硬脂酸复合相变储热材料的自组装合成及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复合相变储热材料利用相变物质相变过程中的相变潜热来实现能量的储存与利用,不仅可解决相变物质的腐蚀性、相变过程中的流动性等自身缺陷,而且可解决能量供求在时间、空间上的不匹配,有助于提高能效和开发可再生能源。本文利用层次分析法和多准则妥协解排序法对常用相变材料的综合性能进行了优选排序,以优选的硬脂酸为相变储热主体,分别以高分子聚合物和无机载体对其进行了封装,测试了胶囊型相变储热材料和负载型相变储热材料的结构和性能,分析了自组装机理,研究了制备工艺对复合相变储热材料结构和性能的影响,讨论了界面作用与相变行为间的关系。
     将层次分析法和多准则妥协解排序法引入相变材料的多属性决策中,根据影响相变材料实际应用的关键性能参数,构建了三个层次六个属性的相变材料评价体系,建立了基于层次分析法和多准则妥协解排序法的相变储热材料评价模型,指出了评价方法和步骤。在此基础上,对十种备选相变材料的综合性能进行了优选排序。通过与文献选用频次的比较,证明了层次分析法和多准则妥协解排序法在相变储热材料优选排序中具有有效性、实用性和统一性,筛选出的综合性能最优的有机相变储热材料为硬脂酸。
     以优选的硬脂酸为芯材,以甲基丙烯酸甲酯为壁材单体,通过紫外光引发单体聚合制备了硬脂酸/聚甲基丙烯酸甲酯微胶囊相变储热材料,应用差示扫描量热仪、热重分析仪、扫描电子显微镜、傅立叶红外光谱仪和加速热循环实验等手段研究了微胶囊相变储热材料的结构和性能,讨论了硬脂酸/聚甲基丙烯酸甲酯微胶囊的形成机理。结果发现,硬脂酸/聚甲基丙烯酸甲酯微胶囊相变储热材料具有明显的核-壳结构,核壳间仅存在氢键作用,其芯材含量为51.8%,粒径为2-3μm,熔融相变温度和结晶相变温度分别为60.4℃和50.6℃,对应的相变潜热分别为92.1J·g-1和95.9J·g-1。硬脂酸/聚甲基丙烯酸甲酯微胶囊相变材料具有良好的稳定性,热循环次数对其相变行为无明显影响。研究结果同时表明,采用紫外光引发单体聚合工艺可获得与传统热引发工艺相媲美的微胶囊相变储热材料。
     以硬脂酸-二十酸共晶混合物为包封对象,采用紫外光引发甲基丙烯酸甲酯乳液聚合自组装合成了硬脂酸-二十酸/聚甲基丙烯酸甲酯纳米胶囊相变储热材料,研究了乳化剂种类、乳化速率、引发剂浓度和交联剂等因素对胶囊粒径分布和储热性能的影响。研究结果表明,乳化剂类型和乳化速率对硬脂酸-二十酸/聚甲基丙烯酸甲酯的储热能力和粒径分布影响显著。随着乳化速率和引发剂浓度的增加,以及交联剂的加入,硬脂酸-二十酸/聚甲基丙烯酸甲酯胶囊的粒径逐渐减小、粒径分布变窄,并且在乳化速率达到5000rpm和单体浓度达到0.15mo1·L-1时趋于恒定。同时,单体浓度和引发剂浓度的增加,将会导致聚合速率加快,进而导致粒子间聚集的速率增加,胶囊的储热能力下降。硬脂酸-二十酸/聚甲基丙烯酸甲酯纳米相变胶囊的最佳制备工艺条件为核壳比1:0.7;乳化速率5000rpm,单体浓度O.15mol·L-1、引发剂浓度O.1Ommol·L-1,使用聚乙二醇辛基苯基醚为乳化剂、乙二醇二甲基丙烯酸酯为交联剂。在该制备条件下,纳米胶囊相变储热材料的平均粒径为46nm,硬脂酸-二十酸共晶混合物的含量为68.8%,熔融和结晶温度分别56.9℃和54.5℃,相应的相变潜热分别为126.4J·g-1和128.3J·g-1,且具有良好的稳定性。纳米胶囊的形成使得共晶混合物的过冷度显著减小。
     以硬脂酸为相变基质,采用化学氧化法制备了具有储热、导电功双重功能的硬脂酸/聚苯胺复合材料。通过对硬脂酸/聚苯胺复合材料组装工艺的优化、结构的表征和性能的测试发现,聚合温度对硬脂酸/聚苯胺复合材料的形貌和储热能力影响显著,掺杂酸的种类仅影响硬脂酸/聚苯胺的形貌而对储热能力影响不大,引发剂种类的不同则不会改变硬脂酸/聚苯胺的形貌但影响其储热能力,通过聚合温度、掺杂剂种类的选择可调控硬脂酸/聚苯胺复合材料的形貌。组装机理分析表明,片状硬脂酸/聚苯胺复合材料的组装作用力为氢键,而球形硬脂酸/聚苯胺复合材料的组装力为静电引力。制备具有良好稳定性、较高储热能力的硬脂酸/聚苯胺复合材料的最佳工艺为:在室温条件下,使用氨基磺酸为掺杂剂、过硫酸铵和过氧化苯甲酰为混合引发剂,制备的片状硬脂酸/聚苯胺复合材料中硬脂酸的含量为53.8%、导电能力为0.4336S-cm-1,熔融和结晶温度分别为55.6℃和50.7℃,对应的相变潜热为98.0J·g-1和97.5J·g-1。硬脂酸/聚苯胺复合材料的形成,赋予了相变材料导电性能,拓展了应用领域。
