多薄层组合材料在X射线辐照下的热—力学效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以新型多薄层组合材料在脉冲X射线辐照下的热-力学效应为研究目标,对TC材料和GC材料准静态和动态力学性能及热物理性能进行了实验测量,建立了多薄层材料的等效模型,对多薄层组合材料在脉冲X射线辐照下的汽化反冲冲量和热击波进行了数值模拟研究。
     本文的主要研究成果及结论如下:
     1、对TC材料和GC材料的准静态压缩性能进行了实验研究,测量出了两种材料的弹性模量、泊松比和屈服强度,获得了两种材料的剪切模量分别为4.69MPa、3.29MPa。采用差示扫描量热法测量得到了TC材料和GC材料的DSC曲线,并由此得到了两种材料的比热在化学稳定状态随温度的变化规律。采用差热分析法测量得到了TC材料和GC材料的TG和DTA曲线。
     2、针对传统的压阻法测量系统的不足,建立了一种对称电桥测试系统。该系统电路简洁,能够方便地消除实验测量中的干扰信号,并可将冲击波压力测量范围延伸至0.2GPa左右,对于低阻抗材料在低压下的实验测量有重要价值。采用该方法在轻气炮上对TC材料和GC材料的Hugoniot参数进行了实验测量,结果分别为:C0TC=0.34 km/s,λTC=2.72;C0GC=1.23 km/s,λGC=3.02。给出了TC材料和GC材料的常态Grüneisen系数值及Grüneisen系数随比容的变化关系。
     3、针对脉冲X射线热击波在多薄层组合材料中可能出现的各种问题和困难,分析了采用等效模型的优越性。建立了多薄层组合材料系统的等效模型,获得了等效材料的物态方程参数。分别采用等效模型和分层模型对铝、铜和TC、GC多薄层组合材料在平面碰撞下应力波的传播进行了数值模拟检验,结果表明:在冲击载荷作用下的动态响应研究中,等效材料模型对于多薄层组合材料是适用的。
     4、通过物理分析,并结合数值计算中的具体情况,提出了采用压力对时间的积分来计算X射线辐照所产生的汽化反冲冲量的数值计算方法。分析表明,采用这种方法计算冲量更准确、更符合实际。
     5、对由TC材料和GC材料组成的多薄层组合材料在脉冲X射线辐照下汽化反冲冲量和热击波传播进行了数值模拟,得到了汽化反冲冲量和冲量耦合系数随初始能通量的变化规律和热击波传播规律。
In order to study the thermodynamic response of the new multi-thin-layer structure materials irradiation by pulsed X-ray, the quasi-static, dynamic mechanical and thermal physical properties of TC and GC materials are measured by experiment, then established the equivalent model of the multi-thin-layer structure materials, and studied the blow-off impulse and thermal shock wave of multi-thin-layer structure materials irradiation by pulsed X-ray through numerical simulation.
     The main achievements and conclusions in this dissertation are presented in the following:
     1. The quasi-static compressive experiments of TC and GFSC materials are conducted, the mechanical parameters of two materials, such as poisson’s ratio, elastic modulus, yield strength are measured, and shear modulus of two materials can be gained as 4.69 and 3.29MPa. The DSC curves and the relation of specific heat versus temperature is obtained through differential scanning calorimetry, the TG and DTA curves are obtained through differential thermal analysis.
     2. In view of the characteristic and shortage of traditional piezoresistive measurement, a symmetrical electricity-bridge measurement system is established. The system is very simply, it can extend the range of pressure measurement to 0.2GPa, and can eliminate the interfere signals in the experiment signals better, which is very useful in low perssure measurement for low impedance materials. By ways of this method, the Hugoniot parameters of TC and GC are measured in the light-gas gun, the results is:C0TC=0.34km/s ,λTC=2.72 ; C0GC=1.23km/s ,λGC=3.02. and normal Grüneisen coefficients of TC and GC materials and the rule of coefficients as a function of ratio-volume are gained.
