强流脉冲离子束与靶材相互作用的数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
强流脉冲离子束因其自身的诸多优越性,在材料领域里越来越受到重视。不同能量密度的束流因与靶作用效果不同而用来进行不同的研究目的,较低的可以直接用于改性,较高时既可以用来改性又可以用来沉积薄膜及制备纳米粉。如何针对不同的靶材控制工艺参数达到实现不同的目的,需要从理论上进行指导,不能仅凭经验确定,因而建立有效的数值方法来解决这一非线性问题是非常必要的。
     紧密结合我们三束材料改性国家重点实验室从俄罗斯引进的TEMP型强流脉冲离子束(IPIB)加速器,根据拟合实测磁绝缘二极管(MID)电压波形以及采用法拉第筒检测的离子流密度建立了相应的物理模型,研究了IPIB辐照靶材过程中二次电子发射问题,提出了混合离子束发射二次电子模型,对IPIB辐照期间产生的二次电子的演化及其形成的电场的演化等问题进行了研究。发现对喷发等离子体起定向及加速作用;
     研究了辐照过程中热力学效应,建立了烧蚀过程的一维、二维模型,对Ti靶的烧蚀过程进行了数值计算,给出了烧蚀斑痕的时空演化过程。烧蚀过程中,靶物质被层层剥离,剥离速度为10m/s量级,远远小于等离子体的喷发速度。并且烧蚀过程中斑痕由碗状变化到井状,影响等离子体的喷发方向。同时发现在所研究的能量密度范围内,接近脉冲结束时,烧蚀深度和宽度不再增加,即等离子体喷发是在脉冲时间内完成的。还得到了脉冲处理过程中靶材内部的温度场分布及其演化规律,计算了脉冲期间的升温速率(-10~9K/s)。模拟研究了MID阳极采用聚乙烯涂层和采用石墨时由于束流中不同种类离子份额不同而产生的不同效应。碳离子入射靶材射程较短,而质子相对较长,因而MID采用石墨阳极时束流能量主要沉积在表层,而采用聚乙烯涂层时能量沉积相对较深。
     研究了辐照过程中Al靶内激波的传播情况,建立了一维激波传播模型。计算了能量密度为5J/cm~2和10J/cm~2时,Al靶内的压力的空间演化。脉冲刚刚结束时压力衰减较快,随后在靶内衰减变慢。但产生的等离子体向真空中喷发时压力衰减较快,等离子体几乎同时到达空间某处。
     根据能量和动量守恒原理,建立了等离子体向不同压强背景气体中喷发的二维气体动力学模型,计算了背景气体压强为真空、10~(-6)大气压、10~(-4)大气压、10~(-3)大气压、10~(-2)大气压及大气压时产生的等离子体的喷发情形。当背景气压为10~(-6)大气压时,可以将其视为真空,10~(-4)大气压时,背景气体空间存在扰动;随着背景气压升高,等离子体移动受到限制,压力越大,移动速度越小,移动距离越短。特别当背景气压为大气压强的1/1000时,背景气体中产生激波,等离子体羽形成了“雪犁”状,分为近表面的慢速移
Because of being have many advantages for intense pulsed ion beam, it has been pay more attention in the field of materials. IPIB has been used for different motivation for the different effects of the interaction between target and beams with different energy densities. For lower energy density of IPIB, It can be directly used to modify materials; for higher one, it can be used to modify the target and also can be used to deposit film, and to produce nano-size powder. How to control the working references to realize the results for the different target? It needs the guidance theoretically. It is not enough to decide what the parameters of the IPIB should be used by experience. Therefore it is necessary to establish the executing method numerically to deal with the nonlinear problem.
    From the beginning of create the models according to the fitting results of the waves of magnetically insulated ion diode of the TEMP type accelerator imported from Russia and the ion current density detected by Faraday cup at the focus region, many problems have been discussed, such as the effects of SE emission problems during the irradiation period of target by IPIB, and established a model dealing with mixing ions in the beams; and obtained the evolution profiles of SE and electric field during the beam pulse, found that the field take the role of accelerating and orientation the ions in the beam;
    The thermal and dynamic effects have been discussed during the irradiation period, and established the one-dimensional and two-dimensional models to describe the ablation process; and calculated the ablation process deeply, obtained the temporal and spatial evolution process of ablation of target. During the ablation of target, target material ablated layer by layer, the ablation velocity reached about 10m/s, it is far less than the ejection speed of the plasma formed by IPIB irradiation target. During the ablation process the scar changed from bowl to well, certainly it affects the ejection direction of plasma. It has been found that among the researching energy densities, the ablation depth and width will not increase while the ablation time near the end of a pulse, it means that the ejection of plasma will finish at the end of a pulse. The temporal and spatial evolution of temperature field of target has been obtained during the IPIB irradiation, the temperature rising rate reaches -10~9 K/s during a pulse.
