热弹性效应和数控机床进给系统热动态特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着数控机床的速度、加速度及加工精度的提高,机床的热态特性对加工精度的影响越来越明显。改善机床的热态特性,已成为机械制造技术中急待解决的问题之一。本学位论文以滚珠丝杠进给系统为对象,以热弹性效应为主线,运用传热学、热弹性力学、控制理论、系统辨识理论等数理手段,以计算机数值模拟以及工程实验分析为研究工具,全面深入地研究了热弹性效应的特征规律、热弹性效应的辨识模型、进给系统的热动态特性、进给系统热动态特性的影响规律以及进给系统热动态特性的建模和预测方法。
     交替变化热源的作用会使构件产生热弹性现象。通过传热学理论、GE数值方法及传热实验对一维杆的热弹性效应进行了深入研究,分析了热弹性现象的产生原因和发生规律,提出了热弹性效应具有三个特性:频率保持特性、热变形的实时性和整体性以及相移特性。
     由于热弹性效应的理论建模存在困难,本文提出了两种可用于热弹性效应建模的非线性时序神经网络模型(NARX_NN和NARMAX_NN)。NARX_NN和NARMAX_NN模型在非线性系统建模方面的具有结构简单、易于收敛、动态逼近等特性,通过与多层前馈神经网络(MFN)模型、反馈神经网络(RNN)模型及广义最小二乘输出误差(GLS-OE)模型比较,表明了该两种模型能有效地辨识热弹性效应,精确地估算出非线性、动态和时变的热弹性过程。
     热弹性效应是热动态特性的一种表现形式。通过单热源作用下滚珠丝杠一维传热的理论分析、GE方法求解及有限元仿真,研究了温度响应和热变形响应之间的“超前性”和“滞后性”,提出了可定义热动态特性的三个特性参数:频率特性、幅值特性和相移特性。通过多变化热源作用下滚珠丝杠的热动态特性的分析,提出了用拉普拉斯变换的方法建立滚珠丝杠热源温度与丝杠上任意位置热变形之间的关系模型,研究滚珠丝杠热变形的稳态响应。
     以HUST-FS-001准高速重载进给系统实验台为对象,研究了进给系统在一定进给速度下轴向、径向和回程热误差的变化规律,以及变工况下(进给速度、切削负载和预紧力)的温升-热误差规律,为进给系统热动态特性的辨识和建模奠定基础。研究结果表明:左右轴承座的温升变化与切削负载、预紧力、进给速度等的变化正相关,导轨座、丝杠螺母座的温升与预紧力的变化无关,但能反映负载、进给速度的变化规律,电机座的温升变化随着负载的增大而增大,但与预紧力、进给速度两因素的变化无联系;径向热误差在三种工况变化的实验中变化很小,随机波动,毫无规律;切削负载、预紧力、进给速度与轴向和回程热误差正相关但具有不同的规律性。
     由于进给系统结构复杂、热源多样、工况时变,其热动态特性是复杂非线性的。在分析了NARX_NN和NARMAX_NN两种建模方法对多输入多输出(MIMO)系统的建模能力的基础上,用这两种方法建立了HUST-FS-001高速进给系统实验台的热动态特性模型,并与多变量回归模型(MRA)、反馈神经网络(RNN)模型及广义最小二乘输出误差(GLS-OE)模型进行了比较,表明了其具有更好的精度和鲁棒性。
     本课题的研究为滚珠丝杠进给系统热误差的分析及动态、实时补偿提供理论依据和指导方法,应用于生产实践具有一定的现实意义和实用价值,也为进一步研究机床整机的热动态特性及演变规律奠定基础。
With the increase of the speed and acceleration, the machining precision is more and more obviously influenced by the thermal characteristic of NC machine tool. To improve the thermal characteristic of NC machine tool has become an urgent problem in the development of manufacturing technology. In this dissertation, according to heat transfer, thermoelasticity dynamics, control theory and system identification, the characterictics and the identifycating modl of thermoelastic effect, the thermal dynamic characteristics and the influencing rules of feed system, the modeling and forecasting methods of the thermal dynamic characteristics of feed system are systematically investigated by combining theoretical analysis with engineering practice.
     Thermoelastic phenomenon of object is brought by interchanging heat source. According to theory of heat transfer and Group Explicit numeric method, the thermoelastic effect of unidimensional heat transferring is studied. The being and changing rule of Thermoelastic phenomenon of rod are analysed. Three characteristics of the thermoelastic effect including frequency holding, real-time and integrative thermal deformation and phase shifting, are brought forward.