     3. In view of the problem and difficult of simulating the pulsed X-ray thermal shock wave in multi-thin-layer structure materials, analyze the advantage of adopting the equivalent model. Establish the equivalent model of multi-thin-layer structure materials, confirm calculate method of each parameter such as C0、λ、a andγ0 in the equivalent model. The equivalent model and delamination model are adopted to simulate the shock wave propagation in Al-Cu and TC-GC MTLSM under plane collision respectively. The result indicate: equivalent model is suit to research the dynamic response of multi-thin-layer structure materials under impact loaded.
     4. Through physical analysis, combined with the specific circumstances in numerical calculation,∑pg(t)Δt method to calculate the blow-off impulse generated by X-ray radiation is brought out. Analysis indicated: this calculate method is more accurate and realistic.
     5. Through calculating the blow-off impulse and simulating the thermal shock wave propagation induced by x-ray irradiating in TC-GC multi-thin-layer structure materials, the change rule of the blow-off impulse and the propagation rule of the thermal shock wave is gained.
引文
[1] Longley R W. Analytical relationships for estimating the effects of X-rays on materials. AFRPL-TR-74-52, 1974.
    [2] Lawrence R J.The equivalence of simple models for radiation-induced impulse.in: Schmidt S C, Dick R D, Forbes J W, et al. Ed: Shock compression of condenced matter 1991. NewYork:Elsevier Science Publisher B V. 1992 :785-798.
    [3] Cost T L. Dynamic response of missile structures to impulsive loads caused by nuclear effects blowoff. 1976.
    [4]国防科技大学二O五教研室.X射线与物质的相互作用.国防科技大学工学学报.1979,24(3):93-97.
    [5]张若棋,谭菊普.X射线辐照圆柱壳体产生的汽化反冲.空气动力学学报.1989,7(2):178-182.
    [6]张若棋,汤文辉,赵国民.X射线热击波的数值计算.抗核加固.1993.
    [7] Richtrnyer R D, Morlon K W. Difference methods for initial problems.New York,Interscience Publisher,1967 :295-304.
    [8]张若棋,汤文辉,赵国民.影响X光热击波数值模拟结果的若干因素.高压物理学报.1998,12(3):161-167.
    [9]汤文辉,赵国民,张若棋.物质对X射线的吸收系数和散射系数的计算.强度与环境.1998,26(2):49-56.
    [10]汤文辉,张若棋,赵国民.脉冲X射线诱导热击波.高压物理学报.1995,9(2):63-67.
    [11]汤文辉,张若棋,刘永贵.能谱变硬后的X射线对LY12铝破坏效应的研究.强度与环境.1993,21(1):43-47.
    [12]赵国民,张若棋,汤文辉.Compton散射对X射线热击波破坏效应的影响.强度与环境.1995,23(1):42-46.
    [13]赵国民,张若棋,陈吉斌.圆柱壳体内X射线热击波的二维力学计算.国防科学技术大学学报.1995,17(2):105-108.
    [14]周南,程漱玉,陈雨生等.一、二维弹塑性流体动力学数值计算的高精度新自由面格式.计算物理.1998,15(4):386-392.
    [15]周南,乔登江.脉冲束辐照材料动力学.北京:国防工业出版社.2002.
    [16]孙崇峰.多孔铝中热击波的数值模拟.高压物理学报.1991,5(2):154-159.
    [17]孙崇峰.多孔材料在热击波压实下的本构关系.高压物理学报.1997,11(3): 234-239.
    [18]蒋邦海.正交织物复合材料的动态本构模型及热击波研究.博士论文.国防科学技术大学.2006.
    [19]赵国民,张若棋.脉冲X射线辐照材料引起的汽化反冲冲量.爆炸与冲击.1996,16(3):259-265.
    [20]汤文辉,徐志宏,牛锦超等.升华能随温度和压力的变化及其对汽化反冲冲量的影响.高压物理学报.2007,21(4):342-346.
    [21]毛勇建,邓宏见,何荣建.强脉冲软X光喷射冲量的几种模拟加载技术.强度与环境.2003,30(2):55-64.
    [22]周南,丁升.电子束辐照效应的数值模拟.计算物理.1995,12(3):301-308.
