金属涂层结合性能的复合弹丸撞击方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用新型复合弹丸撞击法,对金属涂层界面间的结合强度进行了理论分析与试验研究。
     采用应力波理论,建立了一维应力波模型,对复合弹丸撞击过程中应力波传播过程与规律进行分析;接着,建立复合弹丸撞击金属涂层钢板的试验系统,以弹道枪作为发射装置,采用覆有金属薄膜的弹丸撞击涂层试件,发现了试件上涂层剥落现象,验证了弹丸撞击法的可行性;基于此,采用非线性有限元程序ANSYS/LS-DYNA对复合弹丸撞击涂层钢板的过程进行了数值仿真,获得了基体厚度、弹头薄膜与钢板涂层厚度的比值、弹丸撞击的速度等参数变化时,基体及界面涂层侧法向的应力分布情况,分析了镍涂层与陶瓷涂层对结合性能的影响,并分析了应用壳单元与实体单元在本模型中仿真薄膜与涂层时,得到不同单元对仿真结果精度的影响;结合之前的应力波理论解,将有限元仿真结果与之对比,进行理论上的相互验证;最后提出了应力测量的测试系统,介绍了测试原理,分析了以PVDF压电传感器的不同测量模式下的电路特点,并应用Multisim对测量电路进行仿真与分析。
A new method of a composite bullet impact against the metal covered with a film is proposed to analyze and research the bonding strength between the metal and film. The work contains two aspects both in theory and experiment.
     A one-dimensional model is established by the theory of Stress-wave in order to find the rule of the process of composite projectile impacting. Secondly, establish an experimental system of this new method. A ballistic gun is used to launch bullet with a metallic coating to impact the specimen. The result is that the film is falling from the metal and it verifies the feasibility of this method. For this reason, the process of projectile impacting against the specimen is also simulated by using transient explicit finite element code ANSYS/LS-DYNA. Base qualitative analysis of the thickness, the ratio of film and the substrate and the velocity of bullet on the interface normal stress and substrate stress by means of numerical simulation. Analyze the performance of combination when the substrate is covered with different films, for example, the nickel or the ceramic film. Make a contrast and analyze shell elements and solid elements which used to simulate the coating and film in order to get the accurate result of numerical simulation. Theoretical arithmetic of stress wave and numerical simulation are combined to comprise and analyze. At last, put forward a stress test system, describe the test principle and analyze PVDF piezoelectric sensors to measure different characteristics of the circuit mode, and uses the software of Multisim to do circuit simulation and analysis.
引文
[1]王力衡,黄运添,郑海涛.薄膜技术.北京:清华大学出版社,1991.
    [2]沈宁.表面处理工艺手册.上海:上海科学技术出版社,1991.
    [3]冯爱新,谢华锟,张永康等.膜-基界面结合性能激光划痕检测方法技术优势分析.工具技术,2003,37(9):10-13.
    [4]崔春翔,吴人洁,王浩伟.金属基复合材料界面特征与力学性能.宇航材料工艺,1997,1:1-6.
    [5]阚剑平.激光层裂法检测薄膜与基体结合强度有限元分析.江苏大学硕士学位论文.2002.
    [6]苏修梁,张欣宇.表面涂层与基体间的界面结合强度及其测定.电镀与环保,2004,24(2):6-11.
    [7]薛玉娥,林香祝,张影寰.用划痕法测定硬质涂层的结合力.陕西机械学院学报,1989,5(1):65-73.
    [8]蒋丽梅,肖颖喆,滑广军等.划痕法对金属包装材料涂层/基底体系界面结合性能的研究.包装工程,2010,31(9):60-63.
    [9]张宁,聂璞林,李铸国等.鼓泡法试验薄膜力学行为的研究.力学季刊,2010,31(1):15-20.
    [10]胡斌,孙方宏,简小刚等.鼓泡法在金刚石薄膜/硅基界面结合强度定量测量中的应用分析与试验研究.航空精密制造技术,2003,39(4):21-24.
    [11]简小刚,孙方宏,陈明等.鼓泡法定量测量金刚石薄膜膜基界面结合强度的实验研究.金刚石与磨料磨具工程,2003,36(4):1-4.
