LD侧面泵浦全固态多波长激光器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全固态多波长激光器自身所具有的多波长激光同时或交替输出的独特优势,使其应用范围比单一波长激光装置更加广泛,尤其在医学领域中,从现代临床医学发展的趋势看,全固态多波长激光器有着不可替代的作用,因其具有体积小、效率高、节能环保、寿命长等一系列优点,已有逐步取代多波长气体和染料激光器的趋势,潜在的市场需求也十分巨大。本文以“LD侧面泵浦全固态多波长激光同时输出”为研究中心,对不同波长频率变换理论、多波长声光调Q理论进行了理论研究,对连续和准连续红(660nm)、黄(589nm)、绿(532nm)三波长激光进行了系统的腔型设计和实验研究,对1064nm、1319nm基波及其二次谐波同时输出特性进行了初步实验研究,并对高功率泵浦条件下其热透镜效应的补偿进行了理论计算和模拟。论文工作的主要成果如下:
     1.概述了获得多波长激光的方法、全固态多波长激光晶体及器件的研究现状、全固态多波长激光在医学上的应用以及本论文研究的主要内容、目的和意义;
     2.从耦合波方程出发,推导了平面波和高斯波近似下小信号和大信号和频转换效率与倍频转换效率,计算模拟了不同相位匹配条件下相位匹配角度之间的关系以及和频晶体温度变化对相位匹配角度的影响,计算模拟了不同相位匹配条件下的有效非线性系数以及和频晶体温度对有效非线性系数的影响;
     3.从速率方程出发,建立了多波长激光声光调Q的速率方程,研究了声光调Q技术对多波长激光输出特性的影响,包括对同一激光晶体同时发出不同波长基频激光经非线性频率变换实现多波长激光输出的影响,以及不同激光晶体发出不同波长基频光后经非线性频率变换实现多波长激光输出的影响;
     4.研究了红(660nm)、黄(589nm)、绿(532nm)三波长激光连续输出和准连续输出的特性,首先从全固态黄光激光器的研究现状出发设计了新型的“T”型复合腔黄光激光系统,并对激光腔中各参数对系统性能的影响作了分析,在此基础上,发展出“十”字复合腔结构,在实验中获得了高功率、高光束质量、稳定性能好的红、黄、绿多波长激光输出;
     5.主要研究了红(660nm)、绿(532nm)及红外(1064nm和1319nm)多波长激光输出的特性,从理论上分析了不同波长激光腔镜透过率、腔内损耗以及水温等对多波长激光输出特性的影响,在实验中分别采用不同型号的模块实现多波长激光输出,对理论进行验证,并在在理论上初步设计分析了高功率下望远镜系统对热透镜效应的补偿。
All-solid-state multi-wavelength lasers have wide scope of applications in many fields than single wavelength lasers, because it is of the unique advantages of multi-wavelength lasers emission simultaneously or alternatively. With the development of modern clinical medicine, all-solid-state multi-wavelength laser has irreplaceable role, and it will gradually replace multi-wavelength gas and dye laser because of its small size, high efficiency, high energy and environmental protection, long lifetime, etc., so the potential market demand is quite large. This paper focused on the study of "LD side-pumped multi-wavelength all-solid-state lasers output simultaneously" , then made theoretical research on frequency conversion of different-wavelength lasrs and multi-wavelength acousto-optic Q. On the basis of designing the optimal cavity, the experimental research on the continuous and quasi-continuous three-wavelength lasers (red, yellow and green) has been done. The preliminary experimental research about simultaneous output of fundamental and second harmonic wave has also been studied, then the theoretical calculation and simulation about compensation of the thermal lens in the condition of high-power has been researched as well. The main contents of the paper are listed as follows:
     1. Reviewed the methods of obtaining multi-wavelength lasers, the research status of all-solid-state multi-wavelength laser crystals and devices, the application of multi-wavelength lasers in medicine, and generalized the main content, purpose and significance of this paper.
     2. Based on the coupled-wave equation, the sum and double frequency conversion efficiency of small and large signals in the approximation of plane wave and Gaussian wave were derived. The relationship of phase-matching angles in different phase-matching conditions and the impact of the temperature of sum frequency crystal on phase-matching angle were also calculated and simulated. After that, the impact of phase-matching conditions and temperature changes in sum frequency crystal on effective nonlinear coefficient were calculated and simulated as well.
