高能质子辐射效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
宇宙高能质子的单粒子效应(SEE)研究、洁静核能系统(ADS)研究、加速器产氚计划(APT)、强脉冲离子束(IPIB)技术、质子断层扫描等领域都涉及质子辐射效应问题。质子辐射对不同的材料会导致不同的效应,开展质子辐射效应产生的机制研究,掌握其效应规律,对于电子学元器件的抗辐射加固指标提出,以及在其他研究中的方案设计等都有重要意义。本文主要研究了空间飞行器抗辐射加固研究中涉及的高能质子辐射效应问题和强流质子束辐照引起的热—力学效应问题。利用本文编制的程序,着重研究了高能质子的辐射屏蔽问题、单粒子效应中的单粒子翻转SEU、强流质子束辐照材料引起的热—力学效应等问题,从而为以后的相关研究提供了数值模拟手段。论文的主要进展有:
     系统地总结分析了空间辐射环境的构成、特点及其可能产生的辐射效应。宇宙高能质子和铁离子的单粒子效应在航天任务设计中需要重点考虑,空间应用的电子学元器件,必须进行适当的抗辐射加固,在设计低轨道卫星轨道时必须设法避开南大西洋异常区(SAA),航天任务设计中还需要掌握太阳质子事件总体上11年为周期的特性。
     从微观机制出发,系统地对质子辐射与材料的相互作用基本物理过程进行了描述,入射质子与靶材料的作用主要为核散射和电子作用,在高能质子入射的情况下还有核反应的发生。核散射是导致入射质子运动方向改变以及缺陷产生的主要因素,入射质子与核外电子云的作用是高能质子在材料中慢化的主要因素。核反应在宇宙高能质子引起的单粒子效应中有重要影响。
     整理、推导了数值模拟所需要的计算公式及连续慢化近似下的输运方程,自行编制了辐射屏蔽计算程序、单粒子效应计算程序、热—力学效应计算程序,并对所有计算程序进行了对应的验算,计算结果与公开发表的理论或实验结果相符合。为了解决数值计算中核反应参数缺乏的困难,采用核内级联模型,编制了蒙特卡罗方法程序,计算得到了部分核反应截面。编制的这些计算机模拟程序初步构成了质子辐射效应研究的完整软件系统的主要构件。
     对于不同能量的单能质子束,计算比较了核反应对能量沉积的影响,计算结果表明,在低能质子入射情况下(能量在几十 MeV),可以不考虑核反应对质子能量沉积的影响,而在入射质子能量达到几百MeV时,核反应对质子能量沉积的影响不可忽视。采用Weibull函数结合核反应碎片在器件灵敏体积内的能量沉积模型,编制了高能质子单粒子翻转计算程序MCSPSEU,并通过了计算验证,为高能质子SEU研究提供了计算手段。
     采用蒙特卡罗方法计算了强流质子束、电子束辐照在材料中的能量沉积,然后利用一维流体—弹塑性模型计算了铝中的热—力学效应。对于入射能注量为418(J/cm~2)脉冲宽度为0.1μs的矩形脉冲强流质子束,计算结果表明,由于质子束能量不同,引起的初始热激波(0.1μs时刻的热激波)有单峰结构,也有双峰结构,不同能量的强流质子束引起的热激波在传播的过程中都会出现明显的弹性前驱波。
     对于3mm的铝材料,入射粒子束为矩形脉冲(脉宽为0.1μs)的情况下,计算得到了电子束、质子束辐照引起铝材料断裂的能注量阈值与入射电子束、质子束能量的关系曲线,该曲线存在最小值,分别对应6MeV的质子束的34.7J/cm~2和0.35MeV电子束的42.1J/cm~2。
The research on the radiation effects of materials induced by high-energy proton irradiation is of important significance in many scientific fields, such as the single event effects of semiconductor components exposed on space, accelerator-driven nuclear energy generator, tritium production by accelerator, intense pulsed ion beam technology, proton radiography, etc. The effects and mechanisms of irradiation vary vastly for different energies and intensities of proton beams. This paper is mainly concerned with two aspects on the radiation effects of high-energy protons. One involves the radiation hardening technique of electronic devices aboard on spacecraft for extremely high energy protons with low flux existed in the environment of space; the other is related to the thermal-mechanical effects of materials under the exposure of high-energy intense-current proton beams. The radiation shielding and single event upset (SEU) of semiconductor components induced by high-energy low-flux and the thermal-mechanical
    effects of materials resulting from the high-energy intense-current proton irradiation are extensively studied, following conclusions are achieved:
    The characteristics of space radiation environment and the potential radiation effects are investigated systematically. The research uncovered the facts that, in the design of space vehicles, the single event effects induced by high-energy protons and iron ions in space must be taken into account seriously, the proper hardening measures must be taken to protect the electronic devices from disfunction. It is also suggested that, for the low-orbit satellites, the south Atlantic anominal zone should be avoided.
    The microscopic mechanisms of interaction of high-energy proton with material are studied in detail, including nuclear scattering, nuclear reaction and electronic stopping of protons. Nuclear scattering results in the displacement defects in material as well as the deflection of proton from its incident direction; Electronic stopping of protons acts as the most important factor in the degradation of incident proton energy, resulting in electronic effects such as single event upset. Nuclear reaction is the important mechanism for causing single event upset as well, especially for high-energy protons.