    [23]丁升,周南.电子束辐照冲量的数值模拟计算与实验的对比.计算物理.1997,14(4):646-648.
    [24]彭常贤,程桂淦.电子束辐照圆环靶产生动态应变的实验研究.高压物理学报.1993,7(4):286-292.
    [25]彭常贤,胥永亮等.电子束辐照平板靶产生喷射冲量的实验研究.高压物理学报.1994,8(1):23-29.
    [26]彭常贤,谭红梅等.受电子束辐照的硬铝靶的喷射冲量耦合系数随能通量的变化规律.爆炸与冲击.1997,17(2):127-135.
    [27]彭常贤,谭红梅等.脉冲电子束辐照均质和非均质材料产生喷射冲量的研究.高压物理学报.1999,13 (增刊):369-372.
    [28]彭常贤,谭红梅等.不同材料和不同能通量条件下电子束喷射冲量的实验研究.高压物理学报.1999,13(1):16-21.
    [29]彭常贤,谭红梅等.三种壳体在脉冲电子束辐射下动力学响应的实验研究.爆炸与冲击.2001,21(1):21-25.
    [30]彭常贤,胥永亮.电子束辐照产生的热激波的数值模拟.高压物理学报.1998,12(4):282-290.
    [31]彭常贤,刘晋等.电子束热激波在不同材料和不同厚度中的衰减.爆炸与冲击.1999,19(增刊):205-208.
    [32]邱爱慈,张嘉生,彭建昌.用于模拟X射线热-力学效应的高功率脉冲离子束研究进展.核技术.2002,25(9):714-719.
    [33]杨海亮,邱爱慈,何小平.高功率离子束模拟材料的X射线热-力学效应研究.核技术.2005,28(1):24-29.
    [34]赵国民,张若棋.铅壳柔爆索爆炸产生冲量的实验.国防科技大学学报.2001,23(6):58-62.
    [35]赵国民,张若棋,彭常贤等.铅壳柔爆索冲量作用下圆柱壳体结构响应实验研究.爆炸与冲击.2002,22(2):126-131.
    [36]赵国民,张若棋,陈刚等.铅壳柔爆索爆炸特性实验.高压物理学报.2001,15(2):91-96.
    [37]赵国民,王占江,张若棋.用柔爆索构成沿圆柱壳体周向呈余弦分布的冲量载荷.爆炸与冲击.2008,28(6):557-560.
    [38]彭常贤,谭红梅,林鹏等.脉冲软X光辐射三种材料的喷射冲量实验研究.强激光与粒子束.2003,15(1):89-93.
    [39]彭常贤,王占江,王伟等.“闪光二号”电子束辐照平板靶产生热激波的实验研究.高压物理学报.1995,9(1):20-27.
    [40]彭常贤,林鹏,谭红梅等.PVDF在电子束辐射材料产生的热击波测量中的应用.高压物理学报.2002,16(3):7-16.
    [41]王占江,林俊德,管永量.核爆X光喷射冲量测量用电感式冲量传感器.抗核加固.1998,15(2):62-66.
    [42]彭常贤,谭红梅,林鹏等.采用靶摆旋转运动式冲量探头测量脉冲软X射线辐射材料产生的喷射冲量.高压物理学报.2005,19(1):80-85.
    [43]林鹏.脉冲束流辐射热-力学效应研究.博士论文:中国科学技术大学.2007.
    [44]国家质量技术监督局.JJF1059─1999测量不确定度评定与表示.北京:中国计量出版社,1999.
    [45]国家质量技术监督局计量司.测量不确定度评定与表示指南.北京:中国计量出版社,2000.
    [46]孟益平,胡时胜.混凝土材料冲击压缩试验中的一些问题.实验力学.2003,18(1):108-112.
    [47] Subhash G, Ravichandran G.Split-Hopkinson pressure bar testing of ceramics ASM handbook.Kuhn H, Medlin D, Mechanical testing and evaluation, Material Park, Ohio:ASM International.2000:497-504.
