脉冲束流辐射热—力学效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文围绕强脉冲X射线和电子束辐射产生的热—力学效应(即材料响应和结构响应),采用实验研究、理论分析和数值计算等方法进行了比较系统全面的研究,主要工作包括以下几个方面:
     (1)总结了能量沉积的计算方法,给出了电子能量沉积的解析计算公式。脉冲束流在材料中的能量沉积,是产生热—力学效应的基础和前提。首先,按照朗伯定理计算了软、硬X射线在新型碳酚醛和玻璃钢中的能量沉积。计算得出:软X射线的沉积峰值高,沉积深度浅;硬X射线的沉积峰值相对要低得多,但是穿透要更深。其次,根据连续慢化理论和单次大碰撞理论,用蒙特卡罗方法计算了电子在物质中的能量沉积,并给出了电子能量沉积的解析计算公式。最后,对一种多层结构在电子束和X射线辐射下的能量沉积特性进行了计算分析,结果表明该多层结构不仅能有效防护X射线的辐射,而且对低能强流电子束辐射也能提供有效防护。
     (2)推导了一种新的辐射自由面格式,采用弹塑性流体动力学模型对X射线和电子束辐射产生的热激波效应和冲量效应进行了数值模拟计算,并给出了一维辐射热激波的峰值衰减解析计算公式。基于Taylor展开,推导出了一种新的高精度的辐射自由面格式,与传统自由面格式相比,在X射线辐射热—力学效应计算中,可以提高计算精度。以冲击Hugoniot方程为基础,根据波传播过程中的不可逆能量损耗,推导出了辐射热激波传播衰减的解析计算公式,利用该公式对材料的热激波衰减行为进行了分析,并与Langley公式进行了计算对比,两者符合较好。对软、硬X射线在材料中的辐射热激波效应进行了计算。软X射线能量沉积较浅,热激波的产生机制主要为表面物质的汽化喷射;硬X射线能量沉积较深,热激波的产生机制主要为热膨胀。对强脉冲X射线辐射Ly-12铝产生的喷射冲量进行了数值计算,并与实验测量结果进行了比较,两者符合较好。
     (3)研制了两套热激波测量系统和两套冲量测量系统,并进行了辐射热激波效应和喷射冲量效应的实验研究,得到了一些有价值的数据。大尺寸的石英压电晶体热激波探头,可满足10mm左右厚度的复合材料热激波的测量要求。PVDF热激波探头可测量辐射热激波在传播路径上的衰减。红外通光冲量探头适用于电子束和软X射线的喷射冲量测量。对Ly-12铝的电子束辐射实验表明,对于靶上平均能通量为187~196J/cm~2,厚为2~5mm的Ly-12铝靶,实测热激波平均应力峰值为1.65~0.97GPa。在电子束能通量约为570~970J/cm~2,对厚度为10mm的三维编织复合材料,其热激波应力峰值为0.15~0.39GPa左右,只有相同条件下Ly-12铝的6%左右。
     实验得出电子束辐射三维编织复合材料产生冲量的能通量阈值为77J/cm~2。在电子束能通量F为101~297J/cm~2范围内,三维编织复合材料的喷射冲量耦合系数β为0.20~0.62Pa·s/(J/cm~2)。在F为181~312J/cm~2范围内,Ly-12铝的β为1.45~1.69Pa·s/(J/cm~2)。三维编织复合材料的β值只有Ly—12铝的1/3左右,这说明三维编织材料具有良好的抗辐射性能。
     软X射线冲量实验得出:在平均能量为0.30keV、平均半高宽为43ns的脉冲软X射线作用下,对白漆A、灰漆B、玻璃钢和Ly-12铝,在平均能通量分别为147J/cm~2、135J/cm~2、123J/cm~2和137J/cm~2时,它们的冲量耦合系数分别为0.42、0.45、0.75和0.54Pa.s/(J.cm~(-2))。
     对一种多层结构材料进行了电子束辐射热激波实验测量,结果表明,该多层材料能有效防护100卡/cm~2的电子束辐射。
     (4)对柔爆索(MDF)余弦冲量分布加载进行了设计和实验验证,并进行了结构响应实验研究。通过设计柔爆索离圆柱壳表面的距离以及柔爆索之间的间距,可以得到柱壳表面环向呈余弦分布的冲量载荷。通过在圆柱壳环向不同位置的冲量测量,得出冲量余弦分布的最大偏差大约为10%。成功测得了圆柱壳内表面几个位置处的环向应变信号。在设计峰值比冲量为506Pa.·s的余弦载荷作用下,实验圆柱壳在受载面-π/3~π/3范围内,可观察到明显动塑性屈曲现象。
     (5)对两端固支、长径比为2的铝合金圆柱壳在余弦冲量分布载荷加载下的结构响应和动塑性屈曲进行了计算模拟。数值模拟表明,辐射脉冲载荷引起的动塑性屈曲发生在受辐射面的—π/3和π/3之间,与实验结果相符。
The thermo-mechanical effects induced by pulsed beam radiation have been studied systematically based on the experiment, theoretical analysis and numerical simulation. The primary contents are as follows:
     (1) We summarized the calculating methods of energy deposition in beam radiation, and especially derived an analytical formula to calculate the electron's energy deposition which is the basis in the study of thermo-mechanical effects. Firstly, we calculated the energy deposition in C/Ph and GFRP with Lombard theorem and the results showed that the peak value of energy deposition from soft X-rays is higher than that from hard X-rays, but the depth of energy deposition results from soft X-rays is much less than that from hard X-rays. Secondly, we calculated the electron's energy deposition with Monte Carlo method and analytical formula respectively. Monte Carlo method is used in the energy deposition according to the single collision and continuum slowing theorem and the analytical formula for calculating electron's energy deposition is derived. Finally, we studied the energy deposition characteristics of one kind of multi-layered material induced by X-rays and electron beam radiation. The results show that the multi-layered material can not only provides effective protection from X-rays radiation, but also can provided protection from electron beam radiation.