     以硬脂酸为相变基质,以甘肃平凉工业蒙脱土为载体,采用真空热熔注入法和溶液浸渍法制备了两种硬脂酸/蒙脱土复合相变储热材料,采用FTIR、XRD、DSC和SEM等手段进行了结构表征和性能测试,并将真空热融注入法获得的相变储热材料添加到泡沫水泥中,研究了相变储热泡沫水泥的隔热性能。结构分析结果表明,制备方法对材料的结构和形貌不会产生影响,两种材料具有相似的形貌和结构,硬脂酸均以物理作用吸附于蒙脱土表面,且两者之间不存在任何化学键合。性能分析结果表明,在热熔法和浸渍法制备的复合储热材料中硬脂酸的负载率分别为47.5wt.%和46.9wt.%,其熔融相变温度和结晶相变温度分别为59.9℃、58.2℃和55.1℃、54.6℃,对应的相变潜热分别为84.4J·g-1、88.5J·g-1和83.6J-g-1、86.8J/g,均具有较好的储热能力,且复合相变储热材料的储热能力和硬脂酸在蒙脱土表面的负载率成正比,但加速热循环实验表明浸渍法制备的复合相变储热材料的热稳定性较差,真空熔融注入法更适合制备稳定性良好的负载型复合相变储热材料。模拟隔热实验研究表明,添加3.3wt.%硬脂酸/蒙脱土的相变储热泡沫水泥具有明显的隔热调温作用,其表面温度从20℃升高到70℃的时间比普通水泥增加了172%。
The rapid development of global economy leads to energy demand increase quickly. However, conventional fossil energy sources are limited and their uses are restricted due to the emission of harmful gases which are responsible for climate changes and environmental pollution. Composite phase change materials (PCM) can be used for energy storage and utilization due to it can absorb or release large latent heat during the melting or solidifying process when surrounding temperature increases and decreases, which is helpful to improve energy efficiency and develop new renewable energy and can prevent PCM from leaking and harmful interaction with the environment when phase change occurs. In this work, we have determined the ranks of important PCMs using Analytic Hierarchy Process (AHP) and VlseKriterijumska Optimisacija IKompromisno Resenje (VIKOR) technique. Stearic acid is found to be the best PCM for latent heat thermal energy storage systems within the range of our reseach and it also encapsulated with the polymer wall or inorganic carrier. The structure and properties of capsules and loaded phase change materials were studied, and the self-assembly mechanism of the composites were analyzed. Also, the effects of fabricated technology on particle size distribution, thermal properties and structures were stuied and the relationship between the phase transiton behavior with surface interreaction of PCM and matrix was explored.