     3. Based on the rate equation, the multi-wavelength acousto-optic Q-rate equation was established, the impact of acousto-optic Q-technology on the multi-wavelength laser output characteristics has also been studied, including the different wavelengths emitted simultaneously from one crystal and emitted from different crystals.
     4. The continuous and quasi-continuous output characteristics of red (660nm), yellow (589nm), and green (532nm) laser were researched. A new "T" type of yellow composite cavity laser systems was designed, and the impact of laser cavity parameters on the system performance was also analyzed. On this basis, a cruciform structure composite cavity was developed, and a red, yellow and green multi-wavelength laser output with high-power, high beam quality and stable performance was realized .
     5. The red (660nm), green (532nm) and infrared (1064nm and 1319nm) multi-wavelength lasers output characteristics were mainly studied. The impact of different cavity mirror transmittance and the intra-cavity loss of different wavelengths on the multi-wavelength laser output characteristics were analyzed theoretically. Different types of modules were used to obtain multi-wavelength laser output in the experiment to , and the compensation of the thermal lens effect by the telescope system in the condition of high-power was analyzed theoretically as well.
引文
[1]姚建铨,徐德刚.全固态激光及非线性光学频率变换技术[M].北京:科学出版社,2007,1.
    [2]马养武,陈钰清.激光器件[M].浙江:浙江大学出版社,1994,205
    [3]陈悦,董应丽,郭希让.多波长氪离子激光治疗糖尿病视网膜病变疗效观察[J].眼科研究,2004,2(1):89-91
    [4]周顺彪,龚雅各,陈立强,等.小型氦镉激光器的研制[J].应用激光,2001,21(1):43-46
    [5]胡萍,程磊,李克雷.铜蒸汽激光光动力疗法治疗鲜红斑痣238例护理体会[J].齐鲁护理杂志,2006,5,(49):10-13
    [6]W.Y.Walter.Copper Vapor Laser,IEEE J.Quantum.Electron.,1966,QE-2(9):474.
    [7]索尼株式会社.多波长半导体激光器及其制造方法[P].中国专利:CN1540821,2004-08-02
    [8]Briton J.E.R.,Goulden V,Stable G,et al.Investigation ofthe use of the pulsrd dye laser in the treatment of bowen's disease using 5-aminolaevulinic acid phototjerapy[J].世界核心医学期刊文摘,2006,2(1):38
    [9]李适民.激光器件原理与设计[M].北京:国防工业出版社,1998,206
    [10]Yung A.,Sheehan R.Acomparative study of a 595nm with a 585nm pulsed dye laser in refractory port wune stans[J].世界核心医学期刊文摘,2005,1(12):48
    [11]林文雄,沈鸿元,曾瑞荣,等,双波长Nd:YAG脉冲激光器的实验研究[J].中国激光,1994,21(2):89-91
    [12]Koechner W..固体激光工程[M].北京:科学出版社,2002,581
    [13]Xu J.Q.,Lu J.H.,Kumar G.,et al.A non-fused fiber coupler for side-pumping of double-clad fiber lasers[J].Opt.Commun.,2003,220:285-295.
    [14]Yah P.P.,Gong M.L.,Multrcoupler side-pumped Yb-doped double-clad fiber laser and pump light leakage at coupler[J].Electron.Lett.2004,40(7):418-419.
    [15]吴中林,楼祺洪,董井星,等。微棱镜与双包层光线侧面耦合效率的实验[J].中国激光,2005,32(7);953-955.
    [16]Juergen K.,Thomas G.,RGB laser radiation source[P].USA:0010698 A1,2001-8-2.
    [17]Bet hea C G.Megawatt power at 1.318um in Nd:YAGand simultaneous oscillation at both 1.06um and 1.318um[J].IEEE J Quantum.Electron.,1973,9(2):254-258.
    [18]Koechner W..固体激光工程[M].北京:科学出版社,2002,45.
    [19]沈鸿元,张戈,黄呈辉,等,三波长钕激光器腔内或腔外倍频的红绿蓝三基色激光器[P].中国专利:02117365.6,2003-6-21.
    [20]张国春,王国富,官向国,等.激光非线性复合功能晶体的研究和发展[J].无机材料学报,2001,16(5):769-776.