     (2) A new kind of numerical scheme to simulate the irradiation free surface is proposed by Taylor expansion, the thermal shock wave and blow off impulse effects induced by X-rays and electron beam radiation are studied by numerical simulation based on uniaxial strain elastic-plastic hydrodynamics model, and an attenuation formula of the amplitude of the thermal shock wave is derived. The new free surface scheme, which is a fourth order accuracy, is more suitable than Richtmyer's for solving thermal mechanical effects of material irradiated by X-rays. According to irreversible energy dissipation, the thermal shock wave's amplitude attenuation formula is proposed based on the Hugoniot equations. The calculating results using this analytical formula agree well with those from Langley formula. The thermal shock wave effects in material subjected to soft and hard X-rays radiation are simulated and different mechanism of thermal shock wave is revealed: the thermal shock wave induced by soft X-rays is from the removal of vaporing material and it is from thermal expansion when induced by hard X-rays. Finally, the blow off impulse in Ly-12 aluminum subjected to intense pulsed X-rays is simulated and the calculating results accord well with the experimental data.
     (3) Two sets of thermal shock wave measuring systems and two sets of blow off impulse measuring systems are developed. The guard-ring piezoelectric quartz measuring system is suitable for the composites with about 10mm thickness and the transducer using PVDF is suitable to the study on peak attenuation of the thermal shock wave in its propagating routes. The light transducing impulse probe is suitable to the measurement of impulses induced by electron beam or X-rays.
     The experimental studies of the thermal shock wave induced by electron beam are discussed. The target material is Ly-12 aluminum alloy with the thickness of 2~5 mm. The range of energy fluxes on target is 187~196 J/cm~2 and experimentally measured stress peaks of the thermal shock wave is 1.65~0.97 GPa.
     The 3-D braided composites (3DBCP) possess good property which can attenuate thermal shock waves. When electron beam energy fluxes were in the range from 570 to 970 J/cm~2, for 3DBCP with thickness of 10mm, the peak stresses of thermal shock wave were in the range from 0.15 to 0.39 Gpa. These values only were approximately 6 % that of Ly-12 aluminum alloy under identical conditions.
     The threshold flux used for producing blow off impulse in 3DBCP is about 77 J/cm~2. When electron beam energy fluxes were in the range from 101 J/cm~2 to 297 J/cm~2, for 3DBCP, the coupling coefficients of blow off impulse were in range from 0.20Pa. s/ (J·cm~(-2)) to 0.62Pa. s/ (J·cm~(-2)). These values only were approximately 1/ 3 that of LY-12 aluminum alloy under identical conditions. These show that 3DBCP possess good property which can reduce blow off impulses.
