强流脉冲离子束特性优化及辐照力学效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了满足HIPIB辐照材料表面改性需求,开展了磁绝缘离子二极管阳极特性的系统研究,确定了优化的辐照工艺参数。通过HIPIB辐照不同材料的力学效应研究,揭示了辐照表面反冲应力波的形成和传播机制,以及HIPIB辐照材料表面强化机制,为彻底弄清HIPIB与材料表面的相互作用提供了实验依据。
     通过对TEMP-6型和ETIGO-2型两种HIPIB装置阳极聚乙烯膜的寿命研究发现,TEMP-6型装置的绝缘磁场为“闭环”结构,二极管间隙放电稳定,在420 kV放电电压下阳极聚乙烯膜可使用500-700次。ETIGO-2型装置的绝缘磁场为“开环”结构,二极管间隙放电不稳定,在1100 kV放电电压下阳极聚乙烯膜仅可使用2-4次。外磁绝缘离子二极管阳极等离子体的形成基于阳极聚乙烯膜的表面脉冲击穿放电过程,聚乙烯膜表面发生电子崩,并形成导电通道,载能电子和离子的多次轰击导致聚乙烯膜表面粗糙化,聚乙烯分子链断裂形成低分子量物质,引起HIPIB束流密度降低,稳定性变差。通过改变阳极聚合物材料种类,优化二极管结构及放电回路的阻抗匹配,聚合物阳极的稳定放电次数可提高到1000次以上。
     采用束流密度30-1500A/cm~2,辐照次数1次的HIPIB辐照纯金属Ti和Al,被辐照表面的粗糙度R_a随束流密度增加而增大,200A/cm~2辐照条件下,两种金属的R_a分别从原始的0.181μm和0.164μm增加到0.693μm和0.372μm。通过辐照和沉积实验证明了表面微凸被优先加热而发生选择性烧蚀,产生液滴喷射现象,导致形成具有烧蚀坑和波纹状扰动的烧蚀表面形貌。随束流密度增加液滴喷射现象加剧,造成被辐照表面显著的粗糙化。
     采用10MHz的压电陶瓷—锆钛酸铅(PZT)压电晶体传感器,对束流密度30-400A/cm~2的HIPIB在纯金属Al,Ti,Cu,以及耐热钢基体上等离子体喷涂的ZrO_2热障涂层(TBC)等材料中诱导的应力波进行了实时动态测量,随束流密度从100 A/cm~2增加到400 A/cm~2,金属Al中的应力波强度从2 MPa增加到约80 MPa。350 A/cm~2、1-10次辐照条件下,金属Al、Ti和TBC中的应力波强度分别为70-90 MPa、27-40 MPa和15-20MPa。应力波的HIPIB诱导机制包括热弹性机制和反冲机制,分别形成热弹性波和反冲应力波。形成的应力波波形具有双峰结构,其中仅反冲应力波的强度随束流密度的增加显著增大。相同辐照条件下,低熔点材料因烧蚀剧烈而形成较强应力波,高熔点材料则应力波强度减弱,TBC的组织结构和界面特性造成应力波衰减和宽化。
     采用束流密度100-350 A/cm~2,辐照次数1-10次的HIPIB辐照纯金属Cu,随束流密度和辐照次数增加,被辐照表面的粗糙度R_a先减小后增大,100 A/cm~2、1次辐照条件下R_a从原始的0.12μm减小到0.09μm,350a/cm~2、10次辐照条件下达到最大,约0.51μm。被辐照表面的显微硬度则呈现递增趋势,350A/cm~2、10次辐照条件下表面显微硬度增加幅度最大,约70%。辐照形成的硬化层深度在100A/cm~2、10次条件下约为100μm,350A/cm~2、10次条件下增大到300μm。HIPIB辐照金属Cu造成表面位错、孪晶等缺陷增加和晶粒细化的强烈冲击硬化效应,归结为表面应力及反冲应力波的形变强化作用机制。HIPIB辐照金属Cu的球-盘式摩擦磨损实验表明,磨合阶段持续时间受被辐照表面粗糙度和硬度的影响,稳定磨损阶段的摩擦系数则受硬化层硬度和深度的影响。350A/cm~2、10次辐照条件下,金属Cu表面的摩擦系数从原始试样的0.9减小到0.45,磨痕深度则从20μm减小到0.8μm,耐磨性显著提高。
     采用束流密度100-350A/cm~2,辐照次数1-10次的HIPIB辐照Al-Cu合金,随束流密度和辐照次数增加被辐照表面粗糙化,350A/cm~2、10次辐照条件下R_a达到最大,约0.5μm。Al-Cu合金表面形成界面平直的熔融层,厚5-6.5μm,熔融层硬度随束流密度增加而增大,随辐照次数的变化不显著,350A/cm~2、1次辐照条件下熔融层硬度增加幅度最大,约50%。辐照形成的硬化层深度在100A/cm~2、10次条件下约为50μm,350A/cm~2、10次条件下增大到150μm。HIPIB辐照Al-Cu合金造成熔融层中Cu原子过饱和固溶于Al基体,以及位错等缺陷增加的冲击硬化效应,归结为固溶强化和反冲应力波形变强化的综合作用机制。HIPIB辐照Al-Cu合金的球一盘式摩擦磨损实验表明,Al-Cu合金耐磨性主要取决于硬化层的硬度和深度。200A/cm~2、10次条件下,Al-Cu表面的磨痕深度从原始试样的10μm减小到4μm,耐磨性改善。
High-intensity pulsed ion beam(HIPIB) technique has been progressively developed as a unique approach for surface modification of materials in the recent years. Generation of high-stability HIPIB for practical application necessitates fully understanding the characteristics of the magnetically insulated ion diode(MID). In this work, effect of the lifetime of anode polyethylene sheet on HIPIB generation from the MID with an external-magnetic field has been studied systematically to obtain the optimized ion beam parameters. Based on the achievement of high-stability HIPIB generation, the dynamic behavior of HIPIB-irradiated materials has been subsequently investigated to clarify the mass transfer mechanism on the different ablated surfaces of metallic materials, the formation and propagation of the induced stress wave in the irradiated materials, and the hardening mechanism of the irradiated materials, providing an experimental evidence with a further understanding of exploring the interaction mechanism between HIPIB and materials.