    Different effects for impacting on target of IPIB consists of different ratio of ions because of using polyethylene coating or graphite anode of MID of the accelerator have been researched; the range of carbon ion is shorter and the range of proton is longer, therefore the
引文
[1] Humphries S, Lee J J and Sudan R N. Generation of intense pulsed ion beams. Appl. Phys. Lett. ,1974, 25(1): 20-22
    [2] Young F C, Golden J, and Kapetanakos C A. Diagnostics for intense pulsed ion beams. Rev. Sci. Instrum., 1977,48(4):432-443
    [3] Johnson D J, Burns J T and Quintenz J P et al. Anode plasma behavior in a magnetically insulated ion diode. J Appl. Phys. 1981,52(1):168-174
    [4] Wood B P, Henins I, Reass W A et al. Large-scale implantation and deposition research at Los Alamos National Laboratory. Nucl. Instrum. Method Phys. Res. B, 1995, 96: 429-434
    [5] Pogrebnjak A D, Shablya V T, Sviridenko N V et al. Study of deformation states in metals exposed to intense-pulsed-ion beams(IPIB). surface and coating technology , 1999, 111: 46-50
    [6] Shulov V A, Nochovnaya N A. Crater formation on the surface metals and alloys during high power ion beam processing. Nucl. Instrum. Method Phys. Res. B, 1999, 148: 154-158.
    [7] Davis H A, Johnston G P, Olson J C et al. Characterization and modeling of the ablation plumes formed by intense-pulsed ion beam impact on solid targets. J. Appl. Phys. , 1999, 85(2):713-721.
    [8] Rej D J, Davis H A, Remnev G E et al. Materials processing with intense pulsed ion beams. J. Vac. Sci. Technol. A, 1997, 15(3): 1089-1097
    [9] Meli C A, Grabowski K S, Hinshelwood D D et al. Film deposion and surface modification using intense pulsed ion beams. J. Vac. Sci. Technol.A, 1995, 13(3): 1182-1187.
    [10] Shulov V A, Nochovnaya N A, Remnev G E et al. Modification of the properties of aircraft engine compressor blades by uninterrupted and pulsed-ion beams. Surface and coating technology, 1997, 96:39-44.
    [11] Remnev G E, Isakov I F, Opekounov et al. High-power ion beam sources for industrial application. Surface and coating technology, 1997, 96(2):103-109.
    [12] Korotaev A D, Ovchinnikov S V, Pochivalov Y I et al. Structure-phase states of the metal surface and undersurface layers after the treatment by powerful ion beams. surface and coating technology, 1998, 105: 84-90
    [13] Remnev G E, Isakov I F, Opekounov et al. High intensity pulsed ion beam sources and their industrial application, surface and coating technology, 1999, 114: 206-212
    [14] Korotaev A D, Tyumentsev A N, Pinzhin Y P et al. Features of the morphology, defect substructure, and phase composition of metal and alloy surface upon high-power ion beam irradiation, surface and coating technology, 2004, 185: 38-49[15] struts V K, Zakoutaev A N, Matvienko V M et al. Formation of protective coatings on metals by intense pulsed ion beam, surface and coating technology, 2002, 158-159: 494-497.
    [16] Akamatsu H, Yatsuzuka M. Simulation of surface temperature of metals irradiated by intense pulsed electron, ion and laser beams. Surf ace and coating technology, 2003, 169-170: 219-222.
    [17] Jiang W H, IDE K, KITAYAMA S et al. Pulsed Ion-Beam for Thin-Film Deposition. Jpn. J. Appl. Phys., 2001, 40: 1026-1029.