     Because it is difficult to get the theoretic model of thermoelastic effect, two kinds of nonlinear time series neural network models (NARX_NN and NARMAX_NN) are put forward, which are simple in structure, rapid in converging, dynamic fit for modeling of thermoelastic effect. Compared with multi-layer feedforward neural network (MFN), recurrent neural network(RNN) and Generalized least squares-output error (GLS-OE), these two models are proved valid in identifying thermoelastic effect and precise in calculateing nonlinear, dynamic and time varying thermoelastic process.
     The thermoelastic effect is one of the expressions of thermal dynamic characteristics. On the basis of theoretic analyse, GE calculating and finite element simulating of unidimensional heat transferring of ballscrew impacted by single heat source, the traits of lead and lag in temperature response and thermal deformation response are studied, and three characteristic parameters including frequency holding, amplitude attenuating and phase shifting are put forward, which can be used for describing thermal dynamic characteristics. By analysis of thermal dynamic characteristics of ballscrew impacted by multiple heat sources, Laplacian arithmetic is brought out to get the relation between thermal deformation on arbitrary location and the temperature of heat sources, and the steady-state thermal deformation response of ballscrew is researched.
     Using HUST-FS-001 sub high-speed feed system as an object,changing rules of thermal errors including axial, radial and return thermal errors in certain feed velocity are investigated. Rules of temperature rise and thermal error in changing machining conditions (feed velocity, cutting load and preload) are also investigaged. It is the foundation of identifying and modeling the thermal dynamic characteristics. The results of test show: temperature rises on bearing boxes are positive correlate with feed velocities, cutting loads and preloads; temperature rises on guides housings and screw nut boxes are not correlate with preloads, but they can reflect the changing rules of cutting loads and feed velocities; temperature rises on motor housing are positive correlate with cutting loads, but not correlate with preloads and feed velocity; Under three changing machining conditions ,the changing of radial thermal errors is little, stochastic and ruleless;The axial and return thermal errors are positive correlate with the machining conditions in certain rules.
     The thermal dynamic characteristics of feed system are complicated and nonlinear because of the complexity in structure, the multiformity in heat sources and the time varying in machining conditions. On the basis of analyzing the modeling ability of the two nonlinear time series neural network (NARX_NN and NARMAX_NN) on multiple input-multiple output (MIMO) system, the thermal dynamic models of HUST-FS-001 feed system are achieved by these two neural network.Compared with multi-variable regressive analysis (MRA), recurrent neural network (RNN) and Generalized least squares-output error (GLS-OE), these two models are proved more precise, robust and valid in identification of thermoelastic effect.
     The achievements of this dissertation provide significant theoretic foundation of real-time compensating for the thermal error of feed system. It is practical and valuable to apply these achievements to production practise. Also, it is the foundation of further research in thermal dynamic characteristics and evolving rules of integrated machine tools.
引文
[1] J. B. Bryan. International Status of Thermal Error Research [J]. Annals of CIRP, 1990, 39(2): 645-656.
    [2]杨庆东,陈焱.欧共体对机床热变形的研究[J].制造技术与机床, 2000, 7: 19-20.
    [3] M. WECK, P. KEOWN. Reduction and compensation of thermal error in machine tools [J]. Annals of CIPP, 1995, 44(2): 589-598.
    [4] P. M. Ferrerira, C. R. Liu. A method for Estimating and Compensating Quasistatic Errors of Machine Tools [J]. Journal of Engineering for Industry, 1993, 115(1): 149-159.
    [5] B. A. Robert. War Against Thermal Expansion [J]. Manufacturing Engineering, 1996, 116(6): 45-50.
    [6] K.H.Lo, R.M.Christensen, E.M.Wu. A high-order theory of plate deformation. Part1: Homogeneous plates [J]. ASME J. Appl.Mech.1977, 44:663-668.
    [7] K.H.Lo, R.M.Christensen, E.M.Wu.A high-order theory of plate deformation. Part2: Laminated plates [J]. ASME J.Appl.Mech.1977.44:669-676.
    [8] E. R. McClure, H. Thal-Larson. Thermal Effects In Precision Machining[J], J. Mech. Eng. 1993(7): 11–14.
    [9] T. Moriwaki, E. Shamoto. Analysis of Thermal Deformation of an Ultraprecision Air Spindle System. CIRP Ann. 1998(47): 315-319.