     Selection of an optimal PCM according to engineering requirements, such as high sensible heat, latent heat, heat of conduction and light weight, is a crucial and tedious task. It depends upon various thermo-physical properties including latent heat of fusion, density, thermal conductivity, specific heat capacity. Therefore, Analytic Hierarchy Process and VlseKriterijumska Optimisacija IKompromisno Resenje, the approach of multi-attribute decision making, are employed for PCMs selection. Based on the characteristics of PCM, the valuation system of three level and six different attributes was constructed and the evaluation model based on AHP and VIKOR method were established. At last, the VIKOR and AHP method were used to sort the attributes of alternative PCMs comprehensively. The results show that the two methods are effective and practical for selecting PCMs and stearic acid is the optimal PCM within the candidants for thermal energy storage.
     In order to identify the validity of fabricating microencapsulated phase change material by ultraviolet irradiation-initiated method, the stearic acid/polymethyl methacrylate (PMMA) microcapsules were prepared. The structural characteristics and thermal properties of the microcapsules were also determined by various techniques. The results show that the form-stable microencapsulated PCM with core/shell structure is formed and the maximum encapsulated proportion of SA in the composite is51.8wt.%without melting PCM seepage from the composite. In the shape stabilized microencapsulated PCM, the polymer acts as supporting material to form the microcapsule cell preventing the leakage of PCM from the composite and the SA acts as a PCM encapsulated in the cell of PMMA resin. The oxygen atom of carbonyl group of skeleton is interacted with the hydrogen atom of hydroxyl group of SA. The melting and freezing temperatures and the latent heats of the composite PCM are measured as60.4℃,50.6℃and92.1J-g-1,95.9J-g-1, respectively. The results of hermal cycling test show that the thermal reliability of the composite PCM has an imperceptible change.
     In order to further optimize the preparation technology and reduce the particle size of capsules, the polymethyl methacrylate encapsulated eicosanoic-stearic acid (EA-SA) eutectic nanocapsules were prepared by ultraviolet photoinitiated emulsion polymerization and various characterization techniques were employed to investigate the influence of preparation methods on thermal properties and particle size distribution (PSD). The results show that the particle size decreases and PSD narrows with the increase of agitation speed, reduction of initiator and monomer concentration, existence of cross-linking agent and stabilized at agitated speed higher than5000rpm and monomer concentration lower than0.15mol-L-1. However, latent heats of the capsules decreases with the increase of monomer and initiator concentration. Type of emulsifier in emulsion has significant effects on PSD and phase change properties of EA-SA/PMMA and nonionic emulsifier is suitable for reducing particle size and enhancing heat storage ability. Morphology and chemical characteristic analysis indicate that spherical nanocapsules with average diameter of46nm were successfully fabricated and its maximum encapsulation ratio is68.8wt.%without leakage of core material. The melting and crystallizing temperatures and latent heats of capsules are determined as56.9℃and54.5℃,126.4J-g-1and128.3J-g-1, respectively. Accelerated thermal cycling test shows that the nanocapsules have good thermal and chemical reliability after repeated thermal cycling. Besides, the super-cooling problem of PCMs is reduced dramatically by forming nanocapsules.
     In order to entrust electrical conductivity for phase change materials, the composite phase change material using SA as core material and polyaniline (PANI) as wall materials were perapared though chemical oxidation method. The structure, thermal properties, thermal reliability, thermal conductivity, heat storage or release performance and electrical conductivity of the dual-functional compsosite were also determined. The results show that the polymerization temperature has significant effects both on the morphology and phase change properties of SA/PANI, but the type of the doping acid and the type of initiator are only effect the morphology or thermal performance respectively. In addition, the the type of doping acid has negligible effects on thermal performance and the type of initiator has ignore effects on morphology. Self-assembly mechanism analysis show that the assembly forces of flaky composite is hydrogen bond and the assembly force in spherical composite is electrostatic force. The optimal technology for preparation SA/PANI composite which has high thermal storage capacity and excellent stability is using sulfamic acid as doping agent, APS and BPO as mixed initiator and polymerized at room temperature. The maximum encapsulated proportion of SA in the flake SA/PANI composite is53.8wt.%and the melting and crystallization temperature is55.6℃and50.7℃respectively, corresponding phase transition enthalpy is98.0J-g-1and97.5J-g-1. The conductive ability of the composite is determined as0.4336S-cm-1. All of the conclusions indicate that the composite has a better thermal conductivity, good stability and conductive ability.