    [21]王如刚,陈振强,胡国永.新型复合功能晶体Nd:YCOB的非线性光学研究[J].暨南大学学报,2006,26(3):386-391.
    [22]Aka G.,KAHN A.,Mougel F.,etal.Linear and nonlinear optical properties of a new gadolinium calcium oxyborate crystal CaGdO(BO3)_3[J].J.Opt.Soc.Am.B,1997,14(9):2238-2247.
    [23]Wang J.Y.,Shao Z.S.Research on growth nd self-frequency doubling of NdLReCOB crystals[J].Progr.Cryst.Grouth Characteriz.Mater.,2000,40(1):17-31.
    [24]Ye Q.,Shah L.,Eichenholz J.,et al.Investigation of diode-pumped,self-frequency doubled RGB lasers from Nd:YCOB crystals[J].Opt.Commun.,1999,164:33-37.
    [25]沈鸿元,张戈,黄呈辉,等.三波长钕激光器腔内或腔外倍频的红绿蓝三基色激光器[P].中国:02117365.6,2003-8-5.
    [26]贾富强,薛庆华,郑权,等.全固态LBO腔内倍频556 nm黄光激光器[J].中国激光,2005,32(8):1017-1021.
    [27]魏勇,张戈,黄呈辉,等,1318.8nm/1338nm同时振荡双波长Nd:YAG激光器[J].激光与红外,2005,35(3):164-166.
    [28]周睿.高功率连续运转全固态蓝光、红光激光器研究[D].天津大学博士研究生毕业论文,2006:92-104.
    [29]卜轶坤,郑权,薛庆华,等.500.8 nm Nd:YAG青光激光器光学薄膜的设计与制备[J].光子学报,2006,350):79-83.
    [30]Williams-Byrd J.A.Characterization of s Nd:YAG Double Pulsed Laser System[J].Solid state lasers.SPIE,1992,1627,74.
    [31]郁兆存,谭万龙,熊林,等.U100倍频双波长脉冲激光对兔膀胱黏膜的损伤效应[J].中国激光医学杂志,2007,16(2):96-98.
    [32]王涛,姚建铨,郁道银,等.1319nm与660nm双波长Nd:YAG激光器的研究[J].天津大学学报,2004,37(5):377-381.
    [33]O Benito,D Jaquc,Z D Luo,et al.Solid state laser source for simultaneous generation of green and red radiation[J].J Phys.D:Appl.Phys.,2002,35:2711-2715.
    [34]匡梅.单台固定的激光晶体发射出红、绿、蓝色光[J].光电子技术与信息,2004,17(6):71.
    [35]颜严.单个晶体同时产生红、绿、蓝光输出[J].激光与光电子学进展,2000,411(3):45.
    [36]Liao J,He J L,Liu H,et al.Red,yellow,green and blue-four-color light from a single,apcriodically poled LiTaO_3 crystal[J].Appl.Phys.B,2004,10(3):110-113.
    [37]马莹,彭显楚,1342 nm激光通过周期极化钽酸锂产生红光和蓝光的研究[J].中国激光,2005,32(2):262-264.
    [38]王志勇.固体RGB激光光源及其在显示技术方面的应用研究[D].天津大学博士研究生毕业论文,2003.
    [39]Kevin J.Snell,Dicky Lee,Bhabana Pati,et al.Moulton RGB Optical Parametric Oscillator Source for Compact Laser Projection Displays[J].Proc.SPIE,2000,3954.
    [40]Wolbarsht M.L..Laser applications in medicine and biology[M].New York:Plenum Press,1977,235
    [41]Liu H.F..Study of laser ocular damage[J].Laser J.,2003,24(2):87-88.
    [42]Hu Cun gang,Zong Ren he,Li Guo li.Development of the instrument for diagnosisand therapy of human body information[J].Optoelectron.Technol.Inf.,2003,16(1):36-39.
    [43]Hassan Raffa.Consideration of the Mirhoscinc method in TMR[J].Farcast Health,1994,10:I0-14.
    [44]Alster T.S.,Betencout M.S..Review of cutaneous lasers and their applications[J].South Med J.,1998,91:806-814.
    [45]Malcom S.,Keith R..Determination of the shock wave intensity from a laser lithotritor using a bi-laminar hydrophone[J].Innov.Pressure,Force Flow Measurem.,IEE,1999,10:1-5.
