强流脉冲离子束辐照316L不锈钢结构及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
强流脉冲离子束(High-Intensity Pulsed Ion Beam—HIPIB)技术起源于20世纪70年代末期的惯性约束核聚变和高能密度物理研究。近年来,它作为一种新型的材料载能束表面改性技术,受到了广大材料科学工作者的广泛关注。鉴于HIPIB技术在材料表面工程领域的应用研究尚处于初级阶段,并且金属材料表面辐照改性是目前HIPIB技术在材料表面工程应用研究中的一个热点问题,本文系统研究了不同参数的HIPIB辐照对316L不锈钢表面结构、表面性能及基体力学性能的影响,旨在揭示其变化的本质原因,并探索合适的辐照参数,进而为其它材料的改性提供参考。
     利用TEMP-6型HIPIB装置,采用聚合物阳极的单极脉冲模式外磁绝缘离子二极管产生由70%的H离子和30%的C离子组成的加速电压为300 kV,束流密度为100、200和300 A/cm~2(波动不超过20%),脉冲宽度为75 ns的强流脉冲离子束,分别辐照316L不锈钢1、5、10次。采用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、透射电子显微镜(TEM)和电子探针(EPMA)观察表面形貌、鉴定表面层相组成和微观组织结构及分析表面元素分布变化。对辐照前、后样品,分别进行显微硬度测量,摩擦磨损、氧化、电化学腐蚀、抗疲劳及高温蠕变实验。结合表面结构的变化,研究不同辐照参数对上述各种性能的影响规律,探讨其改性机理,并确定了针对316L不锈钢各性能的最佳辐照改性条件。
     SEM观察结果表明,316L不锈钢表面经HIPIB辐照后随辐照强度的增大或辐照次数的增加均呈现出光滑化趋势。烧蚀坑面积对束流密度的变化敏感,其数量则受辐照次数变化的影响更加显著。采用一维非稳态热传导模型对试样最外表面温度进行了估算,发现HIPIB处理会将316L表面快速加热至其熔点甚至沸点温度,导致原始表面机械磨痕熔化、发生选择烧蚀和液滴喷射。XRD结果显示,辐照处理后316L表面无新相生成,但由于辐照引起的大温度梯度和高应力,导致试样表面层形成了择优取向,且这种趋势随束流密度的增大或辐照次数的增加越发显著。TEM观察发现,试样表面熔化层形成了非晶结构和纳米马氏体,在热激波、压缩应力波和C离子注入的共同作用下,熔化层以下的热影响区内形成了大量位错亚结构和孪晶。根据EPMA分析结果提出了一种新的烧蚀坑形成机制,316L表面层中包含强挥发性S元素的MnS夹杂在辐照瞬间发生了低熔点元素的选择性烧蚀,形成以原始MnS夹杂为中心的烧蚀坑。
     显微硬度测量结果显示,由于试样表面形成了非晶和纳米晶结构,近表层产生了大量位错胞和孪晶等亚结构,导致HIPIB辐照处理后的316L不锈钢表面层显微硬度有所提高,且沿截面都出现了微硬度双峰的现象。相同次数(10次)辐照后,表面硬度及截面硬度最大值均出现在束流密度为200A/cm~2的样品上;相同辐照强度下(200A/cm~2),试样表面显微硬度和截面显微硬度最大值均随辐照次数的增加而逐渐增大。由于样品表面的光滑化和显微硬度的提高,不同参数的HIPIB辐照处理均使316L不锈钢的表面摩擦系数降低,磨损量减少。试样表面耐磨性与硬度值保持了很好的对应关系,其中,200A/cm~2 10次辐照后试样的表面耐磨性最好。
     HIPIB中30%的C离子注入后,在氧化温度下将占用样品表层中大量的Cr去生成碳化物,从而导致316L表面贫铬,优先发生了铁的氧化,抗高温氧化性能随辐照强度的增大或辐照次数的增加急剧下降。700℃氧化100h后,原始试样氧化程度轻微,表面生成了致密的Cr_2O_3保护膜,冷却过程中没有出现剥落迹象;低束流密度和辐照次数少的试样表面生成了瘤节状Fe_2O_3,剥落现象轻微;高束流密度和辐照次数多的样品表面生成了由Fe_2O_3和Cr_2O_3交替构成的氧化层,剥落现象严重。在表面光滑化、表面层非晶化和晶粒细化以及杂质元素选择性烧蚀的共同作用下,HIPIB辐照处理显著提高了316L不锈钢在0.5mol/L的H_2SO_4溶液中的电化学腐蚀性能,且辐照强度变化对自腐蚀电位的影响更加显著,而自腐蚀电流密度则对辐照次数变化更加敏感。
     疲劳和蠕变实验结果均说明,中、低强度的HIPIB辐照处理后,316L不锈钢试样表面的光滑化、表面层的非晶化和晶粒细化以及大量位错亚结构的形成,起到了阻碍位错运动、抑制表面裂纹产生和阻止裂纹扩展的作用,从而提高了其室温疲劳寿命,改善了其高温蠕变性能。与硬度测量结果一样,辐照相同次数(10次)后疲劳和蠕变断裂寿命的最大值也都没有出现在辐照强度最强的样品上,这不仅源于过高的辐照强度会引起试样表面剧烈的沸腾和蒸发,使改性层所剩无几,同时还在于高束流密度条件下样品表面大多数烧蚀坑中心会形成微裂纹,作为裂纹源将直接导致材料室温抗疲劳性能和高温蠕变性能的下降。在相同束流密度条件下(200A/cm~2),辐照后试样的疲劳、蠕变断裂寿命和稳态蠕变速率均随辐照次数的增加呈现抛物线式的变化规律。
Recently, High-intensity pulsed ion beam (HIPIB) treatment has received extensive attention as a new technology for surface modification of materials. It has roots in inertial confinement nuclear fusion and high-energy density physics research from seventies of last century. The application of HIPIB technique in material surface engineering is inchoate and the surface irradiation of metallic materials is a hotspot issue now. In this dissertation, the investigations about the influences of HIPIB irradiation on the surface structure, surface properties and matrix mechanical performances of 316L stainless steel have been studied systematically, in order to explore the essential reasons of modification, and search for the appropriate parameters so as to provide references for other materials.