     The experimental studies on the impulse induced by soft X-rays show that: under the radiation of X-ray with mean energy (E=0.30keV) and time duration (43ns), the mean coupling coefficient of the blow off impulse of paint A is 0. 42 Pa. s/( J·cm~(-2) ) at the mean energy flux of E_(?), = 147 J/cm~2, the corresponding coefficient of paint B is 0. 45 Pa. s/( J ? cm~(-2)) at the mean E_(?) = 135J/cm~2, the corresponding coefficient of GFRP is 0. 75 at the mean E_(?)= 123J/cm~2 , and 0. 54 Pa. s/( J ? cm~(-2) ) for Ly-12 aluminum at the mean E_(?) 125 J/cm~2.Propagation behaviors of thermal shock wave in one kind of multi-layered material subjected to pulsed electron beam were studied. The experimental results show that it can provide protection from electron beam with energy flux of 100cal/cm~2.
     (4) The optimization design are applied to obtain a mild detonating fuse (MDF) impulse which has a nearly cosine distribution around the shell, and the experimental validation is carried out to prove the cosine distribution of impulse around shell. The structural responses of cylindrical shell are experimental studied with the loads from MDF. By designing the spacing between the MDF strands and the standoff distance from the strands to the shell, the MDF impulse, which has a nearly cosine distribution around the shell, are obtained. The maximum deviation between the impulses at several positions measured by impulse transducer and the impulses, which has a cosine distribution around the shell, is less than 10%. The strain signals at different positions produced by MDF loads are successfully recorded. The obvious dynamic plastic flections appear in ranges from -π/3 toπ/3 at the side of the shell where the impulse, which has a cosine distribution and its peak value is 506 pas, is loaded.
     (5) The structure response and the dynamic plastic flections of the cylindrical shell made from Ly-12 aluminum with two ends fixed are simulated. The dynamic plastic flections appear in the range from -π/3 toπ/3 at the loaded side of the shell, and it accords well with experiment.
引文
[1] Rudie N J. Principles and Techniques of Radiation Hardening. Western Periodicals Company, 1976
    [2] Longley R W. Analytical relationships for estimating the effects of X-rays on materials[R].AFRPL-TR-74-52,1974
    [3] 国防科技大学二○五教研室.X射线与物质的相互作用[J].国防科技大学工学学报,1979,(3):93
    [4] 张若棋,谭菊普.X射线辐照圆柱壳体产生的汽化反冲[J].空气动力学学报.1989.7(2):172~177
    [5] Lawrence R J. The equivalence of simple models for radiation - induced impulse [A]. in: Schmidt S C,Dick R D,et a. Shock Compression of Condenced Mtter 1991[C],New York:Elsevier Science Publisher B V,1992:785
    [6] 彭常贤,胥永亮等.电子束辐照平板靶产生喷射冲量的实验研究[J].高压物理学报,1994,8(1):23~29
    [7] 赵国民,张若棋等.脉冲X射线辐照材料引起的汽化反冲冲量[J].爆炸与冲击,1996,16(3):259~265
    [8] 彭常贤,刘晋等.强脉冲X光辐照硬铝靶产生喷射冲量的研究[J].强激光与粒子束.1998,10(3):383—386
    [9] 王懋礼.X射线对结构作用的有关问题[A].见:徐有矩,高淑英等编.振动工程及应用[C].成都:成都科技大学出版社,1998:189~192
    [10] 赵国民,强脉冲X光辐照下圆柱壳结构响应研究的模拟技术研究[D].博士学位论文.长沙:国防科技大学,1997
    [11] Larence R J. The Equivalence of Simple Models for Radiation-Induced Impulse. In: Schmidt S C, Disk R D, Forbes J W, et al. Ed. Shock Compression of Condensed Matter. NewYork: Elsevier Science Publishers B V. 1992. 785
    [12] Cost T L. Dynamic Response of Missile Structures to Impulsive Loads Caused by Nuclear Effects Blowoff[R]. ADA052999,1976
    [13] 彭常贤,程桂淦等.电子束辐照圆环靶产生动态应变的实验研究[J].高压物理学报,1993,7(4):286~292
    [14] 彭常贤,刘晋等.电子束热激波在不同材料和不同厚度中的衰减[J].爆炸与冲击.1999,19(增刊):205~208
    [15] 赵国民,张若棋等.铅壳柔爆索爆炸产生冲量的实验[J].国防科技大学学报,2001,23(6):58~62
    [16] 赵国民,张若琪等.铅壳柔爆索冲量作用下圆柱壳结构响应实验研究[J].爆炸与冲击,2002,22(2):126~131
    [17] 邓宏见,岳晓红.模拟X射线作用的炸药加载载荷特性分析[J].工程设计与力学环境,2002,(3):8~13
    [18] 岳晓红,毛勇建等.片状炸药的比冲量标定技术[A].见:2002年火炸药技术及钝感弹药学术研讨会论文集[C],2002
    [19] 彭常贤,谭红梅,林鹏,等.脉冲软X光辐射三种材料的喷射冲量实验研究[J].强激光与粒子束,2003,15(1):89-93
    [20] 周南,程漱玉,陈雨生,等.一、二维弹塑性流体动力学数值计算的高精度新自由面格式.计算物理,1998,15(4):386-392
    [21] 张若棋,谭菊莆.X射线辐照圆柱壳体产生的汽化反冲.空气动力学学报,1989,7(2):178
    [22] 李孝兰.高功率密度X光、激光辐照热—力学效应的实验研究.西北核技术研究所,科研报告.
