-318
    [101]G.Abbas G;D.R.F.West Laser surface cladding of stellite-SiC composites for enhanced hardness and wear[J].Wear,1991,143(2):353-363
    [102]胡汉起.金属凝固[M].北京:冶金工业出版社,1985:25-146
    [103]张文钺.焊接冶金学[M].北京:机械工业出版社,1997:116-208
    [104]Gao Yang,L iang Yong,SH IChangxu.Microstructure of laser remelted Ni-base alloy coating on stainless steel[J].Materials Science & Technology,1998,14(1):49-52
    [105]崔忠圻.金属学与热处理[M].北京:机械工业出版社,1989:33-56
    [106]崔约贤.金属断口分析[M].哈尔滨:哈尔滨工业大学出版社,1998:52-70
    [107]D.Rosenthal.The theory of moving source of heat and its apllication to metal transfer[J].Transaction,ASME 1976,43:849-866
    [108]Jianli Song,Qilin Deng,Changyuan Chen.Rebuiding of mrtal components with laser cladding forming[J].Apllied Surface Science,2006,252:7934-7940
    [109]宋建丽,邓琦林,陈畅源等.宽带激光熔覆高硬度火焰喷涂层组织和裂纹行为[J].机械工程学报,2006,42(12):169-173
    [110]Song Wulin,Echigoya J,Zhu Beidi,et al.Effects of Co on the cracking susceptibility and the microstructure of Fe-Cr-Ni laser cladding layer[J].Surface and Coatings Technology,2001,138:291-295
    [111]张维平,刘硕.激光熔覆Ni基金属陶瓷复合涂层的裂纹研究[J].复合材料学报,2005,22(3):98-102
    [112]钟敏霖,刘文今,任家烈.NiCrSiB合金高功率激光送粉熔覆裂纹形成的敏感因素[J].应用激光,2000,20(5):193-197
    [113]胡木林,谢长生,祝柏林等.多道搭接激光熔覆镍基合金中裂纹断口形貌研究[J].材料热处理学报,2001,22(2):23-26
    [114]宋武林,朱蓓蒂,张杰等.激光熔覆层热膨胀系数对其开裂敏感性的影响[J].激光技术,1998,22(1):34-36
    [115]Liu Furong,Gao Qian,Gao Dengpan,et al.Cracking analysis of WC reinforced composites coating by laser cladding[J].Materials Engineering,2003,5:37-39

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700