    [45]Topaz O.,Lippincott R.,Bellendir J.,et al."Optimally spaced" excimer laser coronary catheters:performance analysis[J].J Clin.Laser Med.Surg.,2001,19(1):9-14.
    [47]Teng P.,Nishioka N.S.,Anderson R.R.,et al.Optical studies of pulsed laser fragmentation of biliary calculi[J].Appl.Phys.B,1987,42:73-78.
    [48]Teng P.,Nishioka N.S.,Anderson R.R.,et al.Acoustic studies of the role of immersion in plasma-mediated laser ablation[J].IEEE J Quant.Electron.,1987,23:1845-1852.
    [49]Lo E.Y.,Petschek H,Rosen D.I.A hydrodynamic model for the laser induced fragmentation of calculi[J].Laser Life Sci.,1990,3:233-244.
    [50]Steven A.S.,Frederic M.D.,Bahaeddin J.,et al.Mechanisms of biliary stone fragmentation using the Ho:YAG laser[J].IEEE Trans.Biomed.Eng.,1994,41(5):276-283.
    [51]蒋耀光,周清华.现代肺癌外科学[M].北京:人民军医出版社,1988,886.
    [52]赵友权,李立勇,范世福,等.脉冲激光在医学中的光热效应分析[J].中华物理医学与康复杂志,2004,26(2):114-116.
    [53]胡小兵,熊鸿燕,宋建勇,等.亚甲蓝光化学效应对血液中大肠杆菌灭活效果研究[J].西部医学,2004,16(1):39-41.
    [54]李康英,侯占英.低强度激光的生物效应对组织修复的影响[J].激光生物学报,2005,14(8):283-286.
    [55]阎承先.耳鼻咽喉科全书[M].上海:上海科学技术出版社,2001,247.
    [56]徐国祥,史宏敏.医学新知丛书[M].北京:人民卫生出版社,1989,146.
    [57]龚卓,王勉镜.980nm和810nm半导体激光生物热效应的比较[J].中国激光医学杂志,2006,15(3):141-143.
    [58]李殿军.长脉冲激光在皮肤科和激光美容方面的应用[J].世界医疗器械,2002,8:53.
    [59]聂凡,朱菁.激光和光疗法脱毛的研究进展[J].激光医学,2000,10(2):72.
    [60]Anderson R.R.,Parrish J.A..Selective photothermolysis,precise microsurgery by selective absorption of pulsed radiation[J].Science,1983,220:524-527.
    [61]Ditrckx C.C.,Grossman M.C.,Farinelli W.A.,et al..Long pulsed ruby laser hair removal[J].Laser Surg Med,1997,9(Suppl):167.
    [62]Hannepal C.E.Long pulse 1064nm laser effectively removes hair[J].Dermatology Times,2000,9:36.
    [63]Kincade K..Alexandrite:the unsung hero of hair removal[J].Laser Focus World,1999,11:54.
    [64]Musatenko L.Y.,Zenger V.G.,Nasedkin A.N.,et al.New laser method of treating of vasomotor rhinopathies[J].Proceeding of the International Congress "Laser andHealth-99",Moscow,1999,97.
    [65]徐国良,罗广裕,李茵,等.经内镜激光消融联合激光光动力学治疗气管支气管肿瘤[J].肿瘤学杂志,2008 14(7):525-527.
    [66]夏术阶,于胜强.激光技术在泌尿系统肿瘤治疗中的合理应用[J].现代泌尿外科杂志,2007 12(4):211-213.
    [67]罗晓燕.儿童皮肤血管瘤的激光治疗进展[J].中国美容医学,2007 16(3):418-420.
    [68]孙增银,薛迎春.Nd:YAG激光治疗外耳道乳头状瘤疗效观察[J].中国耳鼻咽喉颅底外科杂志,2007,13(1):74-75.
    [69]郑家伟,叶为民,王延安,等.婴幼儿血管瘤的现代治疗[J].上海口腔医学,2008,17(4):337-347.
    [70]王进峰,刘鑫国,李晓刚,等.肾盂肿瘤根治术中钬激光的应用[J].中国中西医结合外科杂志,2008,14(14):353-354.