    [23] 彭常贤,王占江,王伟,等.“闪光二号”电子束辐照平板靶产生热激波的实验研究[J].高压物理学报,1995,9(1):20~27
    [24] Graham R A, Nielson F W, Benedick W B.Piezoelectric Current from Shock-Loaded Ouartz-A Submicrosecond Stress Gauge[J].J Appl Phys, 1965,36(5): 1775-1783.
    [25] 吴嵩毓.短路电流石英传感器及其动态标定[J].爆炸与冲击,1985,5(4):61—66.
    [26] 彭常贤,林鹏,谭红梅,等.PVDF在电子束辐射材料产生的热激波测量中的应用[J].高压物理学报,2002,16(1):7-16.
    [27] 李志勇,朱文辉,程经毅,等.铜中强激光冲击波衰减规律的实验研究[J].科学通报,1996,41(19):1747-1749.
    [28] 朱文辉,李志勇,周光泉,等.用PVDF实时测量激光诱导的冲击波压力[J].实验力学,1997,12(2):216-220.
    [29] 温殿英,林其文.冲击波压缩PVDF膜的电响应研究[J].高压物理学报,2000,14(4):291-297.
    [30] Starkovich V S, Todd B E, Stephani E L, et al. Probe Velocity Transducer[R]. LA-4999—MS, 1972.
    [31] 王占江,林俊德,胥永量.核爆X光喷射冲量测量用电感式冲量传感器[J].抗核加固,1998,15(2):62~66
    [32] 彭常贤,谭红梅,林鹏,等.采用靶摆旋转运动式冲量探头测量脉冲软X射线辐射材料产生的喷射冲量[J].高压物理学报,2005,
    [33] Oswald R B, et al. Dynamic response of aluminum to putsed energy deposition in the melt dominated regime[J]. Journal of Applied Physics. 1973, 44(8): 3563~3574
    [34] Lindberg H E,Colton J D. Sheet explosive simulation for combined shock and structural response [R]. AFWL2TR2692124,1970
    [35] Colton J D.Measurement of pressure,impulse and detonation velocity for datasheet explosive [R]. AFWL2TR271223,1971
    [36] Emmett A,Witmer,et al. Experimental transient and permanent deformation studies of impulsively loaded rings and cylindrical panels,both stiffened and unstiffened[R]. AD-779-485,1974
    [37] Roger L,Bessey,et al. Simultaneous and running impulsive loading of cylindrical shells[R]. AD2A0122268,1975
    [38] Krieg R D. An accurate impulse test method for sheet explosive [R]. SC2DR2.662657,1967
    [39] Wenzel A B,Esparza. Implusive loading of ABM model structures[R]. DAAD052722C20378,1973
    [40] Witmer E A,Clark E N,et al. Experimental and theoretical studies of explosive induced large dynamic and permanent deformation of simple structures[J]. Experimental Mechanics. 1967,7(2):56~66
    [41] Forrestal MJ,Alzheimer W E. Response of a circular elastic shell to moving and simultaneous loads[J]. AIAA Journal. 1970,8(5):970~971
    [42] Rivera W G,Benham R A,et al. Explosive technique for impulse loading of space structures[R]. SAND9923175C,1999
    [43] Benham R A, Mathews F H, Higgins P B. X-ray Simulation with Light-Initiated Explosive[J]. The Shock and Vibration Bulletin. 1975.No.45. Part4:88
    [44] 褚桂敏.弹头对X射线引起的喷溅脉冲载荷的响应研究[R].内部报告,1983
    [45] Benham R A,Mathews F H,et al. Application of light-initiated explosive for simulating X-ray blow-off impulse effects[R]. SAND-7629019,1976
    [46] Nevill G E,Jr,et al. Impulse loading using sprayed silver acetylide-silver nitrate[J]. Experimental mechanics. 1965,5(9):294~298
    [47] Gefken P R, Kirkpatrick S W, et al. Response of impulsively loaded cylindrical shells[J]. International. Journal of Impact Engi-neering. 1988,7(2):213~227