    [12]J.L. Vossen. Measurements of film-substrate bond strength by laser spallation. Adhesion Measurement of Thin Films, Thick Films and Bulk Coatings, American Society for Testing and Materials, ASTM STP 640 (1978):122-123.
    [13]曾丹勇,张永康,於自岚.激光层裂法测量复合材料界面拉伸强度研究进展.材料科学与工程,2001,19(1):148-152.
    [14]V. Gupta, A.S. Argon, D.M.Parks, et al. Measurement of interface strength by a laser spallation technique. Journal of the Mechanics and Physics of Solids,1992,40(1): 141-180.
    [15]周明,张永康,蔡兰.激光层裂法定量测定薄膜界面结合强度.中国科学(E辑).2002,32(1):28-36.
    [16]杨班权,陈光南,张坤等.涂层/基体材料界面结合强度测量方法的现状与展望.力学进展,2007,37(1):67-79.
    [17]Ting B Y, Winer W Q. A semi-quantitative method for thin film adhesion measurement. Journal of Tribology.1985,107:472-477.
    [18]杨金霞,崔振铎,魏强等.基体拉伸法测试二氧化钛薄膜界面结合强度.功能材料,2006,12(37):1923-1925.
    [19]Agrawal D C, Raj R. Study of aggregation in dilute solution of alumina particles by light scattering. Acta Metall,1987,37(1):1265-1271.
    [20]郑小玲,游敏.拉伸法测定涂层界面强度的适用性研究.粘接,2003,24(2):7-9.
    [21]Era H, Otsubo F, Uchida T, Fukuda S, Kishitake K.A modified shear test for adhesion evaluation of thermal sprayed coating.Materials Science and Engineering A,1998, 251(1-2):166-172.
    [22]胡奈赛,徐可为,何家文.涂、镀层的结合强度评定.中国表面工程.1998,38(1):31-36.
    [23]Chen-Wu Wu, Zhi-Lin Wu, Kun Zhang, Guang-Nan Chen. Evaluation of film-substrate adhesion via impact using caoated bullets. Journal of Mechanics of Materials and Structures,2009,4(10):1703-1709.
    [24]Zhi-Lin Wu, Chen-Wu Wu, Guang-Nan Chen and Kun Zhang. On a novel method of impact by a front-end-coated bullet to evaluate the interface adhesion between film and substrate, Progress in Organic Coatings,681-2 (2010) 19-22.
    [25]王礼立.应力波基础.北京:国防工业出版社,2010.
    [26]郭伟国,李玉龙,索涛等.应力波基础简明教程,西安:西北工业大学出版社,2007.
    [27]马晓青.冲击动力学.北京:北京理工大学出版社,1992.
    [28]刘瑞军,陈东林,何卫锋.基于激光冲击强化的冲击波实验研究.应用激光,2010,30(3):204-206.
    [29]吴志林,张强.薄膜弹丸对涂层基体冲击的界面结合强度分析.科学技术与工程,2011,11(34):8413-8418.
    [30]王宇新,顾元宪,孙明.冲击载荷作用下多孔材料复合结构防爆理论计算.兵工学报.2006,27(2):375-379.
    [31]刘国庆,杨庆东ANSYS工程应用教程.北京:中国铁道出版社,2003.
    [32]何涛,杨竞,金鑫等ANSYS 10.0/LS-DYNA非线性有限元分析实例指导教程.北京:机械工业出版社,2007.
    [33]白金泽LS-DYNA3D理论基础与实例分析.北京:科学出版社,2005.
    [34]唐建国.电沉积镍涂层薄板的冲压成形极限预测与数值模拟.湘潭大学硕士学位论文,2009.
    [35]赵海鸥. LS-DYNA动力学分析指南.北京:兵器工业出版社,2003.
    [36]杨雄源.复合杆体碰撞机理研究.南京理工大学硕士学位论文.2007.
    [37]马志垒.纤维复合材料冲击数值分析.郑州大学硕士学位论文,2010.
    [38]曾正明.实用工程材料技术手册.北京:机械工业出版社,2000.
    [39]张晓晴,宁建国,赵隆茂等.Al2O3陶瓷动态力学性能的实验研究.北京理工大学学报.2004,24(2):178-181.