     The HIPIB irradiation was carried out in the TEMP-6 type HIPIB apparatus operating in unipolar mode. In the TEMP type ion source by using an ion diode magnetically insulated by an external-magnetic field (MID) with perforated polyethylene anode, the main ion species of ion beam were about 70%H~+ and 30%C~+. Irradiation of the targets was performed under the conditions: ion energy E = 300 keV, current density J_i = 100, 200 and 300 A/cm~2 (the fluctuation of current density was limited to no more than 20% from shot to shot), pulse duration r= 75 ns and shot number N = 1, 5 and 10 shots. The surface morphology and the phase structure in the near surface region of original and treated samples were analyzed with scanning electron microscope (SEM), X-ray diffraction (XRD) and transmission electron microscope (TEM). Electron probe microanalysis (EPMA) was used to study the distribution of elements on the irradiated surfaces. The microhardness, wear resistance, oxidation and corrosion resistance, fatigue and creep tests of all the samples have been examined. In combination with the structure changes in the surface layer of the irradiated sample, we investigated the effects of different parameters on above properties, discussed the mechanism of the modification, and finded the best irradiation conditions for diversified performances of 316L stainless steel.
     As can be seen in the SEM images, HIPIB irradiation smoothed the surface of 316L stainless steel. The polishing marks disappeared gradually due to more intense or repeated melting and severe ablation with increasing the ion current density or the shot number. The area of the craters was more impressible to the energy density per shot and the number of it was more dependent on the shot number. The one-dimensional heat-flow modeling was used to estimate the temperature of the irradiated surface during HIPIB interaction with the target. It is found that HIPIB irradiation heated the surface soon at least exceeded the melting point of 316L and induced the melt of the scratches, the selective ablation and the droplets ejection. The XRD patterns showed that there were no new phase appeared on the treated surfaces after the irradiation by HIPIB. A preferred orientation formed in treated samples is caused by extremely high temperature gradient and stresses, which arise from the interaction between HIPIB and the targets. And this tendency became more and more remarkable with the increase of the power density or the shot number. The results of TEM observation indicated that amorphous and nano-martensite formed in the thin molten surface layer, and there were a lot of cellular dislocation substructures and twins under the irradiated surface due to the cooperation of the thermomechanical stress, the recoil impulsed compression wave and the injected carbon ions induced by the HIPIB irradiation. The EPMA analysis suggested a new mechanism of the 316L cratering process. The origin of the cratering was the MnS. During the interaction between HIPIB and the target, selective ablation of MnS occurred on the treated surfaces and formed the crater. This is because sulphur is a volatile alloying element of relatively low vaporization temperature.