    [10]田维贤.机械制造中的热变形[M].武汉:华中理工大学出版社, 1992.
    [11] R. Ramesh, M. A. Mannan, A. N. Poo. Error compensation in machine tools-a review PartⅠ: geometric, cutting-force induced and fixture dependent errors [J]. International Journal of Machine tool&manufacture, 2000, 40: 1235-1256.
    [12] R. Ramesh, M. A. Mannan, A. N. Poo. Error compensation in machine tools-a review PartⅡ: thermal errors [J]. International Journal of Machine tool & manufacture, 2000, 40: 1257-1284.
    [13] M. H. Attia, L. Kops. Computer simulation of nonlinear thermal elastic behavior of a joint in machine tool structure and its effect on thermal deformation [J]. ASME Journal of Engineering for Industry, 1981, 101:348-354.
    [14] M. H. Attia, L. Kops. System approach to the thermal behavior and deformation of machine tool structures in response to the effect of fixed joints [J]. ASME Journal of Engineering for Industry, 1981, 103: 66-72.
    [15] M. H. Attia, L. Kops. On The Role of Fixed joints In Thennal Defonnation of Machinel Tool Structures [J]. Annals of theCIRP, 1978(27): 305-310.
    [16] M. H. Attia, L. Kops. Calculation of Thermal Deformation of Machine Tools in Transient State with The Effect of Structural Joints Taken into Account [J]. Annals of the CIRP, 1979(28): 247-251.
    [17] M. H. Attia, S. Fraser. A generalized modelling methodology for optimized real-time compensation of thermal deformation of machine tools and CMM structures [J]. International Journal of Machine tool & manufacture, 1999(39): 1001-1036.
    [18]杜正春,杨建国,关贺等.制造机床热误差研究现状与思考.制造业自动化, 2002.24(10):1-3.
    [19] B. Matthew, Ni Jun. A Method for Measuring the Temperature Distribution Along the Cutting Edges of a Drill [J]. Journal of Manufacturing Science and Engineering(ASME), 2002.124(11):921-926.
    [20]杨建国.数控机床误差综合补偿技术及应用[D].博士学位论文.上海:上海交通大学, 1998.
    [21] S. Fraser, M. H. Attia, et al. Modeling, Identification and Control of Thermal Deformation of Machine Tool Structures, Part I: Concept of Generalized Modeling [J]. ASME J. Manuf. Sci. Eng., 1998, 120(3): 623-631.
    [22]吴南星,胡如夫等.数控车床丝杠进给系统刚度对定位精度的影响[J].中国工程科学, 2004.9: 46~49.
    [23]邹小琦.数控机床进给系统的定位精度[J].南昌大学学报(工学版), 1997.12:85~88.
    [24]李永祥.数控机床热误差建模新方法及其应用研究[D].博士学位论文.上海:上海交通大学,2007.
    [25] A. Camera, M. Favarato, et al. Analysis of the Thermal Behavior of a Machine Tool Table Using the Finite Element Method[J]. Annals of CIRP, 1976, 25(1): 50-59.
    [26] G. Spur, E. Hoffmann, et al. Thermal Behavior Optimization of Machine Tools [J]. Annals of CIRP, 1988, 37(1): 40-46.
    [27] Zhang G, Wang C, et al. Error Compensation of Coordinate Measuring Machine [J]. Annals of CIRP, 1985, 34(1): 445-448.
    [28] S. C. Veldhuis, M. A. Elbestawi. A Strategy for Compensation of Errors in Five-Axis Machining [J]. Annals of CIRP, 1995, 44(1): 373-377.
    [29] J. Lee, B. M. Kramer. Analysis of Machine Degradation Using a Neural Network Based Pattern Discrimination Model [J]. Journal of Manufacturing Systems, 1993, 38(2): 379-387.
    [30] Y.Hatamura, et al. Development of an Intelligent Machining Center Incorporating Active Compensation for Thermal Distortion [J]. Annals of CIRP, 1993, 42(1): 549-552.
    [31] Chen Jengshyong. Computer-aided Accuracy Enhancement for Multi-Axis CNC Machine Tool [J]. International Journal of Machine Tools Manufact, 1995, 35(4): 593-605.
    [32] Seong Wook Hong, Young Jae Shin, et al. An efficient method for identification of motion error sources from circular test results in NC machines [J].International journal of machine tools&manufacture, 1997, 37(3):327-340.
