高介电无机/有机复合材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
将两种或两种以上的单组分材料进行复合,利用各组分材料的优势可以制备出新型的具有特殊性能的复合材料。在当今新材料的研制和生产过程中,最普遍采用的是颗粒填充聚合物的复合材料,这主要是因为这种复合材料的功能性优越,并且可以满足批量生产过程中的高效率、低成本的要求。例如,高介电常数的柔性聚合物基电介质复合材料在电子工业领域可能有广泛的应用前景,它可以被用来制作具有任意形状的多层片式电容器,因此提高电介质材料的介电常数具有非常重要的意义。
    本工作研究了以聚偏氟乙烯(PVDF)和低密度聚乙烯(LDPE)两种柔性聚合物为基体,以形状和性质各异的无机物作为填料制备的复合材料的介电性能。利用溶胶-凝胶法以及后续处理制备了锂钛共掺杂的氧化镍(LTNO)、锂单独掺杂的氧化镍(LNO),利用化学沉淀法制备了纳米尺寸氧化锌(n-ZnO),对它们分别与聚合物基体形成的复合材料的介电行为进行了研究。结果表明,尽管复合材料的介电常数得到了一定的提高,但对于不同性质的导电或半导性填料而言,材料发生渗流效应的临界值有所不同,材料的介电常数也不同,这些具有高介电常数的电介质材料有望用作柔性多层片式电容器的介质材料。导电或半导性填料的电导率、形状以及结构等对复合材料的介电常数有重要的影响。以导电组分和钛酸钡(BT)组分共同作为填料与PVDF 混合得到的三相复合材料的介电常数最大,这是由于混合效应和渗流效应共同影响的结果。要得到性能优异的电介质复合材料,应合理地选择适当的聚合物基体、无机填料、复合材料的制备工艺以及工艺的参数等。
By integrating two or more materials with complementary properties, newcomposite materials offer the potential to have performance far beyond those of theconstituent materials. There is currently great interest in the technological propertiesof particle-filled polymers, because it is primarily a very efficient in the function andcost-effective process for mass production. For example, the flexibility compositeswith a high dielectric constant have a great future in the electronic industry field. Thecomposites may be used to prepare a shape-bend mutilayer chip capacitors. Therefore,it is very significant for improving the dielectric constant of the composites.
    The dielectric properties of the composites were studied, which composites weremade of polymer matrix, such as PVDF and LDPE, and inorganic fillers with adifferent shapes and properties. LTNO and LNO fillers were prepared using a sol-gelmethod and other process. Nanoscale ZnO was also prepared by means of aco-precipitation. The dielectric behaviors of the composites with these fillers werestudied. The results show that the composites studied have a high dielectric constant.However, the dielectric constant and the percolation threshold of the composites aredifferent due to the effect of the conductors and semiconductors with differentproperties. The new composites studied here with high dielectric constant may befabricated the mutilayer chip capacitors. The conductivity, shape and microstructureof the fillers have an important effect on the dielectric constant of the composites. Thedielectric constants are very high in three phase composites, which are a (conductor+BT) and PVDF. The high dielectric constant can be explained by means of themixture and percolation effect theories. The composites with an excellent propertycan be tailored by choosing a suitable polymer matrix, inorganic fillers, mixtureprocessing and some important parameters in production.
引文
[1] 方俊鑫,殷之文,电介质物理学,科学出版社,1989.
    [2] 陈季丹,刘子玉,电介质物理系,机械工业出版社,1982.
    [3] C. W. Nan, Y. H. Lin, J. H. Huang, Ferroelectrics 280, 153(2002).
    [4] C. W. Nan, Y. H. Lin, Key Engineering Materials 224-226, 111(2002).
    [5] A. Safari, Mater. Rev. Innov. 2, 263(1999).
    [6] C. W. Nan, Y. H. Lin, in Proc. of the 2nd Asian Meeting on Electroceramics (The ceramics Socity of Japan, Japan 2001).