     It can be clearly seen that the microhardness in the near surface region of irradiated samples was increased compared to the control one, and the profiles of the cross-section along the line perpendicular to the surface of the treated samples all have a typical two-peak distribution. This result should be own to the amorphous and nano-structure on the treated surface, and the dislocation substructure and twins in the heat-affected region rooted from the irradiation by HIPIB. After irradiation by HIPIB with 10 shots, the maximum microhardness appeared in the sample irradiated at 200 A/cm~2. At a fixed ion current density of 200 A/cm~2, the maximum of microhardness increased gradually with increasing the shot number. The irradiated samples have a lower friction coefficients and more durable surfaces than that of the original sample because wear resistance usually increases with smoothing and hardness, and the best tribological property presented to the sample treated at 200 A/cm~2 with 10 shots.
     After HIPIB irradiation, the 30% injected C ions segregated below the treated surfaces, which reacted with abundant Cr in the near surface layer to form carbide during the oxidation process. Due to the oxidation of Fe occurred precedently, the oxidation resistance of the irradiated samples decreased drastically. After exposure at 700℃for 100h, the original 316L stainless steel was oxidated slightly and formed a compact Cr~2O_3 protective film, the oxidation product of the sample treated at lower ion current density or lesser shot number was nodular Fe_2O3, and the sample irradiated at higher intensity or more shot numer formed a oxidated layer alternately by Fe_2O_3 and Cr_2O_3. During the experiments, nearly no spallation of the oxidation scale was observed on the original sample. However, spallation was severe gradually on the surfaces of the irradiated specimens with increasing the irradiation intensity or the shot number. Under the cooperation of the smooth surface and the grain refinement with the selective ablation of impurities, the electrochemical corrosion resistance of 316L stainless steel in 0.5 mol/L H_2SO_4 solutions was improved significantly by the HIPIB irradiation. It can be concluded that the dependence of the potential was greater on the irradiation intensity and the current density was more sensitive to the shot number.
     The fatigue and creep experimental results illuminated that the fatigue life and creep rupture life of 316L stainless steel can be proiongated by the irradiation of HIPIB at lower and moderate intensity. At the same time, the steady creep rate of the treated specimens was reduced. This can be attributed to the smoothing of the surface and the existence of the preferred orientation in the surface layer of irradiated specimens. The smoothed surface has less initiators of crack, which can restrain the production of the surface cracks, so as to prolongate the fatigue and creep rupture life of the treated specimens. The presence of a preferred orientation implied the treatment creates an intense compression wave and high dislocation density in the surface layer of the irradiated specimens, which hinders the dislocations movement. According to the microhardness, the best fatigue and creep properties were not appeared on the sample irradiated at the maximum current density after 10 shots. This is because of micro-crack formed in the center of craters owed to the excessive disturbance of molten surface layer from local liquid evaporation and droplet ejection. It is observed that the influence of HIPIB irradiation on creep property was similar to that on the fatigue life of the irradiated specimens, which changed parabolically with increasing HIPIB shot number at 200 A/cm~2.
引文
[1] 张通和,吴瑜光.离子束表面工程技术与应用.北京:机械工业出版社,2005.
    [2] Johnson D J, Kuswa G W, Farnsworth A Vet al. Production of 0.5-TW proton pulses with a spherical focusing magnetically insulated diode. Physical Review Letters, 1979, 42 (9): 610-613.
    [3] Van Devender J P, Cook D L. Inertial confinement fusion with light ion beams. Science, 1986, 232: 831-836.
    [4] 王淦昌,袁之尚.惯性约束核聚变.合肥:安徽教育出版社,1996.