    All the formula needed for simulating proton-induced radiation effects are deduced. To bypass the obstacle of lacking nuclear reaction parameters of high-energy protons interacting with Silicon, the author successfully obtained the necessary nuclear reaction cross sections by combining an intranuclear cascade nuclear reaction model with Monte-Carlo simulation, which are applied to the calculation of SEU. The calculated results are compared with those given by-literatures, good agreements are achieved.
    In the calculation of radiation shielding and single event upset (SEU), several mono-energy
    proton beams have been considered. The energy depositions in materiel by protons are calculated
    
    
    and compared for two cases with or without taking proton nuclear reactions into account. The calculated results show that, for low energy protons (energy less than several decade MeV), the contribution of proton nuclear reaction to energy deposition can be neglected; while for high energy protons (energy greater than several hundred MeV), the great difference appears for the above two cases. This gives us an indication that the contribution of proton nuclear reaction to the energy deposition must be concerned for high-energy protons.
    The propagation process in material of thermal shock wave induced by high-energy intense-current pulsed proton beam irradiation is calculated for several different proton energies. In the calculation, the energy deposited in aluminum by proton beams is first calculated by M-C simulation, then a 1-D elastic-plastic fluid model is used to simulate the following thermal shock wave process as a result of thermal-mechanical effect by proton irradiation. The shape of proton is taken as a rectangle pulse with a width of 0.1 microseconds, the en
引文
[1] B.R.T. Forest, Nuclear materials, Material science and technology, Vol.10B, 1994
    [2] Rhonda Karen Corzine, Radiation Damage Calculation for the Production of Tritium Program[D], North Carolina State University, April 1999.
    [3] 丁大钊,赵志祥,罗璋琳等,加速器驱动洁净核能系统,香山科学会议第79次学术会议,北京香山,1997,7:2—5.
    [4] 戴光曦,加速器驱动反应堆的靶实验及核废料嬗变与焚化,核物理动态,2000,17(4):251-254.
    [5] 赵渭江,颜莎,韩宝玺等,强脉冲离子束与新材料工艺,原子核物理评论,1998,15(2):98-101.
    [6] H.A. Davis, B. P. Wood, C. P. Munson, Ion beam and plasma technology development for surface modification at Los Alamos National Laboratory, Material Chemistry and Physics 1998, 54:213-218.
    [7] Edward Hartouni, Protons Reveal the Inside Story, Lawrence Livermore national Laboratory, S&TR Nov, 2000
    [8] 乐小云,赵渭江,颜莎等,强脉冲离子束辐照金属材料表面热力学效应计算,强激光与粒子束,2001,13(4):456-460.
    [9] K. Nordlund, Molecular dynamics simulation of ion ranges in the 1-100KeV energy range, Comp. Mat. Sci. 3,448-455, 1995
    [10] J. F. Ziegler, J. P. Berisack, and Littmark, The stopping and range of ions in matter, pergamon, New Yoyk, 1985
    [11] 王同权等,空间辐射效应的蒙特卡罗模拟,强激光与粒子束,Vol.12,No.3,2000
    [12] Janet Barth, et al, "Core Technology for Space Systems: Space environment", NASA/Goddard Space Center, Nov. 1998
    [13] Tateo, "Space Environment and Effects from ETS-VI Satelite",ESA Symposium on "Environment Moldelling for Space-based Applications", ESTEC,Noordwijik, NL, 18-20, Sept 1996
    [14] 王同权等,空间环境中的辐射效应,国防科技大学学报,Vol.21,No.4(36-39),1999
    [15] R.A.Cliff, "Prediction and Measurement of Radiation Damage to CMOS Devices on Board Spacecraft", IEEE Trans.Nucl.sci,NS-23,1781 (1976)
    [16] 李华,牛胜利,李原春等,中子引起的单粒子翻转截面的 Monte Carlo 模拟计算,计算物理,Vol.14,No.4,333-339,1997
    [17] J. W. Wilson, L. W. Townsend, et al, BRYNTRN: A Baryon Transport Computer Code: Computation Procedures and Database, NASA/TM-4037, 1988
    [18] 曹建中等,“半导体材料的辐射效应”,科学出版社,1993
    [19] 唐本奇、陈雨生等,“卫星抗辐射电子学动态”,抗核加固,Vol.16,No.1,1999
    
    
    [20] J. W. Wilson, et al, HZETRN: Description of a Free Space Ion and Nucleon Transport and Shielding Computer program, NASA Technical Paper 3495, May 1995
    [21] "Beam Experiments Aboard a Rocket (BEAR)Project",final report,Vol.1: Project Summary, LA11737-MS Vol. 1,1990.
    [22] Craig R. Wuest, "Energy Charged Particle Beams for Disablement of Mines," Conf-9505197-2, March 27, 1995.
    [23] J. Sharma and B. C. Beard, "Effects of Particle Beams on Explosives," AD-A256878, Naval Surface Warfare Center, Dec, 1991
    [24] David M. Yeager, "Study in Spurious Sensitivity of Electronics in Space," AFOSR-TR85-0983, Dec 9, 1985.
    [25] 庄奕琪,“微电子器件应用可靠性技术”,电子工业出版社,1996。
    [26] 王莹,马学富,新概念武器原理,兵器工业出版社,1997
    [27] 经福谦,实验物态方程导引,科学出版社,1999
    [28] 周南,乔登江,脉冲束辐照材料动力学,国防工业出版社,2002
    [29] Carl J. Czajkowski, C. Lewis Snead, et al, Investigation of high energy proton effects in aluminum, CONF-970201, BNL-64953, 1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700