    [71]金重睿,徐月,吴登龙,等.绿激光汽化治疗浅表性膀胱肿瘤[J].临床泌尿外科杂志,2007,22(5):343-344.
    [72]卫煊,杨冠,戴友林,等.激光在医学中的应用[M].北京:科学出版社,1979,182.
    [73]Bown S.G..Phototherapy of tumors[J].World J Surg.,1983,7:700-70.
    [74]国光.激光彩色投影电视机[J].军民两用技术与产品,2004.6.
    [75]徐济仁,陈家松,牛纪海.激光电视技术与发展[J].有限电视技术,2003,19.
    [76]赵振明,李永大,郎百和,高勋.激光电视同步技术的研究[J].长春光学精密机械学院学报,2001,24(3).
    [77]刘文学,王涛,姚建铨.激光电视高速扫描系统的设计与研究[J].激光杂志,2003,24(5).
    [78]吴桂英.激光投影电视[J].光机电信息,1998,15(6):12-13.
    [79]李光晓.激光显示技术的新进展[J].光电子技术与信息,1997,10(2):28-30.
    [80]陆琼.激光显示系统的设计与实现[J].艺术科技,艺术科技,2001,3,8-11.
    [1]Koechner W..固体激光工程[M].北京:科学出版社,2002,508
    [2]石顺祥,陈国夫,赵卫,等.非线性光学[M],西安:西安电子科技大学,2003,绪论.
    [3]Shen Y.S..The principles of nonlinear optics[M].New York:JohnWiley & Sons.Inc,1984,119.
    [4]蓝信钜.激光技术[M].北京:科学出版社,2005,286-288.
    [5]石顺祥,陈国夫,赵卫,等.非线性光学[M],西安:西安电子科技大学,2003,156-159.
    [6]吕超.和频产生钠黄光的理论计算和数值模拟研究[D].武汉:华中科技大学,2005.
    [7]Boyd G.D.,Kleinman D.A..Parametric interaction of focused Gaussian light beams[J].J Appl.Phys.,1968,39(8):3597-3693.
    [8]钱士雄,王恭明.非线性光学.原理与进展[M].上海:复旦大学出版社,2001,73.
    [9]Hobden M.V..Phase-matched secong-harmonic generation in biaxial crystals[J].J Appl.Phys.,1967,38(11):4365-4372.
    [10]Ito H.,Naito H.Generalized study on angular dependence of induced second-order nonlinear optical polarization and matching in biaxial crystals[J].J Appl.Phys.,1975,46(9):3392-3998.
    [11]Yao J.Q.,Fahlen Theodore S..Calculations of optimum phase match parameters for the biaxial crystal KTiOPO_4[J].J Appl.Phys.,1984,55(1):65-68.
    [12]石靖波.LBO和频产生589nm激光源数值模拟及实验研究[D].成都:中国工程物理研究院,2006.
    [13]Born M.,Wolf E..Principles of optics[M].Pergaman Press,1959,678.
    [14]姚建铨,徐德刚.全固态激光及非线性光学频率变换技术[M].北京:科学出版社,2007,94.
    [15]姚建铨,徐德刚.全固态激光及非线性光学频率变换技术[M].北京:科学出版社,2007,684-686.
    [16]姚建铨,徐德刚.全固态激光及非线性光学频率变换技术[M].北京:科学出版社,2007,663.
    [17]李君.高功率全固态Nd:YAG/KTP的红光激光器的研究[D].天津:天津大学,2003.
    [18]周佳凝.高功率全固态Nd:YAG/KTP的红光激光器的研究[D].天津:天津大学, 2005.
    [19]郑权,陈颖新,钱龙生.LD泵浦Nd:YAG/LBO结构660nm红光激光器[J].光子学报,2003,32(10):1153-1155.
    [1]Li X.,Chen X.Y.,Chen X.,et al..High-powe heat insensitive resonator for a diode-side-pumped Nd:Y3A15O12 on high-gray-tracking-resistivity KTiOPO4 solid state green laser[J].Opt.Eng.,47(8):084201-084205.
    [2]Yi J.H.,Moon H.J,Lee J.M.Diode-pumped 100-W green Nd:YAG rod laser[J].Appl.Opt.,2004,43(18):3732-3737.