    [18] SUZUKI T, KISHIMA M, Jiang W H et al. Synthesis of Ti-Al Intermetallic Compound Films by Intense Pulsed Ion Beam Evaporation. Jpn. J. Appl. Phys., 2001, 40: 1042-1044
    [19] KITAJIMA K, SUZUKI T, Jiang W H et al. Preperation of B_4C Thin Film by Intense Pulsed Ion-Beam Evaporation. Jpn. J. Appl. Phys. , 2001, 40: 1030-1034.
    [20] SENGIKU Michinori, ODA Yoshikane, Jiang W H et al. Preparation of SrAl_2O_4: Eu Phosphor Thin Films by Intense Pulsed Ion-Beam Evaporation. Jpn. J. Appl. Phys. , 2001, 40: 1035-1037.
    [21] SUZUKI Tsuneo, SHIOIRI Kenji, Jiang W H et al. Preperation and Characterization of C-N-H-O Thin Film by Ion-Beam Evaporation. Jpn. J. Appl. Phys., 40: 1045-1048.
    [22] Suematsu H, Kitajima K, Suzuki T et al. Preparation of polycrystalline boron carbide thin films at room temperature by pulsed ion-beam evaporation. Appl. Phys. Lett., 2002, 80(7): 1153-1155.
    [23] SONEGAWA Tomihiro, ARAKAKI Toshiki, Maehama et al. Ferroelectric Thin Films Prepared by Backside Pulsed Ion-Beam Evaporation. Jpn. J. Appl. Phys., 2001, 40: 1049-1051.
    [24] KATO Keizo, OGURA Yukihiro, SENGIKU Michinori et al. Luminescent Properties of SrAl_2O_4:Eu Thin Films Deposited by Intense Pulsed Ion-Beam Evaporation. Jpn. J. Appl.Phys., 2001, 40: 1038-1041.
    [25] YATSUI Kiyoshi, SHINKAI Hiroyuki, KASHINE Kenji et al. Foil Acceleration by Intense Pulsed Ion Beam Alation Plasma. Jpn. J. Appl. Phys., 2001, 40:955-959.
    [26] Kang X D, Masugata K, YATSUI K. Characteristics of Ablation Plasma Produced by Intense, Pulsed, Ion Beam. Jpn. J. Appl.Phys. , 1994, 33: 1155-1160.
    [27] Yatsui K, Kang X D, Sonegawa T et al. Applications of intense pulsed ion beam to material science. Phys. Plasmas, 1994, 1 (5): 1730-1737.
    [28] Biller W, Heyden D, and Muller D et al. Modification of steel and aluminium by pulsed energetic ion beams. Surf. Coat. Technol., 1999,116-119:537-542
    [29] Piekoszewski J, Werner Z, and Szymczyk W. Application of high intensity pulsed ion and plasma beams in modification of materials. Vacuum, 2001, 63:475-481
    [30] Kucinski J, Langner J, Piekoszewski J. Glazing of ceramic surfaces with high-intensity pulsed ion beams. Surf. Coat. Technol., 1996, 84:329-333[31] 周南,牛胜利,丁升等.强脉冲离子束辐照热-力学效应研究[J].强激光与粒子束.2000,12(2):249-253.
    [32] 石磊,何小平,张嘉生,等.一台小型强流脉冲离子加速器[J].强激光与粒子束.2000,12(3):382-384.
    [33] 杨海亮,邱爱慈,张嘉生等.“闪光二号”加速器HPIB的产生及应用初步结果.物理学报.2004,53(2):406-411.
    [34] 邱爱慈,张嘉生,彭建昌,等.用于模拟X射线热-力学效应的高功率脉冲离子束研究近展.核技术.2003,26(10):776-782
    [35] Zhao W J, Remnev G E, Yan S, et al. Intense pulsed ion beam sources for industrial applications. Rev. Sci. Instrum., 2000, 71(2): 1045-1048.
    [36] Cai C G, Zhao W J, Yan S, et al. An investigation into the mechanism of pseudospark producing metal ion beams. Rev. Sci. Instrum., 2000, 71(2): 675-.
    [37] Zhao W J, Remnev G E, Yan S, et al. Intense pulsed ion beam sources for industrial applications. Rev. Sci. Instrum. 2000, 71(2): 1045-1048.
    [38] 乐小云,赵渭江,颜莎,等.强脉冲离子束辐照金属材料表面热力学效应计算[J].强激光与粒子束.2001,13(4):456-460.