    [7] S. K. Bhattacharya, R. R. Tummala, P. Chahal, G. White, Intern. Symp. Adv. Pack. Mater. 68 (1997).
    [8] Y. Rao, S. Ogitani, P. Kohl, C. P. Wong, J. App. Poly. Sci. 83, 1084~1090(2002).
    [9] S. K .Bhattacharya, R. R.Tummala, Microelectronics Journal 32, 11~19 (2001).
    [10] J. Rector, in Proceedings of the IEEE 48th Electronics Component and Technology Conference, 218(1997).
    [11] 向勇,谢道华,电子元件与材料18,34(1999).
    [12] C. Brosseau, P. Quéffélec, P. Talbot, J. Appl. Phys. 89, 4532(2001).
    [13] E. K. Sichel, Carbon Black-polymer Composites, Marcel Dekker, New York, 1982.
    [14] Q. Zheng, Y. H. Song, G. Wu, X. B. Song, Journal of Polymer Science Part B-Polymer Physics 41, 983(2003).
    [15] S. Etienne, C. Stochil, J. Bessede, J. Alloys Compounds 310, 368 (2000).
    [16] R. B. Thompson, V. V. Ginzburg, M. W. Matsen, A. C. Balazs. Science 292, 2469 (2001).
    [17] W. M. Chen, Y. Yang, L. F. Yan. Mater. Res. Bull. 35, (2000) 807.
    [18] Y. Bai, Z. Y. Cheng, V. Bharti, H. S. Xu, Q. M. Zhang, Appl. Phys. Lett. 76 3804 (2000).
    [19] D. H. Kuo, C. C. Chang, W. K. Wang, B.Y. Lin, J. Eur. Ceram.Soc. 21, 1171 (2001).
    [20] P. Chahal, R. R. Tummala, IEEE Trans. Comp. Pack. Manu. Tech. B21, 184 (1998).
    [21] H. Banno, K. Ogura, Ferroelectrics 95, 111(1989).
    [22] Y. Daben, Ferroelectrics 101, 291(1990).
    [23] J.B. Ngoma, J.Y. Cavaille, J. Paletto, J. Perez, F. Macchi, Ferroelectrics 109, 205(1990).
    [24] D.K. Das-Gupta, Ferroelectrics 118, 165(1991).
    [25] B. Wei, Y. Daben, Ferroelectrics 157, 327(1994).
    [26] H. L .W. Chan, M. C. Cheung, C. L. Choy, Ferroelectrics 224, 113(1999).
    [27] C. Pecharroman, E. B. Fatima, J. F. Bartolome, L. E. Sonia, J. S. Moya, Adv. Mater. 13, 1541(2001).
    [28] E. Segal, R. Tchoudakov, M. Narkis, A. Siegmann, Polymer Engineering and Science 42, 2430 (2002).
    [29] J. F. Feller, I. Linossier, G. Levesque, Polymers for Advanced Technologies 13, 714(2002).
    [30] T. M. Wu, J. C. Cheng, Journal of Applied Polymer Science 88, 1022(2003).
    [31] Zois H, Apekis L, Mamunya YP, Journal of Applied Polymer Science 88, 3013(2003).
    [32] D. A. G. Bruggeman, Ann. Phys. (Leipzig) 24, 636 (1935).
    [33] C.-W. Nan, Prog. Mater. Sci. 37, 1 (1993); and references therein.
    [34] C.-W. Nan, Phys. Rev. B 63, 176201-1 (2001).
    [35] C. Brosseau, F. Boulic, P. Queffelec, C. Bourbigot, Y .L. Mest, J. Loaec, J. App. Phys. 2, 81(1997).
    [36] C. Brosseau, J. Appl. Phys. 91, 3197 (2002).
    [37] C. Pecharroman, Jose S. Moya, Adv. Mater. 12, 294 (2000).