    [33]任永强.数控机床误差高效测量、建模及补偿应用研究[D].博士学位论文.上海:上海交通大学, 2004.
    [34] Mofid Mahdi, Liangchi Zhang. Applied mechanics in grinding. Part 7: residual stresses induced by the full coupling of mechanical deformation, thermal deformation and phase transformation [J]. International Journal of Machine Tools & Manufacture 1999, 39: 1285-1298.
    [35] Y. Huang, S.Y. Liang. Cutting forces modeling considering the effect of tool thermal property—application to CBN hard turning [J]. International Journal of Machine Tools & Manufacture, 2003, 43: 307-315.
    [36]倪军.数控机床误差补偿研究的回顾及展望[J].中国机械工程, 1997, 8(1): 29-33.
    [37]杨建国,张宏韬等.数控机床热误差实时补偿应用[J].上海交通大学学报, 2005, 39(9):1389-1392.
    [38]陈子辰等.热敏感度和热耦合度研究[J]. 1992年全国机床热误差控制和补偿研究会议论文集, 1992, 49-53.
    [39] D. A. Krulewich, Temperature integration model and measurement point selection for thermally induced machinetool errors [J], Mechtronics, 1998, 8: 395-412.
    [40] Lo Chih-Hao, Yuan Jingxia, et al. Optimal temperature variable selection by grouping approach for thermal error modeling and compensation [J]. International Journal of Machine Tools & Manufacture, 1999, 39: 1383-1396.
    [41] Yang Jianguo, Yuan Jingxia, et al. Thermal error mode analysis and robustmodeling for error compensation on a CNC turning center [J]. International Journal of Machine Tools & Manufacture, 1999, 39: 1367-1381.
    [42] D.S. Lee, J.Y. Choi, D.-H. Choi. ICA based thermal source extraction and thermal distortion compensation method for a machine tool [J]. International Journal of Machine Tools & Manufacture, 2003, 43: 589-597.
    [43]赵大泉等.模糊聚类分析法在机床温度特征点识别中的应用[J].制造业自动化, 2002(9): 175-179.
    [44] Zhao Haitao, Yang Jianguo. Simulation of thermal behavior of a CNC machine tool spindle [J]. International Journal of Machine Tools& Manufacture, 2007, 47:1003-1010.
    [45]国家自然科学基金委员会.机械制造科学(冷加工)[M].北京:科学出版社, 1994.
    [46] S. K. KIM, D. W. CHO. Real time estimation of temperature distribution in a ball-screw system [J]. International Journal of Ma-chine Tools and Manufacture, 1997, 37(4): 451-464.
    [47] K-D Kim, M-S Kim1, S-C Chung. Real-time compensatory control of thermal errors for high-speed machine tools [J]. Proc. Instn Mech. Engrs, Part B: J. Engineering Manufacture, 2004, 218: 913-924.
    [48]周顺生等.有限元分析在数控铣床热变形方面的研究[J],微计算机信息, 2005(8), 58-59.
    [49]张耀满等.加工中心主轴部件及其主轴箱的热特性有限元分析[J],设计与研究, 2005(4): 43-52.
    [50] Jin Kyung Choi, Dai Gil Lee. Thermal characteristics of the spindle bearing system with a gear located on the bearing span [J]. International Journal of Machine Tools & Manufacture, 1998, 38: 1017-1030.
    [51] Bernd Bossmanns, Jay F. Tu. A thermal model for high speed motorized spindles [J]. International Journal of Machine Tools & Manufacture, 1999, 39: 1345-1366.
    [52] Sun-Kyu Lee, Jae-Heung Yoo, Moon-Su Yang.Effect of thermal deformation on machine tool slide guide motion [J], Tribology, 2003, 36:41-47.
    [53] J. Jedrzejewski, Z. Kowal, et al. Modrzycki. High-speed precise machine tools spindle units improving [J]. Journal of Materials Processing Technology, 2005, 162:615-621.
    [54] Xu Min, Jiang Shuyun. An improved thermal model for machine tool bearings[J]. International Journal of Machine Tools & Manufacture,2007, 47: 53-62.
    [55] P. Tuomaala, K. Piira, et al. A rational method for the distribution of nodes in modeling of transient heat conduction in plane slabs [J]. Building and Environment, 2000, 35: 397-406.
    [56] B. P. Naganarayana, P. Rama Mohan, et al.Accurate thermal stress predictions using continuous higher-order shear deformable elements [J]. Computer methods in applied mechanics and engineering, 1997, 144: 61-75.