    [48] Kirkpatrick S W, Hohmes B S. Structural response of thin cylindrical shells subjected to impulsive external loads[J]. AIAA Journal. 1988,26(1):96~103
    [49] Lindberg H E,Florence A L. Dynamic pulse buckling:theory and experiment [R]. DNA26503H, 1983
    [50] Lindberg H E,Murray Y. Calibration and analysis of the SPLAT(spray lead at target) impulse simulation technique[R]. DNA—TR2
    [51] 毛勇建,邓宏见,何荣建.强脉冲软X光喷射冲量的几种模拟加载技术[J].强度与环境,2003,30(20):55~64
    [52] 尹益辉,田翠英1X光诱导的汽化反冲及其导爆索模拟技术[J].工程设计与力学环境,1999,(3):1~13
    [53] 赵国民,张若棋等.铅壳柔爆索爆炸特性实验研究[J].高压物理学报,2001,15(2):91~96
    [54] Hartman W F, Forrestal M J, et al. An experiment on laser generated stress wave in a circular elastic ring[R]. ASME-71-APMW-2,1972
    [55] Father J Z, Seman GW, et al.Magnetic flyer combined response testing of composite specimens[R]. AFWL—TR—69—18,1969
    [56] Bealing R. Impulse loading of circular rings[R].Experimental Mechanics, Proceedings of the llth Annual Symposium. University of New Mexico,1971:15~26
    [57] Alzheimer W E,Ciolkosz T D,et al. Flyer-plate loading of circular rings[J]. Experimental Mechanics. 1972,12(3):148~151
    [58] Walling H C,Forrestal M J,et al. An experimental method for impulsively loading ring structures [J]. International Journal of Solids and Structures. 1972,8(6):825~831
    [59] Forrestal MJ, Overmier D K, An experiment on an impulse loaded elastic ring[J]. AIAA Journal. 1974,12(5):722~724
    [60] Lee L M, Jonson D E. in Shock Compression of condensed matter, 1991, eds. Schmidt S C et al, Elsevier Science Publisher-B,Ⅴ:879-882
    [61] Flock R A, Liu D T. in Proceeding of shock compression of condensed matter, (edited by Schmidt S C, Dick R D et al), 1991:403
    [62] Bauer F. in Shock Compression of Condensed Matter, 1991, eds. Schmidt S C et al, Elsevier Science Publisher B.Ⅴ:887-890
    [63] Starkovich V S, Todd B E. Probe velocity transducer. LA-4999-MS. 1972
    [1] Rudie N J. Principles and Techniques of Radiation Hardening. Western Periodicals Company, 1976
    [2] Evans, R. D. The Atomic Nucleus, McGraw-Hill, 1955.
    [3] 系统工程与电子技术编辑部,系统工程与电子技术——《辐射加固原理和技术》专辑,1981.
    [4] Leighton R B. Principles of Modern Physics. New York: McGraw-Hill Press, 1959.
    [5] Storm E, Israel H I. Photon cross sections from 0.001-100MeV for elements 1 through 100. LA-3753, Los Alamos Scientific Laboratory, 1967.
    [6] Compilation of X-ray cross sections. UCRL-50171. Livermore: Lawrence Laboratory, 1967.
    [7] McMaster W Het al. J.Chem. Phys, 1967,47:1892
    [8] Veigele Wm J, Briggs E, Bates L, Henry E M, Brancewell B. X-ray cross section compilation from 0.1keV to 2MeV. Vol. 2, Colorado: Kaman Science Corporation, KN-71-431(R), 1971.