    [38] J. J. Wu and D. S. McLachlan, Phys. Rev. B 56, 1236 (1997)
    [39] J. J. Wu and D. S. McLachlan, Phys. Rev. B 58, 14880 (1998)
    [40] D. M. Yu, J. S. Wu, L. M. Zhou, D. R. Xie, S. Z. Wu. Comp. Sci. . Tech. 60, 499 (2000).
    [41] Q. M. Zhang, H. F. Li, M. Poh, F. Xia, Z. Y. Cheng, H. S. Xu, C. Huang, Nature 419, 284(2002)
    [42] Y. Taguchi et.al, Colloids Surfaces A: Physiochem. Eng. Aspects 153, 401(1999).
    [43] J. R. Li, J. R. Xu, M. Q. Zhang, M. Z. Rong, Macromolecular Materials and Engineering 288, 103(2003).
    [44] J. B. Wu, C. W. Nan, Y. H. Lin, Y. Deng, Physical Review Letters 89, 217601(2002).
    [45] 刘璐琪, 郭志新, 戴黎明, 朱道本,科学通报46, 1590(2001).
    [46] 于建,界面诱导法制备高性能聚烯烃/CaCO3 复合材料,2000 年塑料高新技术成果交流会论文集,295(2000)
    [47] 郭天瑛, 沈宁祥, 唐多强, 盛京, 南开大学学报33, 112(2000).
    [48] V. J. Trtacca, S. Ziaee, J. W. Barlow, Polymer 32, 1401-1413(1991).
    [49] 陈建康, 黄筑平, 白树林, 应用数学和力学21, 679-685(2000).
    [50] R. Schueler, J. Petermann, K. Schulte, H. P. Wentzel, Agglomeration and electrical percolation behavior of carbon black dispersed in epoxy resin, Journal of Applied Polymer Science 63, 1741(1997).
    [51] S. Stupp, P. V. Braun, Science 277, 1242(1997).
    [52] W. M. Chen, Y. Yuan, L. F. Yan, Preparation of organic/inorganic nanocomposites with polyacrylamide hydrogel by Coγirradiation, Materials Research Bulletin 35, 807(2000). 60
    [53] G. M. Tsangarris, G. C. Psarras, N. Kouloumbi, Evalution of the dielectric behavior of particulate composites consisting of a polymeric matrix and a conductive filler, Material Science and Technology 12, 533(1996).
    [54] D. Stauffer, Introduction to Percolation Theory, Taylor and Francis: London, 1985.
    [55] S. Kirkpatrick, Rev. Mod. Phys. 45, 574(1973).
    [56] S. K. Bhattacharya, Metal-Filled Polymers: Properties and Applications; Marcel Dekker: New York, 1986.
    [57] J. Delmonte, Metal/Polymer Composites, Van Nostrant Reinhold: New York, 1990.
    [58] R. Strumpler, J. Appl. Phys. 80, 6091(1996).
    [59] H. Zois, L. Apekis, Y. P. Mamunya, J. Appl. Poly. Sci. 88, 3013(2003).
    [60] Z. M. Dang, L. Z. Fan, S. Yang, C. W. Nan, Chem. Phys. Lett. 369, 95(2003).
    [61] 赵淑金,党智敏,沈洋,范丽珍,南策文,纳米氧化锌的制备及其对复合材料介电性能的影响,稀有金属材料学与工程31,434(2002).
    [62] R. Tchoudakov, O. Breuer, M. Narkis, A. Siegmann, Conductive polymer blends with low carbon black loading: polypropylene/polyamide, Polymer Technology and Science 36, 1336(1996).
    [63] Y. P. Mamunya, Y. V. Muzychenko, P. Pissis, E. V. Lebedev, M. I, Shut Percolation phenomena in polymers containing dispersed iron, Polymer Engineering and Science 42, 90(2002).
    [64] M. Q. Zhang, G. Yu, H. M. Zeng, H. B. Zhang, Y. H, Hou. Two-step percolation in polymer blends filled with carbon black, Macromolecules 31, 6724(1998).