     Study of lifetime of anode polyethylene in the MIDs with an external-magnetic field operated in unipolar pulse mode has been carried out in parallel on TEMP-6 and ETIGO-2 HIPIB apparatuses. The discharge times of anode polyethylene sheet in the TEMP-6 HIPIB apparatus can reach to 500-700 pulses at a peak diode voltage of 420 kV, where the cathode with improved structure works as a "close" magnetic coil that effectively increases the continuity and uniformity of magnetic field. As for the MID in ETIGO-2 HIPIB apparatus, the distribution of the magnetic field is not so uniform due to the presence of an opening in the cathode, resulting in a much shorter lifetime of anode polyethylene with 2-4 pulses during discharging at a higher peak diode voltage of 1100 kV. The anode plasma is produced during the surface discharging process on polyethylene sheet under the electrical and magnetic fields in MID, i. e. high-voltage surface breakdown. The electron avalanche under the discharging process causes formation of discharge channels on the anode polyethylene surface. The bombardments of energetic electrons and ions lead to the surface roughening of the anode polyethylene, and the polyethylene in the surface layer degrades into low-molecular-weight polymer, resulting in the decrease of ion current density and the poor stability of HIPIB extraction. The stabilized discharge of anode polyethylene can exceed 1000 pulses through changing the anode polymer, and optimizing the structure and impedance of MID.
     HIPIB irradiation of pure Ti and Al was performed at the ion current density of 30-1500 A/cm~2 with 1 shot. Surface roughness (R_a) of the irradiated surfaces increased with increasing the ion current density for both the metals. The values of R_a increased from 0.227μm and 0.185μm for the non-irradiated Ti and Al to 0.639μm and 0.372μm for the irradiated Ti and Al at 200 A/cm~2, respectively. The selective ablation originated from surface irregularities with a preferential heating effect was confirmed by the irradiation and deposition experiments where the droplet ejection was detected on the irradiated Ti and Al surfaces. And the droplet ejection caused the disturbance features of crater and waviness on the ablated surface. As increasing the ion current density, droplet ejection became severer on the irradiated surface and resulted in the significantly roughening of the irradiated surface.
     The stress waves induced in the irradiated materials, i. e. pure Al, Ti, Cu and plasma sprayed ZrO_2 thermal barrier coating(TBC) on heat-resistant steel, have been measured in situ by using lead-zirconte-titanate(PZT) piezoelectric sensor with central frequency of 10 MHz during HIPIB irradiation at the ion current density of 30-350 A/cm~2 with shot nurnber of 1-10. With increasing the ion current density from 100 to 350 A/cm~2, the magnitude of stress wave for pure Al increased from 2 to 80 MPa. At 350 A/cm~2, the peak intensity of stress wave was 70-90 MPa and 27-40 MPa for the irradiated Al and Ti with 1-10 shots, respectively. And for TBC, the value decreased to 15-20 MPa. Two mechanisms account for the generation of Stress wave, i. e. thermoelastic and recoil, which resulted in the fomation of thermoelastic stress wave and recoil stress wave, respectivly. The intensity of recoil stress wave increased apparently with the increase of ion current density. Under the same HIPIB irradiation parameters, the intensity of induced stress wave on the materials with low melting temperature was higher than that of the materials with high melting temperature, due to the different melting and evaporation behavior on the irradiated surface. The structue of TBC with microcracks and cavities weakened the induced stress wave and changed the propagation process.