    [5] Neri J M, Hammer D A, Ginet G et al. Intense lithium, boron, and carbon beams from a magnetically insulated diode. Applied Physics Letters, 1980, 37 (1): 101-103.
    [6] Hodgson R T, Baglin J E E, Pal R et al. Ion beam annealing of semiconductors. Applied Physics Letters, 1980, 37(2): 187-189.
    [7] Usov Yu P, Didenko A N, Remnev G E et al. Proceedings of the 3~rd all-Russian conference on application of electron and ion technology for industry. Tbilisi, 1981: 110.
    [8] Davis H A, Remnev G E, Stirmett RW et al. Intense ion-beam treatment of materials. MRS Bulletin, 1996, 21: 58-62.
    [9] Pogrebnjak A D, Remnev G E, Kurakin I Bet al. Structural, physical and chemical changes induced in metals and alloys exposed to high power ion beams. Nuclear Instruments and Methods in Physics Research B, 1989, 36: 286-305.
    [10] Piekoszewski J, Werner Z, Szymczyk W. Application of high intensity pulsed ion and plasma beams in modification of materials. Vacuum, 2001, 63 : 475-481.
    [11] Zhu X P, Lei M K, Ma T C. Characterization of a high-intensity bipolar-mode pulsed ion source for surface modification of materials. Review of Scientific Instruments, 2002, 73: 1728-1733.
    [12] Zhu X P, Lei M K, Dong Z H et al. Characterization of a high-intensity unipolar-mode pulsed ion source with improved magnetically insulated diode. Review of Scientific Instruments, 2003, 74: 47-52.
    [13] Miller R B. An introduction to the physics of intense charged particle beams. Plenum Press, New York, 1982.
    [14] Remnev G E, Isakov I F, Opekounov M Set al. High intensity pulsed ion beam sources and their industrial applications. Surface and Coatings Technology, 1999, 114 : 206-212.
    [15] Johnston G P, Tiwari P, Rej D J. Preparation of diamondlike carbon films by high-intensity pulsed-ion-beam deposition. Journal of Applied Physics, 1994, 76: 5949-5954.
    [16] Masugata K, Nakayama T, Inazumi Yet al. Generation and focussing of intense pulsed light-ion beam at Nagaoka-ETIGO Project. Japanese Journal of Applied Physics, 1981, 20: 347-350.
    [17] Wood B P, Perry A J, Bitteker L J et al. Cratermg behavior in single-and poly-crystalline copper irradiated by an intense pulsed ion beam. Surface and Coatings Technology, 1998, 108-109: 171-176.
    [18] Remnev G E, Isakov I F, Opekounov M S et al. High-power ion beam sources for industrial application. Surface and Coatings Technology, 1997, 96: 103-109.
    [19] 朱小鹏.强流脉冲离子束特性及其烧蚀作用的实验研究:(博士学位论文).大连:大连理工大学,2003.
    [20] 苗收谋.强流脉冲离子束辐照材料表面烧蚀作用研究:(博士学位论文).大连:大连理工大学,2006.
    [21] Rej D J, Davis H A, Olson J C et al. Materials processing with intense pulsed ion beams. Journal of Vacuum Science and Technologh A, 1997, 15 (3): 1089-1097.
    [22] Shulov V A, Nochovnaya N A, Remnev G E et al. High-power ion beam treatment application for properties modification ofrefractory alloys. Surface and Coahngs Technology, 1998, 99: 74-81.
    [23] Le X Y, Zhao W J, Yah Set al. The thermodynamical process in metal surface due to the irradiation of intense pulsed ion beam. Surface and Coatings Technology, 2002, 158-159: 14-20.
    [24] Biller W, Heyden D, Muller D et al. Modification of steel and aluminiurn by pulsed energetic ion beams. Surface and Coatings Technology, 1999, 116-119: 537-542.
    [25] 赵渭江,颜莎,韩宝玺等.强脉冲离子束与新材料工艺.原子核物理评论,1998,15(2):97-102.
    [26] Gilgenbach R M, Kovaleski S D, Lash J Set al. Science and applications of energy beam ablation. IEEE Transactions on Plasma Science, 1999, 27 (1): 150-158.