    [65] G. C. Psarras, E. Manolakaki, G. M. Tsangarris, Electrical relaxations in polymeric particulate composites of epoxy resin and metal particles, Composites: Part A 33, 375(2001).
    [66] A. E. Ghany S, A. E. Salam MH, G. M. Nasr, Study of dielectric properties of particulate blends, Journal of Applied Polymer and Science 77, 1816(2000).
    [67] E. P. Mamunya, V. V. Davidenko, E. V. Lebedev, Poly. Comp. 16, 319(1995).
    [68] H. S. Gokturk, T. J. Fishke, D. M. Kalyon, IEEE Trans. Magn. 29, 4170(1993).
    [69] H. S. Nalwa, Ferroelectric Polymer, Marcel Dekker, New York, 1995.
    [70] T. Takada, Space charge measurement in solid dielectric materials by pulsed electroacoustic method, 西安交通大学电气工程学院出版, 1994.
    [71] 朱建平, 寿文德, 李佳琦,聚偏氟乙烯超声传感器测量孕鼠宫内瞬态声参数的实验研究,中华超声影像学杂志10,180(2001).
    [72] 温殿英, 林其文, 冲击波压缩PVDF 膜的电响应研究, 高压物理学报14, 291(2000).
    [73] 彭常贤, 林鹏, 谭红梅, 唐玉志, 刘晓玲, PVDF 在电子束辐射材料产生的热激波测量中的应用, 高压物理学报16, 7(2002).
    [74] U. Klinge, B. Klosterhalfen, K. Junge, V. Schumpelick, PVDF as a new polymer for the construction of surgical mechs, Biomaterials 23, 3487(2002).
    [75] G. Laroche, Y. Marois, R. Guidoin, PVDF as a biomaterial: from polymeric raw material to monofilament vascular suture, J. Biomed. Mater. Res. 29, 1525(1995).
    [76] P. N. Suzana, Ultra filtration membranes from PVDF/PMMA blend, J. Member. Sci. 73, 25(1992).
    [77] K. H. Oshina, the use of a microporous PVDF membrane filter to separate contaminating viral particles from biologically important proteins, Biologicals 24, 137(1196).
    [78] 陆茵, 陈欢林, 李伯耿, 制膜条件对PVDF 膜形态结构的影响, 功能高分子学报15, 171(2002).
    [79] H. C. Shiao, D. Chua, H. P. Lin, S. Slane, M. Salomon, Low temperature electrolytes for Li-ion PVDF cells, Journal of Power Sources 87, 167(2000).
    [80] 杨书廷, 陈红军, 贾俊华, 尹艳红, PVDF 为基的聚合物固态电解质离子导电膜的结构与性能研究, 功能材料33, 185(2002).
    [81] 张翠芬, 高鹏, 曾石华, 陈玲, 聚偏氟乙烯对锂离子蓄电池性能的影响, 电源技术26, 201(2002).
    [82] 杨书廷,陈红军, 贾俊华, 尹艳红, 多孔状聚合物固体电解质膜的制备与性能, 电源技术26, 206(2002).
    [83] Z.-M. Dang, Y. Shen, C.-W. Nan, Appl. Phys. Lett. 81, 4814(2002).
    [84] G. Boiteux, J. Fournier, D. Issotier, G. Seytre, G. Marichy, Synth. Metal 102, 1234(1999).
    [85] T. G. Castner, N. K. Lee, G. S. Cielosky, G. L. Salinger, Phys. Rev. Lett. 34, 1627(1975).
    [86] A. L. Efros, B. I.Shklovskii, Phys.Status Solidi B 76, 475(1976).
    [87] D. J. Bergman, Y. Imry, Phys. Rev. Lett. 39, 1222(1977).
    [88] D. M. Grannan, J. C. Garland, D. B. Tanner, Phys. Rev. Lett. 46, 375(1981).