    [39] Le X Y, Zhao W J, Yan S et al. The thermodynamical process in metal surface due to the irradiation of intense pulsed ion beam. Surf. Coating technol. 2002, 158-159: 14-20.
    [40] Le X Y, Zhao W J, Yan S et al. Numerical analysis of thermodynamical process in the thin metal samples irradiated by IPIB. Current Applied Physics, 2001, 1: 219-223.
    [41] 梅显秀,徐军,马腾才.利用强流脉冲离子束技术在室温下沉积类金刚石薄膜研究.物理学报.2002,51(8):1875-06.
    [42] Zhu X P, Lei M K, Dong Z H et al. Characterization of a high-intensity unipolar-mode pulsed ion source with improved magnetically insulated diode. Revi. Sci. Instrum. 2003, 74(1): 47-52.
    [43] Zhu X P, Lei M K, Ma T C. Characterization of a high-intensity unipolar-mode pulsed ion source with improved magnetically insulated diode. Rev. Sci. Instrum. 2002, 73(4): 1728-1733.
    [44] Zhu X P, Lei M K, Ma T C. Surface morphology of titanium irradiated by high-intensity pulsed ion beam. Nucl. Instrum. Method Phys. Res. B, 2003, 211: 69-79.
    [45] 梅显秀,马腾才.衬底温度对强流脉冲离子束烧蚀沉积类金刚石薄膜化学结构的影响.高等学校化学学报.2003,24(7):1262-1265.
    [46] 梅显秀,马腾才,王秀敏等.强流脉冲离子束辐照W6Mo5Cr4V2高速钢表面改型研究.金属学报.2003,39(9):926-931.[47] Liu Z J, Le X Y, Yan S et al. Irradiation effects of intense pulsed ion beam on the surface of Ni_3Al alloy. Appl. Surf. Sci., 2005, 246: 102-107.
    [48] Wener Z, Piekoszewski J, Szymczyk W. Generation of high-intensity pulsed ion and plasma beams for material processing. Vacuum. 2001, 63: 701-708.
    [49] 赵渭江,颜莎,乐小云等.强脉冲离子注入中的脉冲能量效应研究.核技术,2000,23(10):689-696.
    [50] Hashimoto Y, Yatsuzuka M. Study on smoothing of titanium surface by intense pulsed ion beam irradiation. Vacuum, 2000, 59: 313-320.
    [51] Shulov V A, Nochovnaya N A, Remnev G E et al. High-power ion beam treatment application for properties modification of refractory alloys, surface and coating technology, 1998, 99: 74-81
    [52] Sonegawa T, Grigoriu C, Masugata K et al. Preparation of BaTiO_3 thin films by backside pulsed ion-beam evaporation. Appl. Phys. Left., 1996, 69(15): 2193-2195.
    [53] Zhu Q F, Jiang W H, Yatsui Kiyoshi. Numerical and experimental studies on synthesis of ultrafile nanosize powders of AIN by ion beam evaporation. J. Appl. Phys., 1999, 86(9): 5279-5285.
    [54] Yatsui K, Grigoriu C, Kubo H et al. Synthesis of nanosize powder of alumina by ablation plasma produced by intense pulsed light-ion beam. Appl. Phys, Lett. 1995, 67(9): 1214-1216
    [55] 周南,乔登江著.脉冲束辐照材料动力学.北京:国防工业出版社,2002:520-526
    [56] 周南,丁升.电子束辐照效应的数值模拟.计算物理.1995,12(3):301-308.
    [57] Dong C, Wu A, Hao S et al. Surface treatment by high current pulsed electron beam. Surf. Coat. Technol. 2003, 163-164: 620-624
    [58] 秦颖,吴爱民,邹建新等.强流脉冲电子束表面改性的物理模型及数值模拟[J].强激光与粒子束.2003,15(7):701-704.
    [59] 秦颖,王晓钢,董闯等.强流脉冲电子束诱发温度场及表面熔坑的形成.物理学报.2003,52(12):3043-3048.
    [60] 秦颖,吴爱民,邹建新等.强流脉冲电子束轰击产生表面熔坑的数值模拟研究.材料热处理学报.2003,24(1):85-89.
    [61] 邹建新,秦颖,吴爱民等.强流脉冲电子束纯铝表面改性过程的热力学模拟.核技术,2004,27(7):519-523.