    [3]Konno S.,Inoue Y.,Kojima T.,et al.Efficient high-pulse-energy green-beam generation by intracavity frequency doubling of a quasi-continuous-wave laser-diode-pumped Nd:YAG laser[J].Appl.opt.,2001,40(24):4341-4343.
    [4]Honea Eric C.,Ebbers Christopher A.,Beach Raymond J.,et al.Analysis of an intracavity-doubled diode-pumped Q-switched Nd:YAG laser producing more than 100W of power at 0.532μm[J].opt.Lett.,1998,23(15):1203-1205.
    [5]Alshikh khalil M.,Abbas B..optimization of intracavity Q-switched laser frequency doubling[J].opt.Laser Technol.,2007,39:710-714.
    [6]Kojima T.,Furuta K.,Kurosawa M.,et al.400-W Diode-Pumped Solid-State Green Laser [J].CLEO,2005,CTu13-7.
    [7]Wang Guiling,Geng Aicong,Bo Yong,et al.28.4 W 266 nm ultraviolet-beam generation by fourth-harmonic generation of an all-solid-state laser[J].Opt.Commun.,2006,259:820-822.
    [8]Nishioka M.,Kawamura F.,Yoshimura M,et al.Influence of crystallinity on the bulk laser-induced damage threshold in CsLiB_6O_(10) for high-power UV laser source[J].IEEE J Quant.Electron.,2003,WP-(7)-7.
    [9]蓝信钜.激光技术[M].北京:科学出版社,2005,35-45.
    [10]陈浩伟.高功率LD侧泵准连续腔内倍频全固体绿光激光器研究[D].西安:西北大学,2008.
    [11]康伟芳,薛玉春,刘帅.布拉格衍射及其应用[J].大学物理实验,2006,19(2):11-13.
    [12]安毓英.光电子技术[M].北京,电子工业出版社,2002:50-52.
    [13]李强,郑义军,王志勇,等.双声光二维Q开关[J].压电与声光,2003,25(3):188-199.
    [14]李港,王菲,于欣,等.波片提高声光Q开关关断Nd:YAG激光能力研究[J].光子学报,2006,35(4):490-493.
    [15]W.克西耐尔.固体激光工程[M].北京,科学出版社,2002:440-441.
    [16]梁兴波,苑利钢,姜东升,等.10.5W准连续波589nm黄光激光器[J].激光与红外,2008,38(9):876-878.
    [17]Kay R.B.,Waldman G.S..Complete solutions to the rate equations describing Q-spoiled and PTM laser operation[J].J Appl.Phys.,1965,36:1319-1323.
    [18]Shen H.Y.,Su H..Operating conditions of continuous wave simultaneous dual wavelength laser in neodymium host crystals[J].J Appl.Phys.,1999,86(12):6647-6651.
    [19]巩马理,陆成强.声光调Q的Nd:YVO4晶体1342 nm激光器[J].光学学报,2008,28(3):502-506.
    [20]王刚,李武军,王石语,等.声光调Q激光器所需最小衍射效率的研究[J].光子学报,2005,34(10):1445-1447.
    [21]田来科,白晋涛,田东涛.激光原理[M].西安,陕西科学技术出版社,2004:81-86.
    [22]周炳琨,高以智,陈家骅,等.激光原理[M].北京:国防工业出版社,1980,113.
    [23]杨直.LD泵浦全固态蓝光激光器究[D].西安:西北大学,2005.
    [1]周展超,吴余乐.皮肤美容激光[M].南京:东南大学出版社,2000,31-32.
    [2]Bai J.T.,Chen G.F.Continuous-wave diode-laser-end-punped Nd:YVO_4/KTP high power solid-state green laser[J].Opt.Laser Teclmol.,2004,34(4):333-336.
    [3]徐海萍,徐海燕,张鹏,等.LD侧泵Nd:YAG/S-KTP腔内倍频高功率660nm连续红光激光器[J].应用光学,2007,28(3):332-335.
    [4]Geng A.C.,Bo Y.,Bi Y.,Sun Z.,et al.One hundred and twenty one W green laser generation from a diode-side-pumped Nd:YAG laser by use of a dual-V-shaped configuration[J].Opt.Lasers Eng.,2006,44(6):589-596.