    [57] M. H.Attia, L. Kops. Computer simulation of nonlinear thermal elastic behavior of a joint in machine tool structure and its effect on thermal deformation [J]. ASME Journal of Engineering for Industry, 1981, 101: 348-354.
    [58] M. H.Attia, L. Kops. System approach to the thermal behavior and deformation of machine tool structures in response to the effect of fixed joints [J]. ASME Journal of Engineering for Industry, 1981, 103: 66-72.
    [59] Yuan J., and Ni J. The real-time error compensation technique for CNC machining systems [J], Mechatronics, 1998, 8: 359-380.
    [60] Yang Hong, Ni Jun. Adaptive model estimation of machine-tool thermal errors based on recursive dynamic modeling strategy [J]. International Journal of Machine Tools & Manufacture, 2005, 45:1-11.
    [61] Chen Jenq-Shyong, Hsu Wei-Yao. Characterizations and models for the thermal growth of a motorized high speed spindle [J]. International Journal of Machine Tools & Manufacture, 2003, 43: 1163-1170.
    [62] S. YANG, J. YUAN, et al. The improvement of thermal error modelling and compensation on machine tools by CMAC neural network [J]. Iternational Journal of Machine Tools & Manufacture, 1996, 39: 527-537.
    [63] Yang Hong, Ni Jun. Dynamic neural network modeling for nonlinear, nonstationary machine tool thermally induced error [J]. International Journal of Machine Tools & Manufacture, 2005, 45: 455-465.
    [64] CHEN J. S., CHIOU G.. Quick testing and moding of thermal induced errors of CNC machine tools [J]. International Journal of Machine Tools & Manufacture 1995, 35: 1063-1074.
    [65]杨庆东.神经网络补偿机床热变形误差的机器学习技术[J].机械工程学报, 2000, 1: 92-95.
    [66]杨庆东, C.范丹伯格, P.范呵里克等.数控机床热误差补偿建模方法[J].制造技术与机床, 2000, 2: 10-13.
    [67] Yang Qingdong. Study of the thermal deformation on a coordinate measuring machine and compensation via a neural network model [J]. International Journal of Flexible Automation and Integrated Manufacturing, 1999, 7: 129-147.
    [68] Yang Qingdong. Linear regression and neural net models applied to thermal error compensation in machine tools [J]. European Journal of Mechanical and Environmental Engineering, 1999, 44: 146-152.
    [69]于金.基于补偿模糊神经网络的数控机床热误差预报模型[J].组合机床与自动化技术, 2004, 4: 78-79.
    [70]于金,赵树国.数控机床热变形关键点的辨识与补偿方法的研究[J],机械设计与制造, 2000, 6: 73-74.
    [71] Kang Yuan, Chang Chuan-Wei. Modification of a neural network utilizing hybrid filters for the compensation of thermal deformation in machine tools [J]. International Journal of Machine Tools & Manufacture, 2007, 47: 376-387.
    [72] Chang Chuan-Wei, Kang Yuan. An optimal estimation for neural network by using genetic algorithm for the prediction of thermal deformation in machine tools[J]. International Conference on Control and Automation((ICCA), 2005: 925-929.
    [73]傅建中.精密机械加工动态监控理论及应用研究[D].博士学位论文.杭州:浙江大学, 1996.
    [74] Christopher, D. Mizea, et al. Neural network thermal error compensation of a machining center [J]. Precision Engineering Journal of the International Societies for Precision Engineering and Nanotechnology, 2000, 24:338-346.
    [75] J. Mou, M. A. Donmez, et al. An adaptive error correction method using feature-based analysis techniques for machine performance improvement. Part 1: Theory derivation [J]. ASME Trans. Journal of Engineering for Industry, 1995, 117: 584-590.
    [76] A. K. SRIBASTRAVA, S. C. VELDHUIS. Modelling geometric and thermal errors in a five-axis CNC machine tool [J]. International Journal of Machine Tools & Manufacture, 1995, 35: 1321-1337.
    [77] Y. Wang, G. Zhang, et al. Compensation for the thermal error of a multi-axis machining centre [J]. ASME Trans. Journal of Materials Processing Technology, 1998, 75:45-53.
    [78] A. C. Okafor, Yalcin M. Ertekin. Derivation of machine tool error models and error compensation procedure for three axes vertical machining center usingrigid body kinematics [J]. International Journal of Machine Tools & Manufacture, 2000, 40: 1199-1213.