    [48]王展光,徐玉红,何德坪.球形孔泡沫纯铝准静态压缩性能.兵器材料科学与工程.2008,31(4):15-18.
    [49]李余增.热分析.北京:清华大学出版社.1987.
    [50]黄开汉.热分析法在定量分析中的应用.地球化学.1987,10(1):48-59.
    [51]焦爱红,傅智敏.物质热稳定性分析实验方法及仪器比较.分析仪器.2008,21(2):52-57.
    [52]张玉辉,刘海波,赵丰东.探讨用差示扫描量热法(DSC)测量相变材料相变温度和相变焓.测试技术.2006,17(4):35-37.
    [53]叶秀东,周国燕,华泽钊.用DSC测量葡萄糖溶液部分玻璃化转变温度的新方法.物理化学学报.2006,22(11):1347-1352.
    [54]胡银平,童明伟,严嘉等.离体生物组织相变潜热的DSC测试.重庆大学学报.2006,29(11):62-65.
    [55]陈文娟,陈巍,差热分析影响因素及实验技术.洛阳工业高等专科学校学报.2003,13(1):10-11.
    [56]盛克俭,李浩明.用DTA技术对导热油热稳定性进行研究.润滑油.2005,15(4):27-29.
    [57]吴广峰,刘亚娟.差热分析在纤维上应用.济南纺织化纤科技.1998,14(4):1 -4.
    [58]于伯龄,姜胶东.关于DTA曲线方程及反应终点判断方法的讨论.北京化工.1991,9(1):10-16.
    [59]谭亮红,欧阳振中,周淑华等.TG在胶料组分分析中的应用.橡胶工业.2004,51(4):233-235.
    [60]于颖.用热重分析法对胆矾的研究.辽宁化工.2008,37(6):425-427.
    [61]唐夕山,张卫华,李冬庆.废轮胎燃烧特性的热重分析.南京工业大学学报.2006,28(2):85-88.
    [62]黄华明,陈美,曾宗强等.用TG、DTA研究不同品系天然橡胶热降解.热带农业工程.2006,22(2):35-37.
    [63]梁爱云,惠世恩,徐通模等.几种物质的TG-DTG分析及其燃烧动力学特性研究.可再生资源.2008,26(4):56-61.
    [64]何佳佳,邱朋华,吴少华.升温速率对煤热解特性影响的TG/DTG分析.节能技术.2007,25(4):321-325.
    [65]靳广洲,俱虎良,朱建华等.CH4/H2气氛中Ni-Mo双金属氧化物还原碳化过程的TG-DTA研究.石油学报.2006,22(5):69-73.
    [66]张黎明,李霞,曹井国.大黄游离羟基蒽醌的TG-DTA分析.应用化学.2006,23(9):1058-1060.
    [67]俞宇颖,谭华,胡建波等.利用VISAR测量LY12铝在冲击压缩下的声速.高压物理学报.2006,20(2):145-152.
    [68]陈光华,李泽仁,刘元坤等.用双灵敏度VISAR测量铜飞片自由面速度.高压物理学报.2001,15(1):70-74.
    [69]姚国文,刘占芳.VISAR数据处理方法及其在碰撞试验中的应用.重庆大学学报.2006,29(8):25-28.
    [70]于锦泉,肖亚斌,周显明.冲击压缩下单晶LiF高压声速及卸载路径研究.高压物理学报.2005,19(3):206-212.
    [71]经福谦.实验物态方程导引(第二版).北京:科学出版社,1999.
    [72] Greenwood D, Forbes J, Garcia F, et al. Improvements in the signal fidelity of the manganin stress gauge. Shock compression of condensed matter. 2001, 1157-1159.
    [73] Tarver C M, Forbes J, Garcia F, et al. Manganin gauge and reactive flow modeling study of the shock initiation of PBX 9501. Shock compression of condensed matter. 2001, 1043-1046.
    [74] Rosenberg Z, Bourne N K, Millett J C F. On the effect of manganin gauge geometries upon their response to lateral stress. Measurement Science and Technology. 2007, 18:1843–1847.