     Pure Cu was irradiated by HIPIB with the ion current density of 100-350 A/cm~2 and shot number of 1-10. The surface roughness of pure Cu firstly decreases and then increases as increasing the ion current density and the shot number. R_a decreased from 0.12μm for the non-irradiated surface to 0.09μm for the irradiated Cu at 100 A/cm~2 with 1 shot. The maximum roughness of 0.51μm was found at 350 A/cm~2 with 10 shots. The microhardness of the irradiated Cu increased with increasing the ion current density and the shot number, where the value increased nearly 70%at 350 A/cm~2 with 10 shots with the respect to the non-irradiated one. The hardened layer of the irradiated Cu at 100 A/cm~2 with 10 shots reached to 100μm, and the maximum thickness was 300μm under the irradiation condition of 350 A/cm~2 with 10 shots. HIPIB irradiation caused the grain refinement and increased the density of defects in the hardened layer, such as dislocations and twins etc. This shock-hardening effect is attributed to the strengthening resulted from the stress on the irradiated Cu surface and induced recoil stress wave. Based on the ball-on-disk wear tests, the duration of running-in stage depends on the roughness and the hardness of irradiated Cu surface. While the steady-state friction coefficient was mainly influenced by the hardness and the depth of hardened layer. For the irradiated Cu at 350 A/cm~2 with 10 shots, the friction coefficient decreased to a value of 0.45 from 0.9 for the non-irradiated Cu. Correspondingly, the depth of worn track significantly decreased from 20μm to 0.8μm.
     HIPIB irradiation into Al-Cu alloy was performed at the ion current density from 100 to 350 A/cm~2 with shot number of 1-10. It was found that the surface roughness increased with increasing the ion current density and the shot number. The maximum R_a of 0.5μm was obtained at 350 A/cm~2 with 10 shots. A melted layer of 5-6.5μm thick induced by HIPIB was formed on the Al-Cu alloy, with a straight interface between the melted layer and Al-Cu matrix. The microhardness of remelted layer increased as increasing the ion currednt density, and showed little change with increasing the shot number. The maximum value of microhardness was detected for the irradiated Al-Cu alloy with 350 A/cm~2 at 1 shot, with an increase up to 50%as compared to that of the non-irradiated Al-Cu alloy. The depth of hardened layer was about 50μm for the irradiated Al-Cu alloy, at 100 A/cm~2 with 10 shots, and increased to 150μm at 350 A/cm~2 with 10 shots. HIPIB irradiation resulted in the Cu supersaturated solution in Al lattice and the increase of defects density in the melted layer. This shock-hardening effect of Al-Cu alloy under HIPIB irradiation is attributed to the solution strengthening and the hardening by the induced recoil stress wave. The ball-on-disk wear tests demonstrated that the wear-resistance of irradiated Al-Cu alloy was influenced by the hardness and the depth of hardened layer. At 200 A/cm~2 with 10 shots, the depth of worn track on the irradiated Al-Cu alloy decreased to 6μm compared with that of 10μm for the non-irradiated one.
引文
[1] D.J. Johnson, G. W. Kuswa, A. V. Farnsworth, Jr., J. P. Quintenz, R. J. Leeper, E. J. T. Burns, S. Humphries, Jr..Production of 0.5-TW proton pulses with a spherical focusing magnetically insulated diode. Physical Review Letters, 1979, 42(9): 610-613
    [2] J. R Van Devender, D. L. Cook. Inertial confinement fusion with light ion beams. Science, 1986, 232:831-836
    [3] K. Kasuya, M. Watanabe, D. Ido, T. Adachi, K. Nishigori, T. Ebine, H. Okayama, M. Funatsu, H. Sunami, C. Wu, E. Hotta, S. Miyamoto, K. Yasuike, S. Nakai, S. Kawata, T. Okada, K. Niu. Production, diagnostic and application of pulsed ion beams with light and medium mass; LIB (and MIB) program in Japan. Fusion Engineering and Design, 1999, 44:319-326
    [4] 王淦昌,袁之尚.惯性约束核聚变.安徽教育出版社,1996.
    [5] J.M. Neri, D. A. Hammer, G. Ginet, R. N. Sudan. Intense lithium, boron, and carbon beams from a magnetically insulated diode. Applied Physics Letters, 1980, 37(1): 101-103
    [6] R.T. Hodgson, J. E. E. Baglin, R. Pal, J. M. Neri, D. A. Hammer. Ion beam annealing of semiconductors. Applied Physics Letters, 1980, 37(2): 187-189
    [7] Yu. R Usov, A. N. Didenko, (3. E. Remnev, B. I. Kuznetsov, A. A. Khazanov, E. I. Logatchev, V. S. Lopatin. Proceedings of the 3rd all-Russian conference on application of electron and ion technology for industry, Tbilisi, 1981. p. 1.10-113.