    [62] Ho J R, Grigoropoulos C P, Humphrey J A C Gas dynamics and radiation heat transfer in the vapor plume produced by pulsed laser irradiation of aluminum J. Appl. Phys 1996, 79(9): 7205-7215
    [63] Singh R K, Holland O W, and Narayan J. Theoretical model for deposition of superconducting thin films using pulsed laser evaporation technique. J Appl. Phys. 1990, 68(1): 233-247
    [64] Singh R K, and Narayan J. Pulsed-laser evaporation technique for deposition of thin films: Physics and??theoretical rnodel. Phys. Rev. B. 1990, 41(13): 8843-8859
    [65] Rej D J, Davis H A, and Nastasi M Net el. Surface modification of AISI-4620 steel with intense pulsed ion beams. Nucl. Instrum. Method Phys. Res. B. 1997, 127-128: 987-991
    [66] Wood B P, Perry A J, and Betteker L J et el. Cratering behavior in single- and poly-crystalline copper irradiated by an intense pulsed ion beam. Surf. Coat. Technol. 1998, 108-109: 171-176
    [67] Sharkeev Y P, Kozlov E V, Didenko A N. Defect structures in metals exposed to irradiation of different nature. Surface and coating technology, 1997, 96 :95-102
    [68] Shulov V K, Nochovnaya N A, Remnev G E. Zermomechanical processing of titanium alloys by high power pulsed ion beam. Mat. Science engineer A, 1998, 243: 290-293
    [69] Shulov V A, Nochovnaya N A, Remnev G E. The effect of crater creation on the fatigue strength and corrosion resistance of steels and titanium alloys irradiated by high-power pulsed ion beams, surface and coating technology, 2002, 158-159: 488-493.
    [70] Petrov A V, Ryabchikov A I, Stepanov I B et al. Research on materials surface layers element structure formation under combined treatment with pulsed ion beams of different powers, surface and coating technology, 2002, 158-159: 170-173
    [71] Petrov A V, Ryabchikov A I, Stepanov I B et al. High current and high intensity pulsed ion-beamsources for combined treatment of materials. Rev. sci. Instrum., 2000, 71: 783-785
    [72] Akamatsu H, Ikeda T, and Azuma K et al. Surface treatment of steel by short pulsed injection of high-power ion beam. Surf. Coating Zechnol. 2001, 136: 269-272
    [73] Suzuki T, Saikusa T, and Suematu H. Preparation of TiFe thin films by intense pulsed ion-beam evaporation. Surf. Coat. Technol.. 2003, 159-170: 491-494
    [74] Jiang W, Hashimoto N, and Shinkai H et el. Characteristics of ablation plasma produced by pulsed ion beam interaction with targets and applications to materials science. Nucl. Instrum. Methods Res. A. 1998, 415: 533-538
    [75] Yang S C, Suematsu H and Jiang W H etal. Preparation of Polycrystalline Silicon Thin Films by Pulsed Ion-Beam Evaporation. IEEE Trans. Plasma Sci. 2002, 30(5): 1816-1819
    [76] Akamatsu H, Tanaka H, Yamanishi Z et el. Increase of Si solution rate into Al matrix by repeated irradiation of intense pulsed ion beam. Vacuum, 2002, 65: 563-569.
    [77] Hen B X, YaH S, and Le X Y et el. The phase and microstructure change in 45# steel irradiated by intense pulsed ion beams. Surf. Coating Technol. 2000, 128-129: 387-393
    [78] 颜莎,乐小云,赵渭江,等.强脉冲离子束在金属中引起的应力波效应.核技术.2003,26(3):217-220
    [79] Le X Y, Yan S, Zhao W J et el. Computer simulation of thermal-mechanical effects of high intensity pulsed ion beams on a metal surface. Surf. Coating Technol., 2000, 128-129: 381-386.[80] 向伟,赵渭江,韩宝玺,等.脉冲高功率离子二极管的动力学模拟.强激光与粒子束.2003,15(3):305-309
    [81] Xiang W, Zhao W J, Le X Y et al. Particle-in-cell simulations of a planar magnetically insulated ion diode for surface modification of materials. Surf. Coat. Technol.. 2002, 158-159: 242-246
    [82] 向伟,赵渭江,颜莎等.磁场对磁绝缘离子二极管性能的影响.原子能科学技术.2003,37(3)203-207
    [83] Yan S, Le X Y, Zhao W J et al. A possible thermodynamic mechanism of craters formation on metal surfaces caused by intense pulsed ion beams. Surf. Coat. Technol.. 2005, 193: 69-74
    [84] Zhu X P, Lei M K, Dong Z H etal. Crater formation on the surface of titanium irradiated by a high-intensity pulsed ion beam. Surf. Coating Technol., 2003, 173: 105-110.