     In order to stuied the effect of preparation methods on the structure and thermal properties fully, two kinds of phase change materials using SA as PCM and activated montmorillonite as matrix were prepared. The composite PCM was characterized using scanning electron microscope, Fourier transformation infrared analysis technique and the thermal properties, thermal reliability and heat storage/release performance were determined by differential scanning calorimetry, FT-IR and thermal cycling test. Also, the pahse change foam cement containing composite PCM which synthesized by melting impregnation method was prepared and the temperature adjusting performance was also studied. The results show both composites have similar morphology, structure and comparable latent heats with SA intercalated into a-MMT gallery. Thermal reliability and thermal cycling test obviously indicate that preparation technology affects the thermal properties. Latent heat of the composite prepared by melting impregnation method changs by-0.59%for fusion and-1.01%for solidification, whereas, it decline by39.71%and40.89%for the composite prepared by solution immersed technology after600thermal cycling. In other words, the melting impregnation method is a potential candidate for preparing reliable composite PCMs. The result of temperature adjusting test show that the time of phase change cement increased172%when temperature increasing from20℃to70℃.
引文
[1]B. Zalba, J. M. Mar, L. F. Cabeza, et al. Review on thermal energy storage with phase change:materials, heat transfer analysis and applications. Applied Thermal Engineering. 23 (2003):251-283
    [2]M. J. Lundh, O. Dalenback. Swedish solar heated residential area with seasonal storage in rock:Initial evaluation. Renewable Energy.33 (2008):703-711
    [3]H.Benli, A.Durmus, Performance analysis of a latent heat storage system with phase change material for new designed solar collectors in greenhouse heating. Sol. Energy (2009), doi:10.1016/j.solener.2009.07.005
    [4]A. Luis, M. Sanino, R. A. Reischel. Modeling and identification of solar energy water heating system incorporating nonlinearities. Solar Energy.81(2007):570-580
    [5]B. Stojanovic, J. Akander. Build-up and long-term performance test of a full-scale solar-assisted heat pump system for residential heating in nordic climatic conditions, Applied Thermal Engineering. (2009), doi:10.1016/j.applthermaleng.2009.08.004
    [6]A. Thur, S. Furbo, L. J. Shah. Energy savings for solar heating systems. Solar Energy. 80(2006):1463-1474
    [7]T. T Chow, W. He, J. Ji. An experimental study of facade-integrated photovoltaic /water-heating system. Applied Thermal Engineering,27(2007):37-45
    [8]K. E. NTsoukpoe, H. Liu, N. L. Pierre, et al. A review on long-term sorption solar energy storage. Renewable and Sustainable Energy Reviews. 13 (2009):2385-2396
    [9]M. Forster. Theoretical investigation of the system SnOx/Sn for the thermo chemical storage of solar energy. Energy 29 (2004) 789-799
    [10]M. N. Azpiazu, J. M. Morquillas, A. Vazquezc, Heat recovery from a thermal energy storage based on the Ca(OH)2/CaO cycle. Applied Thermal Engineering 23 (2003) 733-741
    [11]S. Abanades, P. Charvin, G. Flamant,Screening of water-splitting thermo chemical cycles potentially attractive for hydrogen production by concentrated solar energy, Energy 31 (2006) 2805-2822
    [12]C. Rivera, I. Pilatowsky, E. Mendez,et al, Experimental study of a thermo-chemical refrigerator using the barium chloride-ammonia reaction, International Journal of Hydrogen Energy.32 (2007) 3154-3158
    [13]D.S Zhu, H. J. Wu, S.W. Wang, Experimental study on composite silica gel supported sorbent for low grade heat storage, International Journal of Thermal Sciences 45 (2006)804-813
    [14]I. V. Ponomarenko, I. S. Glaznev, A.V. Gubar, et al. Synthesis and water sorption properties of anew composite CaCl2 confined into SBA-15 pores. Micropor. Mesopor. Mater. (2009), doi:10.1016/j.micromeso.2009.09.023
    [15]Q. Maa, L. Luo, R. Z. Wang. A review on transportation of heat energy over long distance: Exploratory Development. Renewable and Sustainable Energy Reviews. 13 (2009):1532-1540
    [16]K. Lovegrove, A. Luzzi, I. Soldiani. Developing ammonia based thermo chemical energy storage for dish power plants. Solar Energy.76 (2004):331-337
    [17]S. Hongois, P. Stevens, A. S.Coince, et al. Thermochemical storage using composite materials. In:Proceedings of the Eurosun 2008,1st international conference on solar heating, cooling and buildings; 2008.