    [8] H.A. Davis, G. E. Remnev, R. W. Stinnett, K. Yatsui. Intense ion-beam treatment of materials. MRS Bulletin, 1996, 21:58-62
    [9] J. Piekoszew.ski, Z. Werner, W. Szymczyk. Application of high intensity pulsed ion and plasma beams in modification of materials. Vacuum, 2001, 63:475-481
    [10] R.W. Stinnett, R. G. Buchheit, E. L. Neau, M. T. Crawford, K. R Lamppa, T. J. Renk, J. B. Greenly, I. Boyd, M. O. Thompson, D. J. Rej. Ion beam surface treatment: a new technique for thermally modifying surfaces using intense, pulsed ion beams, by W. L. Baker GC. Proceeding of the 10th IEEE International Pulsed Power Conference, IEEE Piscataway, NJ, USA, 1995. p. 46-55.
    [11] A. D. Pogrebnjak, G. E. Remnev, l. B. Kurakin, A. E. Ligachev. Structural, physical and chemical changes induced in metals and alloys exposed to high power ion beams. Nuclear Instruments and Methods in Physics Research B, 1989, 36:286-305
    [12] 石磊,何小平,张嘉生,邱爱慈,王永昌,吴祖堂,丛培天.一台小型强流脉冲离子加速器.强激光与粒子束,2000,12(3):382-384
    [13] W.J. Zhao, G. E. Remnev, S. Yan, M. S. Opekounov, X. Y. Le, V. M. Matvienko, B. X. Han, J. M. Xue, Y. G. Wang. Intense pulsed ion beam sources for industrial applications. Review of Scientific Instruments, 2000, 71(2): 1045-1048
    [14] X.Y. Le, S. Yah, W. J. Zhao, B. X. Han, Y. G. Wang, J. M. Xue. Computer simulation of thermal-mechanical effects of high intensity pulsed ion beams on a metal surface. Surface and Coatings Technology, 2000, 128-129:381-386
    [15] X. P. Zhu, M. K. Lei, Y. C. Ma. A high-intensity pulsed ion beam (HIPIB) apparatus using MIDs of two different modes for surface engineering. Proc of the 3rd Inter Syrup on Pulsed Power and Plasma Applications, Institute of Fluid Physics, CAEP, Mianyang, China, 2002. p. 104-107.
    [16] X. P. Zhu, M. K. Lei, T. C..Ma. Surface morphology of titanium irradiated by high-intensity pulsed ion beam. Nuclear Instruments and Methods in Physics Research B, 2003, 211 : 69-79
    [17] S.M. Miao, M. K. Lei. Numerical analysis of ablated behaviors on titanium irradiated by high-intensity pulsed ion beam. Nuclear Instruments and Methods in Physics Research B, 2005, 229:381-391
    [18] E.L. Neau. Environmental and industrial applications of pulsed power systems. IEEE Transactions on Plasma Science, 1994, 22(1): 2-10
    [19] G.E. Remnev, I. F. Isakov, M. S. Opekounov, V. M. Matvienko, V. A. Ryzhkov, V. K. Strus, I. I. Grushin, A. N. Zakoutayev, A. V. Potyomkin, V. A. Tarbokov, A. N. Pushkaryov, V. L. Kutuzov, M. Yu. High intensity pulsed ion beam sources and their industrial applications. Surface and Coatings Technology, 1999, 114:206-212
    [20] J.C. Olson, H. A. Davis, D. J. Rej, W. J. Waganaar, R. W. Stinnett, D. C. Mcintyre. Deposition and surface treatment with intense pulsed ion beams. Journal of Electronic Materials, 1996, 25(1): 81-85
    [21] R.B. Miller. An introduction to the physics of intense charged particle beams. 1982.