    [75] Du X S, Yang B C, Zhou H R. Shock loadings on thin film manganin gauges packaged by vapor deposited alumina. Review of Scientific Instruments. 2002, 73(4):1967-1969.
    [76] Lisell E. On Trycket inflytande pa elektriska ledningsmostander hos metatter samt en ny metod att mata hoga tryck. Uppsala Univ. in Swedish 1903.
    [77]胡泽根,吴光华,曹述生.气炮用锰铜应力计.爆炸与冲击.1988,8(3):49-54.
    [78]孙承纬,卫玉章,周之奎.应用爆轰物理.北京:国防工业出版社,2000.
    [79] Fuller P J A, price J H. Dynamic pressure measurements to 300 kilobar with a resistance transducer. J Appl Phys. 1964, 15:751-756.
    [80] Bernstein D, Godfrey C, Klein C, et al. Research on manganin pressure transducers in behaviour of dense media under high dynamic pressure. Gordon and Breech, New York, USA. 1968: 461-468.
    [81] Bernstein D, keough D D. Piezoresistivity of mangnain. J Appl Phys. 1954, 35:1471-1478.
    [82] Rosenberg Z, Yaziv D, Parton Y. Calibration of foil-like manganin gauges in planar wave experiments. J Appl Phys. 1980, 51:3702-3708.
    [83] Rosenberg Z, Parton Y,Yaziv D. The response of manganin gauges shock-loaded in the 2-D straining mode. J Appl Phys. 1981, 52:755-758.
    [84] Rosenberg Z, Parton Y. Lateral stress measurement in shock-loaded targets with transverse piezoresistance gauge. J Appl Phys. 1985, 58:3072-3076.
    [85] Rosenberg Z, Yaziv D, Y Yeshurun, et al. Shear strength of shock-loaded alumina as determined with longitudinal and transverse manganin gauges. J Appl Phys. 1987, 62:5084-5086.
    [86] Rosenberg Z, Brar N S. Accounting for the crossover phenomenon in the response of longitudinal and transverse piezoresistance gauges in shock wave experiments. J Appl Phys. 1988, 63:349-354.
    [87]穆哈迈德·苏塞斯卡.炸药测试方法.邵英斌译,绵阳.中国工程物理研究院流体物理研究所.1998.
    [88]王翔,傅秋卫.一种锰铜压阻测量新方法.高压物理学报.1996,10(2):157- 160.
    [89] Millett J C F, Bourne N K, Rosenberg Z. On the analysis of transverse stress gauge data from shock loading experiments. J Appl Phys.1996, 29:2466-2472.
    [90] Nakamura A, Mashimo T. Calibration experiments of a Thin manganin gauge for shock wave measurement in Solids: measurements of shock stress history in Alumina. J Appl Phys. 1993, 32:4785-4789.
    [91] Rosenberg Z, Brar N S, Bless S J. Dynamic high pressure properties of AIN ceramic as determined by flyer plate impact. J Appl Phys.1991, 70(1):167-171.
    [92] Bourne N K, Millett J C F, Rosenberg Z. On the origin of failure waves in glass. J Appl Phys. 1997, 81(10):6670-6674.
    [93] Millett J C F, Bourne N K, Rosenberg Z. Shear strength measurements in a tungsten alloy during shock loading. J Appl Phys. 1999, 86(12):6707-6709.
    [94] Millett J C F, Bourne N K, Rosenberg Z. Shear stress measurements in copper,iron, and mild steel under shock loading conditions. J Appl Phys. 1996, 81(6):2579-2583.
    [95]黄正平.爆炸与冲击电测技术.北京:国防工业出版社,2006.
    [96]段卓平,关智勇,黄正平.箔式高阻值低压锰铜压阻应力计的设计及动态标定.爆炸与冲击.2002,22(2):169-173.
    [97]王为,王翔,叶素华.锰铜压力计在测量中的接地问题.高压物理学报.2006,20(3):322-326.
    [98]彭昆雅,段卓平,黄正平.低阻值锰铜压阻计量程扩展新技术——双恒流压阻法.兵工学报.1998,19(1):80-82.