    [85] Mei X X, Hao S Z, Ma T C et al. Microstructure and wear resistance of high-speed steel treated with intense pulsed ion beam. Nucl. Instrum. Meth. Phys. Res. B. 2005, 239: 152-158
    [86] Zhang J L, Tan C, Wang W C et al. A spectroscopic scheme to measure the expansion velocity of ablation plasmas formed by high intensive pulsed ion beam. Vacuum, 2004, 73: 673-679.
    [87]. Ziegler. J. F. Handbook of Ion Implantation Technology. New York: North- Holland, 1992: 42.
    [88] 武恭、姚良均.铝及铝合金材料手册.北京:科学出版社,1994:3.
    [89] Wu D, Gong Y, Liu J Y et al. Numerical Study on Effects of Secondary Electrons Generated by TEMP Ⅱ Accelerator Vacuum. DOI: 10.1016/j.vacuum. 2006.01.018
    [90] Thomton T A, Anno J N. Secondary electron emission from 0.5-2.5MeV protonsand deuterons. J. Appl. Phys., 1997, 48: 1718-1719.
    [91] Doyle B L, Walsh D S, Renfrow S N, et al. Nulear emission microscopies. Nucl. Instr. And Meth. Phys. Res. B. 2001, 181: 199-210.
    [92] Rothord H, Kroneberger K, Clouvas A, et al. Secondary-electron yields from thin foils: A possible probe fro the electronic stopping power of heavy ions. Phys. Review A. 1990, 41(5): 2521-2535.
    [93] Stoltz P H, Furman M A, Vay J L, et al. Numerical simulation of generation of secondary electrons in the High Current Experiment. PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS. 2003, 6: 054701-6.
    [94] Wu D, Gong Y, Liu J Y et al. Numerical Study on Effects of Secondary Electrons Generated by TEMP Ⅱ Accelerator ISAPS' 05.2005, 313-318
    [95] Asmussen J, Grotjohn A, Mak P, et al. The Design and Application of Electron Cyclotron Resonance Discharges. IEEE Transaction on plasma science, 1997, 25: 1196-1220.
    [96] 吴迪,宫野,刘金远等.强流脉冲离子束辐照靶材烧蚀效应二维数值研究.物理学报.2006,55(1):0398-05.[97] Warren M R, James P H, Ejup N G 1985 Handbook of Heat Transfer Fundamentals second ed. MeGraw Hill.
    [98] Wu D, Gong Y, Liu J Y et al. Two-Dimensional Numerical Research on Effects of Titanium Target Bombarded by TEMP Ⅱ Accelerator Chinese physics.
    [99] 况蕙孙,蒋伯诚,张树发编著.计算物理引论.长沙:湖南科学技术出版社,1987:212-213.
    [100] 吴迪,宫野,刘金远等.强流脉冲离子束辐照靶及其喷发的数值研究.物理学报.2006,55(7):0398-05.
    [101] Mora P, Pellat R. Self-similar expansion of a plasma into a vacuum. Phys. Fluids 1979, 22(12): 2300-2304
    [102] Mora P. Plasma Expansion into a Vacuum. Phys. Rev. Lett. 2003, 90(18): 185002-1-4
    [103] Denavit J. Collisionless plasma expansion into a vacuum. Phys. Fluids 1979, 22(7): 1384-1392
    [104] Ellegaard O, Nedelea T, Schou J, Urbassek H MPlume expansion of a laser-induced plasma studied with the particle-in-cell method. Appl. Surf. Sci. 2002, 197-198: 229
    [105] Harilal S S, Bindhu C V, Tillack M Set al. Internal structure and expansion dynamics of laser ablation plumes into ambient gases J Appl. Phys. 2003, 93(5): 2380-2388

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700