    [79] F. L. M. Delbressine, G. H. J. Florussen. Modelling thermomechanical behaviour of multi-axis machine tools [J]. Precision Engineering, 2006, 30: 47-53.
    [80]刘又午,章青,赵小松等.基于多体理论模型的加工中心热误差补偿技术[J]机械工程学报, 2002, 1: 127-130.
    [81]刘又午,章青,赵小松等.数控机床全误差模型和误差补偿技术的研究[J].制造技术与机床, 2003, 7: 46-50.
    [82]赵小松,郭红旗,刘又午.数控机床的误差模型[J].天津大学学报(自然科学与工程技术版) , 2001, 34(06): 723-726.
    [83] H. Parkus. Thermoelasticity [M]. Germany: Springer-Verlag, 1976.
    [84]王洪纲.热弹性力学概论[M].北京:清华人学出版社, 1989,8.
    [85]蔡永恩.热弹性问题的有限元方法及程序设计[M],北京:北京大学出版社, 1997,10.
    [86]王金生. XK717数控铣床热特性研究[M],硕士研究生论文.杭州:浙江工业大学, 2004,10.
    [87]刘亚成,徐润章,于涛.具有多个非线性源项的波动方程[J].应用数学和力学, 2007, 28(9): 1079-1086.
    [88]张琼,黄发伦.具动态边界条件的热弹性板的解析性[J].中国科学(A辑), 2003, 33(2): 114-123.
    [89] HUANG Hui, FEI Pusheng, et al. Nolinear Stability considerations in Thermoelastic Contact Model with Two Different Boudary Conditions [J]. Journal of Mathematics, 2006, 26(1): 1-8.
    [90] J. L. Nowinski. Theory of Thermoelasticity with Applications [J]. Sijthoff & Noordhoff International Publishers B.V, 1978: 138.
    [91] B. A. Boley, H. H. Weiner. Theory of Thermal Stresses [M]. USA: John Wiley & Sons Inc, 1960.
    [92]高洪俊,赵玉娟.具有局部阻尼的热弹性问题的渐近行为和指数稳定性[J].应用数学和力学, 2006, 27(11): 1363-1372.
    [93] Y. Takeuti, T. Furukawa. Some Considerations on Thermal Shock Problems in a Plate [J]. J.Appl. Mech. 1981, 48: 113-118.
    [94] R·库玛, G·帕塔泊.微极热弹性无限板的轴对称自由振动[J].应用数学和力学, 2007, 28(3): 335-348.
    [95] T.Inoue, S.Nagaki, Tishino, M.Monkawa. Descripition of Transformation Kinetics, Heat Conduction and Elastic-Plastic Stress in the Course of Quenching and Tempering of Some Steels [J]. Ingenieur-Archiv, 1981, 50: 315-327.
    [96]吕朝锋,陈伟球,仲政.功能梯度厚梁的二维热弹性力学解[J].中国科学(G辑)[J],2006, 36(4): 384-392.
    [97]平修二.热应力与热疲劳[M].郭延伟,李安定译,安徽:国防工业出版社.
    [98] B. E.盖脱伍德著,魏信方译.热应力[M].北京:科学出版社. 1964. 7: 193-212.
    [99] S. Nair, E. Pang, R. C. Dix. Residual Stresses Generation and Relaxation in Butt-welded Piped [J]. Pressure Vessel Technology.1982, 17: 90-95.
    [100] Yang Hong, Ni Jun. Dynamic Modeling for Machine Tool Thermal Error Compensation [J]. ASME Trans. Journal of Manufacturing Science and Engineering, 2003, 125: 245-254.
    [101]王金生,胡如夫,巫修海.带冷却系统的XK717数控铣床主轴部件热特性分析[J].中国工程科学, 2005, 7(8): 84-88.
    [102]王金生,姚春燕,彭伟. XK717数控铣床主轴系统的热特性分析[J].机床与液压, 2005, 4: 16-17.
    [103] G. PALAZZO, R. PASQUINO. Temperature Fields in Machining Processes and Heat Transfer Models [J]. Mathematical and Computer Modelling, 2003, 35: 101-109.
    [104] R. Ramesh, M. A. Mannan,et al. Thermal error measurement and modelling in machine tools. Part I: Influence of varying operating conditions [J]. International Journal of Machine Tools & Manufacture, 2003, 43: 391-404.