    [27] Proskurovsky D I, Rotshtein V P, Ozur G E et al. Physical foundations for surface treatment of materials with low energy, high current electron beams. Surface and Coatings Technology, 2000, 125: 49-56.
    [28] 乐小云,赵渭江,颜莎等.强脉冲离子束辐照金属材料表面热力学效应计算.强激光与粒子束,2001,13(4):456-460.
    [29] 赵渭江,颜莎,乐小云等.强脉冲离子注入中的脉冲能量效应研究.核技术,2000,23(10):689-696.
    [30] 周南,牛胜利,丁升等.强脉冲离子束辐照热—力学效应研究.强激光与粒子束,2000,12(2):249-253.
    [31] 颜莎,乐小云,赵渭江等.强脉冲离子束在金属中引起的应力波效应.核技术,2003,26(3):217-220.
    [32] 周南,乔登江.脉冲束辐照材料动力学.北京:国防工业出版社,2002.
    [33] Shimotori Y, Yokoyama M, Harada Set al. Quick deposition of ZnS: Mn electroluminescent thin films by intense, pulsed, ion beam evaporation. Japanese Journal of Applied Physics, 1989, 28 (3): 468-472.
    [34] Shimotori Y, Yokoyama M, Isobe Het al. Preparation and characteristics of ZnS thin films by intense pulsed ion beam. Journal of Applied Physics, 1988, 63: 968-970.
    [35] Yatsui K, Kang X D, Sonegawa T et al. Application of intense pulsed ion beam to material science. Physics of Plasmas, 1994, 1: 1730-1737.
    [36] Sonegawa T, Yatsui K. Stoichiometric and dielectric properties of BaTiO_3 thin films prepared by backside pulsed ion-beam evaporation. Journal of Materials Science Letters, 1998, 17: 1685-1687.
    [37] 梅显秀.强流脉冲离子束类金刚石薄膜沉积及高速钢辐照处理研究:(博士学位论文).大连:大连理工大学.2002.
    [38] Yatsui K, Grigoriu C, Kubo H et al. Synthesis ofnanosize powders of alumina by ablation plasma produced by intense pulsed light-ion beam. Applied Physics Letter, 1995, 67: 1214-1216.
    [39] Yatsui K, Grigoriu C, Masugata K et al. Preparation of thin films and nanosize powders by intense pulsed ion beam evaporation. Japanese Journal of Applied Physics, 1997, 36: 4928-4934.
    [40] Nakagawa Y, Grigoriu C, Masugata K et al. Synthesis of TiO_2 and TiN nanosize powders by intense light ion-beam evaporation. Journal of Materials Science, 1998, 33: 529-533.
    [41] Fastow R, Mayer J W. High-energy-density pulsed ion-beam irradiation of Co/Si, Pt/Si, and Au/Si.Journal of Applied Physics, 1987, 61: 175-181.
    [42] Nakagawa Y, Ariyoshi T, Hanjo H et al. Modification of solid surface by intense pulsed light-ion and metal-ion beams, Nuclear Instruments and Methods in Physics Research B, 1989, 39: 603-606.
    [43] Pogrebnjak A D, Remnev G E, Plotnikov S V. High-power ion-beam-induced melting and mixing in deposited structures. Materials Science and Engineering A, 1989, 115: 175-179.
    [44] Bystritskii V, Garate E, Grigoriev V et al. The high power pulsed ion beam mixing of a titanium layer with an aluminum substrate. Nuclear Instruments and Methods in Physics Research B, 1999, 149: 61-66.
    [45] Brenscheit F, Piekoszewski J, Wieser E et al. Modification of silicon nitride ceramics with high intensity pulsed ion beams. Materials Science and Engineering A, 1998, 253: 86-93.
    [46] Fastow R, Maron Y, Mayer J. Pulsed ion-beam melting silicon. Physical Review B, 1985, 13 (2): 893-898.
    [47] Bayazitov R M, Zakirzyanova L Kh, Khaibullin I B. Formation of heavily doped semiconductor layers by pulsed ion beam treatment. Nuclear Instruments and Methods in Physics Research B, 1997, 122: 35-38.
    [48] Bojarko E Yu, Verigin A A, Koscheev V Pet al. Structure of near surface layers of GaAs and Si crystals irradiated by powerful ion beams. Nuclear Instruments and Methods in Physics Research B, 1986, 17: 162-164.