    [5]陈檬,魏剑维,李港,等.LD侧面泵浦Nd:YAG/KTP倍频晶体长度对660nm激光功率影响的分析[J].量子电子学报,2005,22(4):534-537.
    [6]Chen X.Y.,Ren Z.Y.,Zhang H.L.,et al.Simultaneous Generation of multi-Wavelength Laser from Nd:YAG Crystal in a Cruiform Cavity[J].Chin.Phys.Lett.,2008,25(4):3984-3987.
    [7]Liu X.S.,Wang Z.Y.,Yan X.,et al.A-High Energy Good-Beam-Quality Krypton Lamp Pumped Nd:YAG Solid-State Laser with One Pump Cavity[J].Chin.Phys.Lett.,2008,25(2):521-523.
    [8]Zhou R.,Yao J.Q.,Xu D.G.,et al.Study on Resonator of 85 W All-Solid-State Green Laser[J].Chinese Journal of Lasers,2004,31(6):641-645.
    [9]Bienfang J.C.,Denman C.A.,Grime B.W.,20 W of continuous-wave sodium D_2resonance radition from sum-frequency generation with injection-locked lasers[J].Opt.Lett.2003,28(22):2219-2221
    [10]Danailov M.B.,Apail P.,589nm light generation by intracavity mixing in a Nd:YAG laser[J].J Appl.Phys,1994,75(12):8240-8242.
    [11]Denman C.,Drummond J.D.,Eickhoff M.L.,et al..Characteristics of sodium guidestars created by the 50-watt FASOR and first closed-loop AO results at the Starfire Optical Range[J].Proc.SPIE.2006,6272,62721L-1-12
    [12]Kawahara T.D.,Kitahara T.,Kobayashi F.,et al..Sum frequency generation of sodium D2 resonance line for the lidar application of mcsopausc temperature measurements[J].2003,Proc.SPIE,4893,270-278
    [13]Jeys T.H.,Brailove A.A.,Mooradian A.,et al..Sum frequency generation of sodium resonance radiation[J].J Appl.Phys.1990,68(11):5451-5455
    [14]李适民.激光器件原理与设计[M].北京:国防工业出版社,1998,206
    [15]Feng Y.,Huang S.,Shirakawa A.,et al..589nm Light Source Based on Raman Fiber Laser[J].J Appl.Phys.,2004,(6A):722-724.
    [16]Hamano A.,Usuki Y.,Diode-pumped,self-generating,Q-switched Nd:PbWO_4 yellow laser[J].Lasers Electro-Opt.Soc.,2002,2:639-340.
    [17]He C.,Chyba T.H.Solid-state Barium nitrate Taman laser in the visible region[J].Opt.Commun.,1997,134(4):273-278.
    [18]Mildrcn R.P.,Convery M.,Pask H.M.,et al.Efficient,all-solid-state,Raman laser in the yellow,orange and red[J].Opt.Exp.,2004,12(5):785-790.
    [19]Pennington D.M.,Beach R.,Drobshoff A.,et al..Compact fiber laser approach to generating 589nm laser stars[J].Lasers Electro-Opt.Eur.,2003,ⅹⅹⅵ+758.
    [20]Danailov M.B,Apai P.589nm light generation by intraeavity mixing in a Nd:YAG laser[J].J.Appl.Physis.1994,75(12):8240-8242
    [21]Kawahara T.K.,Kobayashi F.,Yamashita J.,et al..Sum frequency generation of sodium D_2 resonance line for the lidar application of mesopause temperature measurements[J].Proc.SPIE,2003,4893:271-278.
    [22]Denma C.A.,Drummong,20W watt CW 589um sodium beacon excitation source for adaptive optical telescope application[J]CLEO,2003,6.
    [23]Bo Y.,Feng A.C.,Lu Y.P.,etal..A 4.8-W M~2=4.6 Continuouc-Wave Intracavity Sum-Frequency Diode-Pumped Solis-State Yellow Laser[J].Chin.Phys.Lett.,2006,23(6):1497-1496.
    [24]Koechner W..固体激光工程[M].北京:科学出版社,2002,356-358.
    [25]李强,王志敏,王智勇,等.测量Nd:YAG激光器热透镜焦距的新方法[J].光电子·激光,2004,15(3):263-266.
    [26]焦志勇,张光寅,张晓华,等.激光二极管侧向泵浦的Nd:YAG激光器的热效应[J].南开大学学报,2005,38(2):1-4.