    [9] 乔登江著,《核爆炸物理引论》,原子能出版社,117,1988。
    [10] 李原春,平板的电子投射系数核反射系数蒙特卡罗理论计算,试验与研究,Vol.1,1983
    [11] Bethe H A. Methods in computational physics. 1963,1
    [12] Berger M J and Setzer S M. Table of energy loses and range of electrons and positrons. NASA SP-12,1964
    [13] Subba, R B N. Nucl. Instr. Mech. 44(1), 1976, 155.
    [14] Bethe H A. Moliere's theory of multiple scattering. Phy. Rev., Vol. 89,No.6
    [15] 周南.电子束辐照效应的数值模拟.计算物理,Vol.12(3),1995,301~308.
    [1] 况惠孙,蒋伯诚等.计算物理引论,长沙:湖南科学技术出版社,1987
    [2] 赵国民,张若棋等.脉冲X射线辐照材料引起的汽化反冲冲量[J].爆炸与冲击,1996,16(3):259~265
    [3] 周南.高能粒子束的执激波效应计算.内部资料.1985.
    [4] Rudie N J. Rinciples and Techniques of Radiation Hardening. Western Periodicals Company, 1976
    [5] Boris J P. and Book D L. Flux-corrected transport, 2. Generalizations of the method, J. Comput. Phys., 18(1975),248
    [6] 王肖钧,肖绍平,胡秀章,通量修正输运法在动态有限差分和有限元中的应用,爆炸与冲击[J],18(3):198-202,1998
    [7] 周南,程漱玉,陈雨生,等.一、二维弹塑性流体动力学数值计算的高精度新自由面格式.计算物理,1998,15(4):386-392
    [8] 彭常贤,刘晋,胡泽根,等。强脉冲X光辐照硬铝产生喷射冲量的研究[J].强激光与粒子束,1998,10(3):383-386.
    [9] Longley R W, Analytical relationships for estimating the effects of X-rays on materials[R]. AFRPL-TR-74-52,1974
    [10] 周南,乔登江.脉冲辐照材料动力学.北京:国防工业出版社,2002
    [11] Steverding B, Dudel., H R Laser-induced Shocks and Their Capability to produce fracture[J]. Journal of Applied Physics, 197_6,47(5), 1940-1945
    [1] 彭常贤.电子束辐射硬铝产生热激波的实验研究[J].爆炸与冲击,1987,7(3):250-256.
    [2] 经福谦.实验物态方程导引(第二版)[M].北京:科学出版社,1999.203.
    [3] R A Graham, F W Neilson, W B Benedick. Piezoelectric Current from Shock-Loaded Ouartz—A Submicrosecond Stress Gauge[J1. J Appl Phys, 1965, 36(5): 1775-1783.
    [4] 吴嵩毓.短路电流石英传感器及其动态标定[J].爆炸与冲击,1985,5(4):61-66.
    [5] 王礼立.应力波基础[M].北京:国防工业出版社,1986.
    [6] Kawai H. The Piezoelectricity of Poly(Vinylidene Fluoride) [J]. Japan. J Appl Phys, 1969,8(7):975~976
    [7] Romain J P, Bauer F, Zagouri D,et al.Measurements of Laser Induced Shock Pressure Using PVDF Gauges[A].High-Pressure Science and Technology-1993[C],edided by Schmidt S C.American Institute of Physics, 1994.1915-1919.
    [8] 席道瑛,郑永来.PYDF压电计在动态压力测量中的应用[J].爆炸与冲击,1995,15(2):174-179.
    [9] 朱文辉,李志勇,周光泉,等.利用激光冲击波对材料进行动态加载[J].应用激光,1996,16(2):52-54
    [10] 洪昕,王声波,郭大浩,等.强激光驱动高压冲击波特性研究[J].中国激光,1998,25(8):743-747.
    [11] 彭常贤,林鹏,谭红梅,等.PVDF在电子束辐射材料产生的热激波测量中的应用[J].高压物理学报,2002,16(1):7-16.
    [1] Longley R W, Analytical Relationships for Estimating the Effects of X-rays on Materials[R]. AD-786926,1976
    [2] 张若棋,谭菊普,X射线辐照圆柱壳体产生的汽化反冲[J].空气动力学学报,1989,7(2):172-177
    [3] 赵国民,张若棋,汤文辉.脉冲X射线辐照材料引起的汽化反冲冲量[J].爆炸与冲击,1996,16(3):259-265.