    [89] D. J. Bergman, Phys. Rev. Lett. 44, 1285(1980).
    [90] Y. Meir, Phys. Rev. Lett. 83 , 3506(1999).
    [91] C. Chiteme, D.S. Mclachlan, Physica B 279, 69(2000).
    [92] W. Jia, R. Tchoudakov, R. Joseph, M. Narkis, A. Siegmann, The conductivity behavior of multi-component epoxy, metal particle, carbon black, carbon fibril composites, Journal of Applied Polymer Science 85, 1706(2002).
    [93] L. Flandin, J. Y. Cavaille, Y. Brechet, R. Dendievel, Characterization of the damage in nanocomposite materials by ac electrical properties: experiment and simulation, Journal of
     Materials Science 34, 1753(1999).
    [94] L. Flandin, T. Prasse, R. Schueler, K. Schulte, W. Bauhofer, J. Y. Cavaille, Anomalous percolation transition in carbon-black-epoxy composite materials, Physical Review B 59, 14349(1999).
    [95] S. Chatterjee, Z. B. Yu, V. D. Krstic, A. Smovzh, Effects of sintering temperature and annealing in N-2 atmosphere on the dielectric properties of BaTiO3 based X7R dielectric materials, Canadian Metallurgical Quarterly 42, 141(2003).
    [96] C. Marrett, A. Moulart, J. Colton, A. Tcharkhtchi, Flexible polymer composite electromagnetic crystals, Polymer Engineering and Science 43, 822(2003).
    [97] R. Ueyama, K. Koumoto, K. Yubuta, T. Fujii, Influence of BaTiO3 nano particle on paste and sintering properties of Ni internal electrode films by MLCC, Journal of The Ceramic Society of Japan 111, 282(2003).
    [98] K. M. Kang, Y. G. Jung, U. Paik, J. H. Kim, Pore evolution and microstructure with heating profile in BaTiO3-based Ni-MLCCs with Y5V specification, Materials Research Bulletin 38, 555(2003).
    [99] S. G .Lee, U. Paik, Y. I. Shin, J. W. Kim, Y. G. Jung, Control of residual stresses with post process in BaTiO3-based Ni-MLCCs, Materials & Design 24, 169(2003).
    [100] X. Wang, B. I. Lee, M. Z. Hu, E. A. Payzant, D. A. Blom, Synthesis of nanocrystalline BaTiO3 by solvent refluxing method, Journal of Materials Science Letters 22, 557(2003).
    [101] H. Zengin, W. S. Zhou, J. Y. Jin, D. W. Smith, Advanced Materials 14, 1480-1483(2003).
    [102] C. A. Cooper, R. J. Yong, M. Halsall, Composites: Parts A 32, 401(2001).
    [103] H. S. Woo, R. Czerw, S. Webster, D. L. Carroll, J. W. Park, J. H. Lee, Synth. Metal 116, 369(2001).
    [104] Y. Sun, S. R. Wilson, D. L. Schuster, J. Am. Chem. Soc. 123, 5348(2001).
    [105] C. H. Song, B. Berry, T. Viswanathan, W. Zhao, Polym. Prepr. 41, 1102(2000).
    [106] R. Taipalus, T. Harmia, K. Friednch, Appl. Comps. Mater. 6, 167(1999).
    [107] R. Taipalus, T. Harmia, K. Friednch, Polym. Comps. 21, 39(2000).
    [108] A. Dani, A. A. Ogale. Comp. Sci. Tech. 56, 911(1996).
    [109] M. Weber, M. Kamal, Polym. Compos. 18, 726(1997).
    [110] X. C. Luo, D. D. L. Chung, Carbon-fiber/polymer-matrix composites as capacitor, Comps. Sci. Tech. 61, 885 (2001).
    [111] R. Taipalus, T. Harmia, M. G. Zhang, K. Friednch, Comps. Sci. Tech. 61, 801 (2001).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700