    [105] Li Hongqi, Shin Yung C. Analysis of bearing conguration efects on high speed spindles using an integrated dynamic thermo-mechanical spindle model [J]. International Journal of Machine Tools & Manufacture, 2004, 44: 347-364.
    [106]陈兆年,陈子辰.机床热态特性学基础[M],北京:机械工业出版社, 1989, 11.
    [107]王文,陈子辰等.线性系统热动态激励及其响应研究[J].浙江大学学报,1994,9: 563-569.
    [108]傅建中,陈子辰.精密机械热误差校正机理及参数遗传优化[J].浙江大学学报, 2003, 37(6): 719-723.
    [109]傅建中,陈子辰.精密机械热动态误差模糊神经网络建模研究[J].浙江大学学报, 2004, 40(6):32-36.
    [110]傅建中,陈子辰.奇异值分解识别精密机械热动态特性参数的研究[J].浙江大学学报, 2004, 38(4): 32-36.
    [111]曹永洁,傅建中.数控机床误差检测及其误差补偿技术研究[J].制造技术与机床, 2007, 4: 38-41.
    [112] LENNART LJUNG. System Identification–theory for User [M]. Beijing: Tsinghua University Press, 1999.
    [113]王永骥,神经元网络控制[M],北京:机械工业出版社, 1998, 2: 159-180.
    [114]候媛彬,汪梅等.系统辨识及Matlab仿真[M],北京:科学出版社, 2004: 194-199.
    [115]夏天长,系统辨识[M],北京:清华大学出版社, 1983.
    [116]张玉铎,系统辨识与建模[M],北京:水利电力出版社, 1995.
    [117]金俐,陆启韶.非光滑动力系统Lyapunov指数谱的计算方法[J].力学学报, 2005, 37(1): 40-47.
    [118] C. Biserni, A. Fichera, et al. A non-linear approach for the analysis and modelling of the dynamics of systems exhibiting Vapotron effect [J]. International Journal of Heat and Mass Transfer, 2006, 49(7-8):1264-1273.
    [119] B. A. Amisigo, N. van de Giesen, et al. Monthly streamflow prediction in the Volta Basin of West Africa: A SISO NARMAX polynomial modeling[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2008, 33, Issues(1-2): 141-150.
    [120] Lee Ya-Wei, Chang Tien-Li, et al. Experimental and theoretical analysis of microjet droplet behavior [J]. Microelectronic Engineering, 2007, 84(5-8): 1770-1774.
    [121] G. ?zkan, A.üser, et al. Experimental application of linear/nonlinear dynamic matrix control to a reactor of limestone slurry titrated with sulfuric acid [J]. Chemical Engineering Journal, 2008, 137(2): 320-327.
    [122]董敏,刘才,李国友等.轧机液压AGC系统基于神经网络的传感器故障诊断技术[J].钢铁, 2005,40(5): 45-48.
    [123]庞世伟,于开平,邹经湘.基于时变NARMA模型的非线性时变系统辨识[J].工程力学, 2006, 23(12): 25-29.
    [124]史天运,贾利民,蔡秀生.一种新型的动态递归神经网络及其全自动设计算法.信息与控制[J], 2000,29(6): 511-520.
    [125]赵国良等.自适应控制技术与应用[M],北京:人民交通出版社, 1991.
    [126]吴秀恒等.船舶操纵性与耐波性[M] ,北京:人民交通出版社, 1988, 12.
    [127]王东青.时滞系统的辨识及NARMA模型修正[J].中国工程科学, 2006. 8(2): 39-43.
    [128]王晓,谢剑英,贾青.非线性NARMAX模型结构与参数一体化辨识的改进算法[J].信息与控制, 2000, 29(4): 102-110.
    [129]张涛,陈立,李治. NARMA模型预测控制滚动优化的两级协调法[J].西南交通大学学报, 1997, 32(8): 452-456.
    [130] Kukreja, Sunil L, etc. NARMAX representation and identification of ankle dynamics [J]. IEEE transactions on bio-medical engineering, 2003, 50(1): 70-81.
    [131] Akanyeti, T. Kyriacou, et al. Visual task identification and characterization using polynomial models [J]. Robotics and Autonomous Systems, 2007, 55(9): 711-719.
    [132] T. J. Harris, W. Yu. Controller assessment for a class of non-linear systems [J]. Journal of Process Control, 2007, 17(7) 607-619.
    [133] M. A. Chadwick, V. Kadirkamanathan, S. A. Billings. Analysis of fast-sampled non-linear systems: Generalised frequency response functions forδ-operator models [J]. Signal Processing, 2006, 86(11): 3246-3257.