    [4] Witmer E A, Clark E N, et al. Experimental and Theoretical Studies of Explosive Induced Large Dynamic and Permanent Deformation of Simple Structures[J]. Experimental Mechanics, 1967,7(2):56-66
    [5] Robert A. Simulation of X-ray Blow-off Impulse Loading of a Reentry Vehicle Aft End Using Light-Initiated High Explosive[J]. Shock and Vibration Bulletin, 1976,46(3): 183-189.
    [6] Kirkpatrick S W, Holmes B S. Structural Response of Thin Cylindrical Shells Subjected to Impulsive External Loads[J]. AIAA Journal, 1988, 26(1):96-103
    [7] 赵国民.强脉冲X射线辐照下圆柱壳结构响应的模拟技术研究[D].博士学位论文.长沙:国防科技大学,1997
    [8] 赵国民,张若棋,陈刚,等.铅壳柔爆索爆炸特性实验研究[J].高压物理学报,2001,15(2):91—96.
    [9] 赵国民,张若棋,彭常贤,等.铅壳柔爆索爆炸产生冲量的实验[J].国防科技大学学报.2001,23(6):58-62
    [10] 赵国民,张若棋,彭常贤,等.铅壳柔爆索冲量作用下圆柱壳结构响应实验研究[J].爆炸与冲击,2002,22(2):126-131
    [11] 任重.《ANSYS实用分析教程》.北京:北京大学出版社,2003,287-291.
    [1] Mindlin R D.,-Bteich H H. Response of Elastic Cylindrical Shells to a Transverse Step Shock Wave[J]. J.Appl. Mech., 1953,20(1):189~195
    [2] Payton R. Dynamic Membrane Stresses in a Circular Elastic Shell[J]. J Appl Mech., 1961,28(3):417~420
    [3] Humphreys J, Winter R. Dynamic Response of a Cylinder to a Side Pressure Pulse[J]. AIAA Journal, 1965, 3(1): 27~32
    [4] Goddier J, McIvor I. The Elastic Cylindrical Shell under Nearly Uniform Radial Impulse[J]. J Appl. Mech, 1964,31 (2):259~266
    [5] Suzuki S. Dynamic Behavior of Thin Cylindrical Shells Subjected to Transient Inner Pressure Effects of Shear force and Rotary Inertial[J]. Nucl Eng. And Design,1979,51:423~429
    [6] Kirkpatrick S W. Holmes B S. Structural Response of Thin Cylindrical Shells Subjected to Impulsive External Loads[J], AIAA Journal, 1988,26(1):96~103
    [7] Lindberg H E. Murray Y D. A Case and Elastomer Annulus Under Lateral Impulse[J]. Appl Mech. Rev., 1989,42(11): 142~149
    [8] Sivadas K R, Ganesan N. Dynamic Analysis of Circular Cylindrical Cells with Material Damping[J]. J. Sound Vib, 1993,166(1):103~116
    [9] Noor A K. Burton W S. Assessment of Computational Models for Multilayered Composite Shells[J], Appl. Mech. Rev., 1990,43(4):67~97
    [10] LS-DYNA THEORY USER MANUAL. Version950. Livermore software technology corporation, 1999
    [11] 张广兴.脉冲载荷下柱壳结构响应实验研究[J].导弹与航天运载技术,1995,3:16~25
    [12] 张若棋等.影响X光热激波数值模拟结果的若干因素[J].高压物理学报,1998(12)
    [13] 张若棋等.脉冲强X光辐射圆柱壳产生喷射冲量与结构响应[J].抗核加固,1997(14)
    [14] 彭常贤等,两端固支柱壳在脉冲X光辐射下的动力响应[J].高压物理学报,1999,13,增刊,373~375
    [15] Anderson D L, Lindberg H E. Dynamic Pulse Buckling of Cylindrical Shells under Transient Lateral Pressures[J]. AIAA Journal, 1968,6(4):589
    [16] Lindberg H E, Florence A L. Dynamic Pulse Buckling: Theory and Experiment[M]. Dordrecht:Martinus Nijhoff Publishers, 1987
    [17] 赵国民.强脉冲X光辐照下圆柱壳结构响应研究的模拟技术研究[D].博士学位论文,长沙:国防科技大学,1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700