    [22] J. Golden, T. J. Orzechowski, G. Bekefi. Magnetic insulation of an intense relativistic electron beam. Journal of Applied Physics, 1974, 45(7): 3211-3212
    [23] K.D. Bergeron. Two-species flow in relativistic diodes near the critical field for magnetic insulation. Physics of Fluids, 1976, 28(6): 306-308
    [24] R.N. Sudan, R. V. Lovelace. Generation of intense ion beams in pulsed diodes. Physical Review Letters, 1973, 31(19): 1174-1177
    [25] R.V. Lovelace, E. Ott. Theory of magnetic insulation. Physics of Fluids, 1974, 17(6): 1263-1268
    [26] T.J. Orzechowski, G. Bekefi. Current flow in a high-voltage diodesubjected to a crossed magnetic field. The Physicsof Fluids, 1976, 19(1): 43-51
    [27] Y.M. Antonsen, E. Ott. Theory of intense ion beam acceleration. Physics of Fluids, 1976, 19(1): 52-59
    [28] K. Masugata, T. Nakayama, Y. Inazumi, K. Konno, M. Nakabaru, S. Takano, M. Matsui, J. Irisawa, K. Yatsui. Generation and focussing of intense pulsed light-ion beam at Nagaoka -ETIGO Project. Japanese Journal of Applied Physics, 1981,20(5): L347-L350
    [29] X. R Zhu, M. K. Lei, T. C. Ma. Characterization of a high-intensity bipolar-mode pulsed ion source for surface modification of materials. Review of Scientific Instruments, 2002, 73(4): 1728-1733
    [30] X.P. Zhu, M. K. Lei, Z. H. Dong, T. C. Ma. Characterization of a high-intensity unipolar-mode pulsed ion source with improved magnetically insulated diode. Review of Scientific Instruments, 2003, 74(1): 47-52
    [31] 1981, (1): 21-23
    [32] K. Yatsui, W. Jiang, H. Suematsu, T. Suzuki, S. C. Yang, M. Hirai, T. Arikado. Frontiers of applications of pulsed power technology. Proc of the 3rd Inter Syrup on Pulsed Power and Plasma Applications, Institute of Fluid Physics, CAEP, Mianyang, China, 2002. p. 3-6.
    [33] Z. Werner, J. Piekoszewski, W. Szymczyk. Generation of high-intensity pulsed ion and plasma beams for material processing. Vacuum, 2001, 63:701-708
    [34] 石磊,邱爱慈,王永昌,何小平,张嘉生,蒯斌,曾正中.高功率脉冲离子束的产生.强激光与粒子束,1999,11(6):776-780
    [35] 朱小鹏.强流脉冲离子束特性及其烧蚀作用的实验研究.大连理工大学博士学位论文,2003.
    [36] J. B. Greenly, M. Ueda, G. D. Rondeau, D. A. Hammer. Magnetically insulated ion diode with a gas-breakdown plasma anode. Journal of Applied Physics, 1988, 63(6): 1872-1876
    [37] D.J. Rej, R. R. Bartsch, H. A. Davis, R. J. Faehl, J. B. Greenly, W. J. Waganaar. Microsecond pulse width, intense, light-ion beam accelerator. Review of Scientific Instruments, 1993, 64: 2753-2760
    [38] G.P. Johnston, R Yiwari, D. J. Rej, H. A. Davis, W. J. Waganaar, R. E. Muenchausen, K. C. Walter, M. Nastasi, H. K. Schmidt, N. Kumar, B. Lin, D. R. Tallant, R. L. Simpson, D. B. Williams, X. Qiu. Preparation of diamondlike carbon films by high-intensity pulsed-ion-beam deposition. Journal of Applied Physics, 1994, 76(10): 5949-5954
    [39] H.A. Davis, B. P. Wood, C. P. Munson, L. J. Bitteker, M. A. Nastasi, D. J. Rej, W. J. Waganaar, K. C. Walter, D. M. Coates, H. M. Schleinitz. Ion beam and plasma technology development for surface modification at Los Alamos National Laboratory. Materials Chemistry and Physics, 1998, 54:213-218
    [40] Vit. Bystritskii, E. Garate, N. Rostoker, Y. Song, A. VanDrie, M. Anderson, A. Qerushi, S. Dettrick, M. Binderbauer, J. K. Walters, V. Matvienko, A. Petrov, A. Shlapakovsky, N. Polkovnikova, I. Isakov. Generation and transport of a low energy intense ion beam. Journal of Applied Physics, 2004, 96(2): 1249-1256
    [41] Y. Nakagawa, T. Ariyoshi. Development of an intense pulsed metallic ion beam source. IEEE Transactions on Plasma Science, 1988, 16(4): 459-464
    [42] Y. Nakagawa, K. Isaka, A. Kohchi, K. Matsushita. Pulsed intense ion diode for surface modification. Review of Scientific Instruments, 1994, 65(4): 1344-1347
    [43] A.N. Didenko, A. E. Ligachev, E. I. Logachev, A. D. Pogrebnjak, L. N. Puchkareva, V. P. Nesterenko, G. E. Remnev, Sh. M. Ruzimov Structure modification and mechanical properties of alloys exposed to pulsed ion beams. Nuclear Instruments and Methods in Physics Research B, 1986, 17:165-169