    [49] Feurer T, Wahl S, Langhoff H. Modification of polyimide surfaces using intense proton pulses. Journal of Applied Physics, 1993, 74: 3523-3530.
    [50] Lee E H. Ion-beam modification of polymeric materials - fundamental principles and applications. Nuclear Instruments and Methods in Physics Research B, 1999, 151: 29-41.
    [51] Kucmski J, Langner J, Piekoszewski J et al. Glazing of ceramic surfaces with high-intensity pulsed ion beams. Surface and Coatings Technology, 1996, 84: 329-333.
    [52] Yatsuzuka M, Yamasaki T, Uchida H et al. Amorphous layer formation on a Ni_65Cr_15P_16B_4 alloy by irradiation of an intense pulsed ion beam. Applied Physics Letters, 1995, 67 (2): 206-207.
    [53] Yatsuzuka M, Hashimoto Y, Yamasaki T et al. Amorphous layer formation on Nickel alloy surface by intense pulsed ion beam irradiation. Japanese Journal of Applied Physics, 1996, 35: 1857-1861.
    [54] Rej D J, Davis H A, Nastasi Met al. Surface modification of AISI-4620 steel with intense pulsed ion beams. Nuclear Insmmaents and Methods in Physics Research B, 1997, 127/128: 987-991.
    [55] Shulov V A, Nochovnaya N A, Remnev G E et al. Modification of the properties of aircraft engine compressor blades by uninterrupted and pulsed-ion beams. Surface and Coatings Technology, 1997, 96: 39-44.
    [56] Shulov V A, Nochovnaya N A, Remnev G E. Thermomechanical processing of titanium alloys by high power pulsed ion beams. Materials Science and Engineering A, 1998, 243: 290-293.
    [57] Akamatsu H, Tanaka H, Yamanishi T et al. Increase of Si solution rate into A1 matrix by repeated irradiation ofintensepulsedionbeam. Vacuum, 2002, 65: 563-569.
    [58] Akamatsu H, Ikeda T, Azuma K et al. Surface treatment of steel by short pulsed injection of high-power ion beam. Surface and Coatings Technology, 2001, 136: 269-272.
    [59] McIntyre D C, Neau E L, Stinnett R W. Ion beam surface enhancement. Advanced Materials and Processes, 1999, 5: 31-35.
    [60] 赵渭江,颜莎,乐小云等.强脉冲离子束材料表面改性研究进展.核技术,2003,26(2):119-124.
    [61] 张罡,毕鉴智,李玉海等.强流脉冲离子束金属材料表面强化技术在中国的研究进展.沈阳理工大学学报,2005,24(1):1-5.
    [62] 石磊,何小平,张嘉生等.一台小型强流脉冲离子束加速器.强激光与粒子束,2000,12(3):782-784.
    [63] 石磊,何小平,邱爱慈.强流脉冲离子束产生的试验研究.核技术,2003,26(10):776-782.
    [64] Le X Y, Yah S, Zhao W J et al. Computer simulation of thermal-mechanical effects of high intensity pulsed ion beams on a metal surface. Surface and Coatings Technology, 2000, 128-129: 381-386.
    [65] Le X Y, Zhao W J, Yan Set al. Numerical analysis of thermodynamical process in the thin metal samples irradiated by IPIB. Current Applied Physics, 2001, 1: 219-223.
    [66] 梅显秀,马腾才,王秀敏等.强流脉冲离子束辐照W6Mo5Cr4V2高速钢表面改性研究.金属学报,2003,39(9):926-931.
    [67] 胡永峰,朱雪梅,朱小鹏等.强流脉冲离子束辐照合金Ti6A14V的耐蚀性.大连铁道学院学报,2002,23(3):84-87.
    [68] Zhu X P, Lei M K, Dong Z H et al. Crater formation on the surface of titanium irradiated by a high-intensity pulsed ion beam. Surface and Coatings Technology, 2003, 173: 105-110.
    [69] 张洪涛,王天民,王聪等.强脉冲离子束辐照对Ni_3A1基超合金IC6相变的影响.稀有金属材料与工程,2003,32(3):216-219.