    [40]Johnson G R, Holmquist T J. A Computational Constitutive Model for Brittle Materials Subjected to large Strains, High Rates and High Pressure. Shock Wave and High Strain Rates and High Pressures. Marcel Dekker Inc. New York.1992:1075-1081.
    [41]Johnson G R, Holmquist T J. An improved computational constitutive model for brittle materials. In:Schmidt S C,Shaner J W et al.editors.High Pressure Science and Technology-1993, New York:AIP Press,1994, (2):981-984 (79).
    [42]Timothy J.Holmquist, Gordon R. Johnson. A Computational Constitutive Model for Glass Subjected to Large Strains, High Strain Rates and High Pressures. Journal of Applied Mechanics.
    [43]李平.陶瓷材料的动态力学响应及其抗长杆弹彻机理.博士学位论文.北京理工大学.2002.
    [44]C.E. Anderson, C E, Johnson G R, Holmquist T J. Ballistic experiments and computations of confined 99.5% Al2O3 ceramic titles.Proceedings of the 15th international symposium on ballistics. Israel, Jerusalem.1995,2:65-72.
    [45]唐录成.平面冲击加载下A95陶瓷动态力学性能研究.重庆大学博士学位论文,2009.
    [46]宋贵宏,杜昊,贺春林.硬质与超硬涂层一结构、性能、制备与表征.北京:化学工业出版社,2007.
    [47]曾丹勇,周明,於自岚等.用激光技术定量测量涂层/基体的结合强度.应用激光.21(4):240-243.
    [48]Lev L C, Argon A S. Spallation of thin elastic coatings from elastic substrates by laser induced compress pulse. J Appl Phys,1996,80(1):529-542.
    [49]曾丹勇,周明,於自岚等.用激光技术定量测量涂层/基体的结合强度.应用激光,2001,21(4):240-246.
    [50]Kawai H. The piezoelectricity of poly(vinylidene fluoride). Japan Journal of Applied Physics,1969,8(7):975-976.
    [51]李思忠.高速冲击条件下PVDF传感元件测压技术及其工程应用.四川大学,2001.
    [52]辛朝军,金星,崔村燕等.聚偏氟乙烯在重复脉冲激光推进推力测量中的应用.测试技术学报,2010,24(6):176-480.
    [53]具典淑,周智,欧进萍.基于PVDF的金属构件裂纹监测研究.压电与声光,2004,35(4):450-453.
    [54]陆茵,陈欢林,李伯耿.制膜条件对PVDF膜形态结构的影响.功能高分子学报,2010,15(2):171-176.
    [55]赵红平,叶琳,陆中琪. PVDF压电薄膜在应力波测量中的应用.力学与实践.2004,26(1):37-41.
    [56]王俊峰.碰撞冲击力的数值计算与测试方法研究.上海交通大学硕士学位论文.2007.
    [57]万建国,朱纪军,石立华.PVDF压电薄膜在结构监测中的应用初探.传感技术学报,1998(1):18-24.
    [58]金观昌,于森,鲍乃铿PVDF多点脉搏计算机辅助测试系统研究.清华大学学报(自然科学版),1999,39(3):117-120.
    [59]Gustavson P, Tasker D, Forbes J. PVDF pressure transducers for shock wave and explosives research. AD-A277319,1994.
    [60]曾辉,余尚江,杨吉祥等. PVDF压力传感器的动态灵敏度校准.传感器技术,2003,22(10):39-41.
    [61]黄正平.爆炸与冲击电测技术.北京:国防工业出版社,2006.
    [62]彭常贡,林鹏,谭红梅,等.PVDF在电子束辐射材料产生的热激波测量中的应用.高压物理学报,2002,16(1):7-16.
    [63]李焰,王凯民,谭红梅等PVDF应力计在起爆试验研究中的应用.火工品,2003,3:6-10.
    [64]周彬.PVDF在雷管输出冲击波测试中的应用.南京理工大学硕士学位论文,2008.
    [65]张晶,李心广.基于multisim的电路设计与仿真.计算机仿真,2005,22(5):109-111.
    [66]马风格,梁夏,李桂香. MultiSIM在电子线路实验教学中的应用探索.实验技术与管理,2005,22(12):73-75.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700