    [27]侯学元,李宇飞,孙渝明,等.热焦距的动态测量[J].光电子·激光,1999,10(3):276-277.
    [28]李强,王志敏,王智勇,等.大功率连续Nd¨YAG激光器热透镜焦距测量[J].中国激光,2004,31(9):1117-1120.
    [29]邹晶,赵圣之,杨克建,等.CCD测量LD端面抽运Nd:GdVO4固体激光器热焦距[J].激光技术,2006,30(4):422-428.
    [30]岱钦,李新忠,王希军.LDA侧面泵浦Nd:YAG激光器的热效应分析[J].强激光与粒子束,2007,19(2):198-201.
    [31]杨永明,文建国,王石语,等.LD端面泵浦Nd:YAG激光器中的热透镜焦距[J].光子学报,2005,34(12):1669-1772.
    [32]Geng A.C.,BoY.,Yang X.D.,et al,Intracavity sum-frequency generation of 3.23 W continuous-wave yellow light in an Nd:YAG laser[J].Opt.Commun.,2005,255:248-252.
    [1]姚建铨,徐德刚.全固态激光及非线性光学频率变换技术[M].北京:科学出版社,2007,374.
    [2]Koechner W..固体激光工程[M].北京:科学出版社,2002.80.
    [3]魏勇,张戈,黄呈辉,等.1318.8nm单一谱线Nd:YAG激光器[J].激光技术,2005,29(32):59-260.
    [4]Koechner w..固体激光工程[M].北京:科学出版社,2002.93.
    [5]Steffen J.,Lortscher J.P.,Herziger G.Fundamental mode radiation with solid-state lasers[J].IEEE J Quantum.Electron.,1972,QE-8:239-245.
    [6]李世忱,倪文俊,杨巍,等.低热敏激光谐振腔理论和研究[J].物理学报,1989,38(4):567-572.
    [7]李世忱,倪文俊,于建.多透镜热稳光腔[J].激光与红外,1990,20(5):30-33.
    [8]张光寅,张包铮.两类固体激光热稳腔[J].中国激光,1992,19(5):321-326
    [9]张光寅.热不敏感腔的解与特征[J].物理学报,1991,40(3):407-413.
    [10]Donald M.P.,Graf Th.,Balmer J.E.,Reducing thermal lensing in diode-pumped laser rods[J].Opt.Commun.,2000,178(4):383-393.
    [11]陈德章,景开友,卿光弼,等.双望远镜腔大体积TEM_(00)模Nd:YAG激光器[J].激光技术,1998,22(6):376-378.
    [12]Hanna D.C.,Sawyers C.G.,Yuratich M.A.Telescropic resonators foe large volum TEM_(00) mode operation[J].Opt.Quantum.Electron.,1981,4:20.
    [13]邓仁亮,徐荣甫,张自襄.交叉棱镜望远镜腔激光器[J].光学学报,1984,4(8):721-725.
    [14]Lv B.The general condition for intensitivity against thermal lensing of multielement resonators[R].Optoelektronik in der Technik:Springer Verlag,1987.
    [15]白晋涛,王诺,张怡彬,等.单透镜望远镜腔型连续锁模倍频Nd:YAG飞秒激光泵浦源[J].激光技术,1993,17(3):179-184.
    [16]LuB.Study of characteristics of telescopic resonators with a thermal lens[J].Revue Roumaine de Physique,1988,34:7.
    [17]陈德章,景开友,卿光弼,等.双望远镜腔大体积TEM00模Nd:YAG激光器[J].激 光技术,1998,26(6):376-379.
    [18]Kudyashov A V,Weber H.Novel Design and Development.Bellingham[R].Washington:SPIE Opt.Eng.Press,1999.
    [19]于全芝,李国华.用液晶透镜改进的望远镜腔激光器性能分析[J].激光技术,2001,25(4):275-278.
    [20]吕百达.基模动态稳定望远镜谐振腔[J].1987,7(2):105-110.
    [21]吕百达,廖严,陈文娱,等.深度热稳定望远镜腔[J].光学学报,1988,8(11):966-978.
    [22]吕百达,沉稳娱.含热透镜望远镜腔特性的研究[J].激光与红外,1998,19(1):24-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700