    [44] G.E. Remnev, I. F. Isakov, M. S. Opekounov, G. I. Kotlyarevsky, V. L. Kutuzov, V. S. Lopatin, V. M. Matvienko, M. Yu. Ovsyannikov, A. V. Potyomkin, V. A. Tarbokov. High-power ion beam sources for industrial application. Surface and Coatings Technology, 1997, 96:103-109
    [45] I. F. Isakov, V. N. Kolodii, M. S. Opekunov, V. M. Matvienko, S. A. Pechenkin, G. E. Remnev, Yu. R Usov Sources of high power ion beams for technological applications. Vacuum, 1991, 42: 159-162
    [46] K. Yatsui, W. Jiang, H. Suematsu, N. Harada, G. Imada, T. Suzuki, Y. Kinemuchi, S. C. Yang. Pulsed power technology and its applications at extreme energy-density research institute (EDI), Nagaoka. Japanese Journal of Applied Physics, 2001, 40(2B): 921-929
    [47] H.A. Davis, G. P. Johnston, J. C. Olson, D. J. Rej, W. J. Waganaar, C. L. Ruiz, F. A. Schmidlapp, M. O. Thompson. Characterization and modeling of the ablation plumes formed by intense-pulsed ion beam impact on solid targets. Journal of Applied Physics, 1999, 85(2): 713-721
    [48] K. Yatsui, X. D. Kang, T. Sonegawa, T. Matsuoka, K. Masugata, Y. Shimotori, T. Satoh, S. Furuuchi, Y. Ohuchi, T. Takeshita, H. Yamamoto. Applications of intense pulsed ion beam to mate, rials science. Physics of Plasmas, 1994, 1 (5): 1730-1737
    [49] V.V. Kremnev. Optimization of the SF_6-N_2 gas mixture composition in a high-power nanosecond bipolar voltage generator, by G. Mesyats BK, G. Remnev. Proceedings of 1st International Congress on Radiation Physics, High Current Electronics, and Modification of Materials, Tomsk Polytechnic University, Tomsk, 2000. p. 111-114.
    [50] S. Korenev. Ion beam of dielectrics in the pulsed ion source with explosive emission. Review of Scientific Instruments, 1994, 65(4): 1342-1344
    [51] A.D. Pogrebnjak, V. T. Shablya, N. V. Siridenko et al. Study of deformation states in metals exposed to intense-pulsed-ion beams (IPIB). Surface and Coatings Technology, 1999, 111 : 46-50
    [52] I.B. Kurakin, A. E. Ligachov, J. E. Remnev, M. G. Sipailo. Wear resistance of ion-implanted metallic materials. Surface and Coatings Technology, 1992, 51:180-185
    [53] W. Biller, D. Heyden, D. Miller, G. K. Wolf. Modification of steel and aluminum by pulsed energetic ion beams. Surface and Coatings Technology, 1999, 116-119:537-542
    [54] 赵渭江,颜莎,乐小云,韩宝玺,薛建明,王宇钢,G.E.Remnev,M.S.Opekouno V,I.F.Isakov,I.I.Grushin.强脉冲离子注入中的脉冲能量效应研究.核技术,2000,23(10):689-696
    [55] D.I. Proskurovsky, V.P. Rotshtein, G E. Ozur, Yu. F. Ivanov, A. B. Markov. Physical foundations for surface treatment of materials with low energy, high current electron beams. Surface and Coatings Technology, 2000, 125:49-56
    [56] R.M. Gilgenbach, S. D. Kovaleski, J. S. Lash, Lay-Kee Ang, Y. Y. Lau. Science and applications of energy beam ablation. IEEE Transactions on Plasma Science, 1999, 27(1): 150-158
    [57] 1999, 169(11): 1243-1271
    [58] A.N. Valyaev, M. K. Kylyshkanov, A. D. Pogrebnjak, A. A. Valyaev, S. V. Plotnikov. Modification of mechanical and trib01ogical properties of R6M5 steel and Be by intense pulsed-ion and pulsed-electron beams. Vacuum, 2000, 58:53-59
    [59] D.J. Rej, H. A. Davis, J. C. Olson, G. E. Remnev, A. N. Zakoutaev, V. A. Ryzhkov, V. K. Struts, I. F. Isakov, V.A. Shulov, N. A. Nochevnaya, R. W. Stinnett, E. L. Neau, K.Yatsui, W. J. Jiang. Materials processing with intense pulsed ion beams. Journel of Vacuum Science and Technology, 1997, A15(3): 1089-1097
    [60] A.N. Valyaev, V. S. Ladysev, A. D.Pogrebnjak, A. A. Valyaev, S. V. Plotnikov. Comparative analysis of-radiation damages, mechanical and tribological properties of α-Fe exposed to intense-pulsed electron and ion beams. Nuclear Instruments and Methods in Physics Research B, 2000, 161-163:1132-1136
    [61] B.X. Han, S. Yan, X. Y. Le, W. J. Zhao, G. E. Remnev, M. S. Opekounov, I. F. Isakov, I. I. Grushin. The phase and microstructure changes in 45~# steel irradiated by intense pulsed ion beams. Surface and Coatings Technology, 2000, 128-129:387-393
    [62] H. Akamatsu, T. Ikeda, K. Azuma, E. Fujiwara, M. Yatsuzuka. Surface treatment of steel by short pulsed injection of high-power ion beam. Surface and Coatings Technology, 2001, 136:269-272