    [99] Urtiew P A, Forbes J W, Tarver C M. Calibration of manganin pressure gauges at 250℃. Shock compression of condensed matter. 1999, 1019-1022.
    [100]卢静涵,姜芳,宁建国.配筋对混凝土动态特性的影响.北京理工大学学报.2007,27(6):473-476.
    [101]王翔,汪源浚,傅秋卫等.一种简便的压阻测压方法.高压物理学报.1998,12(3):236-239.
    [102]施尚春,陈攀森,黄跃.高速弹丸的磁感应测速方法.高压物理学报.1991,5(3):205-214.
    [103] Huang Y K. Direct method of calculating the Grüneisen parameterγbased on shock-wave measurements of metals. J Chem Phys. 1969, 51(6): 2573-2577.
    [104] Mitchell A C, Nellis W J. Shock compression of Aluminum, Copper, and Tantalum. J Appl Phys. 1981, 52(5):3363-3374.
    [105]马民勋,顾援.阻抗匹配实验中的误差问题.高压物理学报.1991,5(2):149- 153.
    [106]戴诚达,王翔,谭华.Hugoniot实验的粒子速度测量不确定度分析.高压物理学报.2005,19(2):113-119.
    [107] Nellis W J, Mitchell A C, Young D A. Equation of state measurements for Aluminum, Copper and Tantalum in the pressure range 80~440GPa. J Appl Phys, 2003, 93(1):304-310.
    [108] Knudson M D, Hanson D L, Bailey J E, et al. Equation of the state measurements in liquid deuterium to 70GPa. Phy Rev Lett, 2001, 87 (22):225-231.
    [109] Knudson M D, Lemke R W, Hayes D B, et al. Near-absolute Hugoniot measure- ments in Aluminum to 500GPa using a magnetically accelerated flyer plate technique. J Appl Phys, 2003, 94(7):4420-4431.
    [110] Winfree N A, Chhabildas L C, Reinhart W D, et al. EOS data of Ti-6Al-4V to impact velocities of 10.4 km/s on a three-stage gun. Furnish M D, Thadhani N N, Horie Y. Shock compression of condensed matter, 2001. New York:AIP, 2002:75-78.
    [111]李刚,陈正汉,谢云.波在分层材料中的传播及防冲击波分层材料的设计.振动与冲击.2005,24(2):89-105.
    [112]宋博,胡时胜,王礼立.分层材料的不同排列顺序对透射冲击波强度的影响.兵工学报.2000,21(3):272-274.
    [113] Shulla A L, Spaepen F. Measurements of stress during vapor deposition of copper and silver thin films and multilayers. J Appl Phys. 1996, 80 (11):6243-6256.
    [114] Liu J P, Luo C P, Liu Y. High energy products in rapidly annealed nanoscale Fe/Pt multilayers. J Appl Phys Lett. 1998, 72(4):483-485.
    [115] Stearns D G. The scattering of X rays from nonideal multilayer structures. J Appl Phys. 1988, 65(2):491-506.
    [116] Dauskardt R H, Lane M, Ma Q, et al. Adhesion and debonding of multi-layer thin film structures. Engineering Fracture Mechanics. 1998, 61:141-162.
    [117]董永香,夏昌敬.应力波在多层介质中传播特性数值分析.弹道学报.2004,16(3):28-32.
    [118] Han C, Sun C T. Attenuation of stress wave propagation in periodically layered elastic media. Journal of Sound and Vibration. 2001, 243(4):747-761.
    [119] Whittaker D M, Culshaw I S. Scattering-matrix treatment of patterned multilayer photonic structures. Physical review B. 1999, 60(4): 2610-2618.
    [120] Berger L. Emission of spin waves by a magnetic multilayer traversed by a current. Physical review B. 1996, 54(13): 9353-9358.
    [121] Tedesco J W, Hayes J R, Landis D W. Dynamic response of layered structures subject to blast effects of non–nuclear weaponry. Computers Structures. 1987, 26(12):79-86.
    [122] Tedesco J W, Landis D W. Wave propagation through layered systems. Computers Structures. 1989, 32(4):625-638.