    [134] Li S., Zhang Y., Zhang G. A Study of Pre-compensation for Thermal Errors of NC Machine Tools [J]. International Journal of Machine Tools & Manufacture 1997, 37: 1715-1719.
    [135] Yang Hong, Ni Jun. Adaptive model estimation of machine-tool thermal errors based on recursive dynamic modeling strategy [J]. International Journal of Machine Tools & Manufacture, 2005, 45: 1-11.
    [136]余佐平,陆煜.传热学[M].北京:高等教育出版社, 1999.
    [137]俞昌铭.热传导及其数值分析[M].北京:清华大学出版社. 1982, 4: 368-369.
    [138]张宝琳,谷同祥等.数值并行计算原理与方法[M].安徽:国防工业出版社. 1999. 7: 188-189.
    [139] LEON LAPIDUS GEORGE F.PINDER.科学和工程中的偏微分方程数值解法[M].孙讷正等译.北京:煤炭工业出版社, 1989: 35-36.
    [140] G.I. Giannopoulos, N.K. Anifantis. A BEM analysis for thermomechanical closure of interfacial cracks incorporating friction and thermal resistance[J]. Comput. Methods Appl. Mech. Engrg., 2007, 196: 1018-1029.
    [141] En-Bo Wei, Y.M. Poon. Effective thermal conductivity of graded nonlinear composites with heat contact resistance[J]. Physics Letters A, 2006, 359: 685-692.
    [142] A. Ba¨?ri, N. Laraqi. Heat transfer across a solid-solid interface obtained by machining in a lathe[J]. Journal of Materials Processing Technology, 2005, 169: 89-93.
    [143] P Jiang, P.-X., Lu, X.-C. Numerical simulation and theoretical analysis ofthermal boundary characteristics of convection heat transfer in porous media[J]. International Journal of Heat and Fluid Flow xxx(2007) doi:10.1016/j.ijheatfluidflow.2006.11.009.
    [144]曹建福,韩崇昭,方洋望.非线性系统理论及应用[M],西安:西安交通大学出版社, 2006, 2.
    [145] S. A., Billings, I. J. Leontaritis. Parameter Estimation Techniques for Nonlinear Systems[J]. Proc. 6th IFAC Symposium on Identification and System Parameter Estimation, Washington, DC, 1982: 505-510.
    [146] I. J. Leontaritis, S. A. Billings. Input-output Parametric Models for Nonlinear Systems[J]. Part I: Deterministic Nonlinear Systems; Part II: Stochastic non - linear systems. Int. J. Control, 1985, 41: 303-344.
    [147] S Chen, S. A. Billings. Representation of Non-linear Systems: the NARMAX Model[J]. Int. J. Control, 1989, 49: 1013-1032.
    [148] Narendra KS, Parthasarathy K. Identification and control of dynamical systems using neural networks[J]. IEEE Transactions on Neural Networks, 1990, 1(1): 4-27.
    [149]宋现春,王兆坦,刘现银.精密滚珠丝杠磨削加工中的热变形控制[J].工艺与检测, 2006, 1: 59-61.
    [150] SHYH-CHOUR, HUANG. Analysis of a model to forecast thermal deformation of ball screw feed drive systems[J]. International Journal of Machine Tools & Manufacture, 1994(35): 1099-1104.
    [151] Cheng-Hsien Wu, Yu-Tai Kung. Thermal analysis for the feed drive system of a CNC machine Center[J]. International Journal of Machine Tools & Manufacture,2003(43): 1521-1528.
    [152]郭军,张伯霖等.电机后置式电主轴热态特性的分析与研究[J].组合机床与自动化加工技术, 2004, 12: 18-21.
    [153]黄晓明,张伯霖等.高速电主轴热态特性的有限元分析[J].航空制造技术, 2003, 10: 20-26.
    [154]张朝晖,范群波等. ANSYS8.0热分析教程[M],北京:中国铁道出版社, 2005, 6.
    [155] Jan Braasch, Dr.Ing.海德汉进给传动精度系列讲座(第3讲:滚珠丝杠轴承对定位精度的影响)[J],机械工人(冷加工), 2004(3): 71-73.
    [156] Jan Braasch, Dr.Ing.海德汉进给传动精度系列讲座(第4讲:滚珠丝杠长度方向温度分布的影响)[J],机械工人(冷加工), 2004(4): 82-84.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700