    [70] Zhang H T, Wang T M, Wang C et al. Effect of intense pulsed ion beams irradiation on the oxidation behavior of γ′-based superalloy. Nuclear Instruments and Methods in Physics Research B, 2002, 197: 83-93.
    [71] Zhang H T, Wang T M, Hart B X et al. Surface modification of Ni3Al-based alloy IC6 with intense pulsed ion beams. Vacuum, 2003, 68: 329-333.
    [72] 林义民,徐洮,张洪涛.强脉冲离子束辐照对Ni_3A1合金表面的改性.中国有色金属学报,2003,13(1):205-210.
    [73] Han B X, Zhang H T, Zhao W Jet al. A study on microstructure and service property of Ni_3A1 base alloy irradiated by intense pulsed ion beams. Sttrface and Coatings Technology, 2002, 158-159: 482-487.
    [74] Valyaev N A, Ladysev V S, Mendygaliev D R et al. Defects in α-Fe induced by intense-pulsed ion beam (IPIB). Nuclear Instruments and Methods in Physics Research B, 2000, 171: 481-486.
    [75] Pogrebnjak A D, Shablya V T, Sviridenko N Vet al. Study of deformation states in metals exposed to intense-pulsed-ion beams (IPIB). Surface and Coatings Technology, 1999, 111 i 46-50.
    [76] Petrov A V, Ryabchikov A I, Stepanov I Bet al. Research on materials surface layers element structure formation under combined treatment with pulsed ion beams of different powers. Surface and Coatings Technology, 2002, 158-159: 170-173.
    [77] Struts V K, Zakoutaev A N, Matvienko V M et al. Formation of protective coatings on metals by intense pulsed ion beam. Surface and Coatings Technology, 2002, 158-159: 494-497.
    [78] 石德珂.材料科学基础.北京:机械工业出版社,2003.
    [79] Zhu X P, Lei M K, Dong Z H et al. Ablation of Irradiated Metals by High-Intensity Pulsed Ion Beam. Journal of the Korean Physical Society, 2003, 42: S787-S790.
    [80] Zhu X P, Lei M K, Ma T C. Surface morphology of titanium irradiated by high-intensity pulsed ion beam. Nuclear Instruments and Methods in Physics Research B, 2003, 211: 69-79.
    [81] 李春胜.钢铁材料手册.南昌:江西科学技术出版社,2004.
    [82] Hashimoto Y, Yatsuzuka M. Study on smoothing of titanium surface by intense pulsed ion beam irradiation. Vacuum, 2000, 59: 313-320.
    [83] 安中胜,王会才,赵亦兵等.脉冲激光导致不锈钢表层温度场演化的模拟.中国科学院研究生院学报,2003,20(3):309-315.
    [84] Korotaev A D, Tyamentsev A N, Pinzhin Yu P et al. Features of the morphology, defect substructure, and phase composition of metal and alloy surfaces upon high-power ion beam irradiation. Surface & Coatings Technology, 2004, 185: 38-49.
    [85] Korotaev A D, Ovchinnikov S V, Pochivalov Yu Iet al. Structure-phase states of the metal surface and undersurface layers after the treatment by powerful ion beams. Surface and Coatings Technology, 1998, 105: 84-90.
    [86] 周玉,武高辉.材料分析测试技术.哈尔滨:哈尔滨工业大学出版社,1998.
    [87] 候增寿,卢光熙.金属学原理.上海:上海科学技术出版社,1995.
    [88] Shulov V A, Nochovnaya N A. Crater formation on the surface of metals and alloys during high power ion beam processing. Nuclear Instruments and Methods in Physics Research B, 1999, 148: 154-158.
    [89] Yan S, Le X Y, Zhao W J et al. A possible thermodynamic mechanism of craters formation on metal surfaces caused by intense pulsed ion beams. Surface & Coatings Technology, 2005, 193: 69-74.
    [90] RENK T J, PROVENCIO P P, PRASAD S V et al. Materials Modification Using Intense Ion Beams. Proceedings of the IEEE, 2004, 92(7): 1057-1081.
    [91] 庞佑霞,黄伟九,谭援强等.工程摩擦学基础.北京:煤炭工业出版社,2004.