    [63] V. Lavrentiev, C. Hammerl, B. Rauschenbach, O. Kukharenko. Formation of hardened surface layers in titanium under irradiation with intense ion beams. Scripta Materialia, 2001, 44: 625-630
    [64] A.D. Pogrebnjak, A. G. Lebed, Y. F. Ivanov. Modification of single crystal stainless steel structure (Fe-Cr-Ni-Mn) by high-power ion beam. Vacuum, 2001, 63:483-486
    [65] A. Hiroshi, Y. Mitsuyasu. Simulation of surface temperature of metals irradiated by intense pulsed etecton, ion and laser beams. Surface and Coatings Technology, 2003, 169-170:219-222
    [66] M. Yatsuzuka, T. Yamasaki, H. Uchida, Y. Hashimoto. Amorphous layer formation on a Ni_(65)Cr_(15)P_(16)B_4 alloy by irradiation of an intense pulsed ion beam. Applied Physics Letters, 1995, 67(2): 206-207
    [67] A.D. Korotaev, A. N. Tyumentsev, M. V. Tretyjak, Yu. E Pinzhin, G. E. Remnev, D. A. Shchipakin. Surface morphology and defect substructure of the surface layer of Ni, Al treated by a High power ion beam. The Physics of Metals and Metallography, 2000, 89:49-55
    [68] A.D. Korotaev, S. V. Ovchinnikov, Yu. I. Pochivalov, A. N. Tyumentsev, D. A. Shchipakin, M. V. Tretyjak, I. F. Isakov, G. E. Remnev. Structure-phase states of the metal surface and undersurface layers after the treatment by powerful ion beams. Surface and Coatings Technology, 1998, 105: 84-90
    [69] 雷明凯,苗收谋.强流载能束与材料表面相互作用的热效应.热科学与技术,2003,2:106-111
    [70] A.D. Pogrebnjak, I. E Isakov, M. S. Opekunov, Sh. M. Ruzimov, A. E. Ligachev, A. V. Nesmelov, I. B. Kurakin. Increased wear resistance and positron annihilation in Cue, xposed to high power ion beam. Physics Letters A, 1987, 123(8): 410-412
    [71] A.D. Pogrebnjak, Sh. M. Ruzimov. Increased microhardness and positron annihilation in Al exposed to a high-power ion beam. Physics Letters A, 1987, 120(5): 259-261
    [72] I.F. Isakov, A. E. Ligachev, A. D. Pogrebnjak, G. E. Remnev. Changed structure and improved operation characteristics of metals and alloys exposed to high power ion beams. Nuclear Instruments and Methods in Physics Research B, 1987, 28:37-40
    [73] A.D. Pogrebnjak. Metastable states and structural phase changes in metals and alloys exposed to high power pulsed ion beams. Physica Status Solidi A- Applied Research, 1990, 117:18-51
    [74] G.E. Remnev, V. A. Shulov. Application of high-power ion beams for technology. Laser and Particle Beams, 1993, 11 (4): 707-731
    [75] C.A. Meli, K. S. Grabowski, D. D. Hinshelwood, S. J. Stephanakis, D. J. Rej, W. J. Waganaar. Film. deposition and surface modification using intense pulsed ion beams. Journal of Vacuum Science and Technologe A, 1995, 13: 1182-1187
    [76] M. Watanabe, H. Okayama, M. Funatsu, K. Kasuya. Diagnostics of ablation process induced by pulsed ion beam. Fusion Engineering and Design, 1999, 44: 267-270
    [77] W. Jiang, N. Hashimoto, H. Shinkai, K. Ohtomo, K. Yatsui. Characteristics of ablation plasma produced by pusled light ion beam interaction with targets and applications to materials science. Nuclear Instruments and Methods in Physics Research A, 1998, 415:533-538
    [78] S. Couturier, T. de Resseguier, M. Hallouin, J. P. Romain, F. Bauer. Shock profile induced by short laser pulses. Journal of Applied Physics, 1996, 79(12): 9938-9942
    [79] 1993, 63(1): 31-40
    [80] S.A. Chistjakov, A. D. Pogrebnjak, G. E. Remnev. Dynamical processes and changes in metal structure induced by high power beams. Nuclear Instruments and Methods in Physics Research B, 1989, 42:342-345
    [81] Y. Shimotori, M. Yokoyama, S. Harada, K. Masugata, K. Yatsui. Quick deposition of ZnS:Mn electroluminescent thin films by intense, pulsed, ion beam evaporation. Japanese Journal of Applied Physics, 1989, 28(3): 468-472
    [82] 周南,牛胜利,丁升,邱爱慈.强脉冲离子束辐照热—力学效应研究.强激光与粒子束,2000,12:249-253
    [83] A.N. Valyaev, Yu. K. Nazarov, A. D. Pogrebnjak. Phase transformation in metals exposed to high power ion beams. Proceedings of International Conference on Ion Implantation and Ion Beam Equipment, World Scientific, Singapore/New Jersey/London/Hong Kong, 1990. p. 418-424.