    [123] Gupta Y M, Ding J L. Impact load spreading in layered materials and structures concept and quantitative measure. International Journal of Impact Engineering. 2002, 27:277-291.
    [124]张若棋.薄层复合材料的等效Grüneisen状态方程.爆炸与冲击.1985,5(2):18-23.
    [125]张光莹,曾新吾,张若棋.用传播矩阵法研究波在多层各向异性(纤维增强型)复合材料中的传播特性.固体力学学报.1999, 20:164-167.
    [126]汤文辉,张若棋.物态方程理论及计算概论(第2版).北京:高等教育出版社,2008.
    [127] Baker L M. A model for stress wave propagation in composite materials. Journal of Composite Materials. 1971, 5:140-162.
    [128] Barker L M, Lundergan C D, Chen P J. Nonlinear viscoelasticity and the evolution of stress waves in laminated composites: A comparison of theory and experiment. J Appl Mech. 1974, 41:1025-1030.
    [129] Shafer B W. Stress-strain relations of reinforced plastics parallel and normal to the internal filament. AIAA Journal. 1964, 2:384-391.
    [130] Abolinsh D S. Compliance tensor for an elastic material reinforced in one direction. Polymer Mechanics. 1965, 1(4):28-32.
    [131] Foster J M, Smith C B, Vachon R L. On predicting thermal conductivity of a binary mixture of solids. J Spacecraft and Rockets. 1966, 3:287-296.
    [132] Sun C T, Achenbach J D, Herrmann G. Continuum theory for a laminated medium. Journal of Mechanics. 1968, 35:467-475.
    [133] Drumheller D S, Bedford A. On a continuum theory for a laminated medium. J Appl Mech. 1973, 40:527-534.
    [134] Achenbach J D. A theory of elastic with microstructure for unidirectionally reinforced composites. New York. 1975.
    [135] Aboudi J. Transient waves in composite materials. Wave Motion. 1987, 9:141-156.
    [136] Aboudi J, Pindera M J, Arnold S M. Higher-order theory for periodic multiphase materials with inelastic phase. NASA. 2002, 211-469.
    [137] Brett A, Steven M, Aboudi J, et al. Accurate micro/macro field simulation for composites subject to fiber-matrix debonding using HFGMC. 15th ASCE Engineering Mechanics Conference. Columbia University. New York. 2002.
    [138] Clements B E, Johnson J N. Stress waves in composites materials. Phys Review. 1996, 54:6876-6888.
    [139]徐明利.用元胞法研究碳酚醛的本构关系及应力波传播.博士论文.国防科学技术大学.2003.
    [140]徐明利,张若棋,张光莹.用元胞法研究层合材料中的应力波.高压物理学报.2000,14(3):182-188.
    [141]徐明利,张若棋,张光莹.元胞法模拟非线性弹性层合材料中的应力波.国防科技大学学报.2002,24(5):99-104.
    [142] Romain J P, Jacquesson J. Behavior of Aluminum-Copper composites under shock loading. Revuede physique applique, 1973, 157-163.
    [143] Wilkins M L. Use of artificial viscosity in multidimensional fluid dynamic calculations. J Comp Phys. 1980, 36:281-288.
    [144] Evans, R. D. The atomic nucleus, McGraw-Hill, 1955.
    [145] W.J.Veigele, E.Briggs, J.Bates, et al., X-ray cross section complication from 0.1keV to 1Mev, Input Data and Supplemental Results, Vol.II, Revision 1, DNA2433F, 1971.
    [146]况蕙孙,蒋伯诚,张树发编著.计算物理引论.长沙:湖南科学技术出版社.1987.
    [147]彭常贤,刘晋等.强脉冲X光辐照硬铝靶产生喷射冲量的研究.强激光与粒子束.1998,10(3) :383-386.
    [148]王懋礼.X射线对结构作用的有关问题.成都:成都科技大学出版社.1998.
    [149]邱爱慈、张嘉生等.用于模拟X射线热-力学效应的高功率脉冲离子束研究进展.核技术.2002,25(9):714-719.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700