    [92] 孙茅才.金属力学性能.哈尔滨:哈尔滨工业大学出版社,2003.
    [93] Akamatsu H, Tanihara Y, Ikeda T et al. Structural Analysis of a High-Speed Tool Steel Irradiated by an Intense Pulsed-Ion Beam. IEEE Transactions on Plasma Science, 2002, 30(5): 1800-1805.
    [94] Han B X, Yan S, Le X Y et al. The phase and microstructure changes in 45# steel irradiated by intense pulsed ion beams. Surface and Coatings Technology, 2000, 128-129: 387-393.
    [95] 孙希泰.材料表面强化技术.北京:化学工业出版社,2005.
    [96] Pogrebnjak A D, Ladysev V S, Pogrebnjak N A et al. A comparison of radiation damage and mechanical and tribological properties of α-Fe exposed to intense pulsed electron and ion beams. Vacuum, 2000, 58: 45-52.
    [97] 朱民,张涛,宋教花等.钼和硫同步注入9Cr18不锈钢的摩擦磨损性能.北京师范大学学报,2005,41(1):50-53.
    [98] 郭军霞,蔡珣,陈秋龙等.金属蒸气真空弧离子源Co离子注入对不锈钢摩擦磨损性能的影响.摩擦学学报,2003,23(6):480-484.
    [99] 田修波,汤宝寅,Chu Paul K.AISI 304钢表面低电压等离子体基离子注入层摩擦磨损性能研究.摩擦学学报,2000,20(2):81-84.
    [100] 杨德钧,沈卓身.金属腐蚀学.北京:冶金工业出版社,2003.
    [101] 李美栓.金属的高温腐蚀.北京:冶金工业出版社,2001.
    [102] 刘道新.材料的腐蚀与防护.西安:西北工业大学出版社,2006.
    [103] Ye W, Li Y, Wang F H. Effects of nanocrystallization on the corrosion behavior of 309 stainless steel. Electrochimica Acta, 2006, 51: 4426-4432.
    [104] 李瑛,王福会.表面纳米化对金属材料电化学腐蚀行为的影响.腐蚀与防护,2003,24(1):6-9.
    [105] 李青.离子注入技术及离子注入对不锈钢腐蚀电化学行为的影响.功能材料,2003,34(5):496-500.
    [106] 刘成龙,杨大智,邓新禄等.医用不锈钢表面沉积类金刚石薄膜的电化学腐蚀性能研究.硅酸盐学报,2005,33(5):559-563.
    [107] 张俊善.材料强度学.哈尔滨:哈尔滨工业大学出版社,2004.
    [108] 丁剑,张荻,西田新一等.应力控制条件下奥氏体不锈钢的低周疲劳性能.金属学报,2002,38(12):1261-1265.
    [109] 何国求,陈成澍,高庆.在室温及低温下316L、316LN不锈钢单轴低周疲劳特性的研究.西南交通大学学报,1996,31(5):483-487.
    [110] 何国求,陈成澍,高庆.氮对316系列不锈钢低周疲劳特性的影响.西南交通大学学报,1999,34(3):343-348.
    [111] Cicco H De, Luppo M I, Raffaeli H et al. Creep behavior of an A286 type stainless steel. Materials Characterization, 2005, 55: 97-105.
    [112] 侯介山,张玉龙,郭建亭等.铸造镍基合金K44的高温蠕变行为.金属学报,2004,40(6):579-584.
    [113] Puchi-Cabrera E S, Matinez F, Herrera I et al. On the fatigue behavior of an AISI 316L stainless steel coated with a PVD TiN deposit. Surface and Coatings Technology, 2004, 182: 276-286.
    [114] 张鑫,屈金山,王大春等.不锈钢0Cr18Ni12Mo12Ti焊接接头的蠕变行为探讨.机械工程材料,2005,29(5):24-26.
    [115] Kyung S M, Soo W N. Correlation between characteristics of grain boundary carbides and creep-fatigue properties in AISI 321 stainless steel. Journal of Nuclear Materials, 2003, 322: 91-97.
    [116] 杨景红,田素贵,于兴福等.微量元素Sb对AZ31合金组织与蠕变性能的影响.沈阳工业大学学报,2005,27(3):257-261.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700