    [84] X.Y. Le, W. J. Zhao, S. Yan, B. X. Han. Numerical analysis of thermodynamical process in the thin metal samples irradiated by IPIB. Current Applied Physics, 2001, 1:219-223
    [85] 乐小云,赵渭江,颜莎,韩宝玺,向伟.强脉冲离子束辐照金属材料表面热力学效应计算.强激光与粒子束,2001,13(4):456-460
    [86] 1998, 24(3): 47-53
    [87] 1998, 24(20): 72-77
    [88] 胡永峰,朱雪梅,朱小鹏,雷明凯.强流脉冲离子束辐照合金Ti6A14V的耐蚀性.大连铁道学院学报,2002,23(3):84-87
    [89] B.X. Han, H. T. Zhang, W. J. Zhao, S. Yan, X. Y. Le, W. Xiang, T. M. Wang, G. E. Remnev. A study on microstructure and service property of Ni_3Al base alloy irradiated by intense pulsed ion beams. Surface and Coatings Technology, 2002, 158-159:482-487
    [90] 朱小鹏,胡永峰,苗收谋,董志宏,雷明凯.强流脉冲离子注入在材料表面工程中的应用.第四届全国表面工程学术交流大会论文集,中国机械工程学会表面工程分会,湖北宜昌,2001.p.186-191.
    [91] H.C. Miller. Flashover of insulators in vacuum: review of the phenomena and techniques to improved holdoff voltage. IEEE Transactions on Electrical Insulation, 1993, 28(4): 512-527
    [92] 屠德民,伍学正,杨琪如,程锡圭.聚乙烯树枝引发的新机理.场致电极和场致发射的综合效应.西安交通大学学报,1980,14(1):79-90
    [93] J. Martinez-Salazar, A. Alizadeh, J. J. Jimenez, J. Plans. On.the melting behaviour of polymer single crystals in a mixture with a compatible oligomer: 2. Polyethylene / paraffin. Polymer, 1996, 37(12): 2367-2371
    [94] 石磊,何小平,张嘉生,邱爱慈,吴祖堂.绝缘环厚度对200kV箍缩反射离子二极管电参数的影响.强激光与粒子束,2000,12(6):756-758
    [95] 2002, 28(13): 36-39
    [96] 严钟豪,谭祖根.非电量电测技术.机械工业出版社,1983.
    [97] X. R Zhu, M. K. Lei, Z. H. Dong, S. M. Miao, T. C. Ma. Crater formation on the surface of titanium irradiated by a high-intensity pulsed ion beam. Surface and Coatings Technology, 2003, 173:105-110
    [98] 2002, 72(8): 34-43
    [99] V.I. Boiko, I. V. Shamanin, K. V. Yushitsin. Sound generation by pulsed ion beams of 10~8 to 10~9 W/cm~2 in metallic targets. Physica Status Solidi A-Applied Research, 1991, 128:369-374
    [100] 1992, 1:29'-33
    [101] 周南,乔登江.脉冲束辐照材料动力学.国防工业出版社,2002.
    [102] 鹏常贤,林鹏,谭红梅,唐玉志,刘晓玲.PVDF在电子束辐照材料产生的热激波测量中的应用.高压物理学报,2002,16(1):7-15
    [103] A.D. Pogrebnjak,.V.S. Ladysev, N. A. Pogrebnjak, A. D. Michaliov, V. T.Shablya, A. N. Valyaev, A. A. Valyaev, V. B. Loboda. A comparison of radiation damage and mechanical and tribological properties of α-Fe exposed t6 intense pulsed electron and ion beams. Vacuum, 2000, 58:45-52
    [104] 1980, 50(10): 2205-2208
    [105] C. S. Smith. Metallographic studies of metals after explosive shock. Transactions of the Metallurgical Society of AIME, 1958, 212: 574-589
    [106] 1972, 34(2): 378-384
    [107] 乐小云.强流脉冲离子束辐照金属材料表面热力学效应的研究.北京大学博士学位论文,2000.
    [108] D.J. Rej, H. A. Davis, M. Nastasi, J. C. Olson, E. J. Peterson, R. D. Reiswig, K. C. Walter, R. W. Stinnett, G. E. Remnev, V. K. Struts. Surface modification of AISI-4620 steel with intense pulsed ion beams. Nuclear Instruments and Methods in Physics Research B, 1997, 127-128:987-991
    [109] L.F.Mondolfo.铝合金的组织与性能.冶金工业出版社,1988.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700