    [18]W. Wongsuwan, T. Kiatsiriroj. A performance study on a chemical energy storage system using sodiumsulphide-water as the working pair.6th IIR Gustav Lorentzen natural working fluids conference, Glasgow, UK,29th August-1st September 2004; 2004.
    [19]R. D. Boer, W. Haije, J. Veldhuis. Solid sorption coolingwith integrated storage:the SWEAT prototype. In:3rd international heat powered cycles conference-HPC 2004; 2004.
    [20]R.Weber. Long-term heat storage with NaOH. Vacuum. 82(2008):708-16.
    [21]L. Pierre, H. Liu, L. Luo. Solar thermal energy storage for house heating through LiBr/H2O absorption process:preliminary energy evaluation. In:Proceedings of global conference on global warming-2008 (GCGW-08); 2008.
    [22]徐军,万贤,张冰清,等.石蜡/P(MMA-co-AA)核壳结构相变蓄能微胶囊的制备.高分子学报.2009(11):1153-1156
    [23]A. Sari, A. Karaipekli. Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material. Applied Thermal Engineering.27(2007) 1271-1277
    [24]H. E. Dessouky, F. A. Juwayhel. Effectiveness of a thermal energy storage system using phase-change materials. Energy Conversion and Management.38(1997) 601-617
    [25]U. Stritih. Heat transfer enhancement in latent heat thermal storage system for buildings. Energy Buildings.35(2003) 1097-1104
    [26]S. Gschwander, P. Schossig, H. M.Henning. Micro-encapsulated paraffin in phase-change slurries. Solar Energy Material & Solar Cells, 89(2005)307-315
    [27]X. Zhang, Y. Fan, X Tao, et al. Fabrication and properties of microcapsules and nanocapsules containing n-octadecane. Material Chemistry and Physics.88(2004) 300-307
    [28]J. F. Su, L. X. Wang, L. Ren. Preparation and mechanical properties of thermal energy storage microcapsules. Colloid Polymer Science,284(2005) 224-228
    [29]M. Kenisarin, K. Mahkamov. Solar energy storage using phase change materials. Renewable and Sustainable Energy Reviews,11(2007)1913-1965
    [30JR.Z. Wang, X.Q. Zhai,Development of solar thermal technologies in China, Energy (2009), doi:10.1016/j.energy.2009.04.005
    [31]A. B. Shapiro. Solar thermal energy storage using a paraffin wax phase change material. Energy Production and Conversion.26(1980)65-72.
    [32]Sharma, V. V. Tyagi, C. R. Chen, D. Buddhi, Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews 13 (2009)318-345
    [33]P. Verma, Varun, S. K. Singal, Review of mathematical modeling on latent heatthermal energy storage systems using phase-change material. Renewable and Sustainable Energy Reviews 12 (2008) 999-1031
    [34]A. Saria, K. Kaygusuzb.Thermal energy storage characteristics of myristic and stearic acids eutectic mixture for low temperature heating applications. Chinese Joural of Chemical Engineering,14(2006) 270-275
    [35]A. Karaipekli, A. San. Capric-myristic acid/vermiculite composite as form-stable phase change material for thermal energy storage. Solar Energy.83(2009)323-332
    [36]W. L. Jiu, M. Duo. Fatty acid eutectic/polymethyl methacrylate composite as form-stable phase change material for thermal energy storage. Applied Energy.87(2010)2660-2665
    [37]L. S. Lei, Z. Neng, F. G. Hu. Eutectic mixtures of capric acid and lauric acid applied in building wallboards for heat energy storage. Energy and Buildings.38(2006)708-711.
    [38]A. Sharmaa, L.D. Wona, D. Buddhi, et al. Numerical heat transfer studies of the fatty acids for different heat exchanger materials on the performance of a latent heat storage system. Renewable Energy.30(2005)2179-2187.
    [39]K. Tuncbileka, A. Saria, S. Tarhanb, et al. Lauric and palmitic acids eutectic mixture as latent heat storage material for low temperature heating applications. Energy. 30(2005)677-692.
    [40]A. San. Thermal reliability test of some fatty acids as PCMs used for solar thermal latent heat storage applications. Energy Conversion and Management.44(2003)2277-2287.
    [41]F. Agyenim, N. Hewitt, P. Eames, et al. A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renewable and Sustainable Energy Reviews.2010,14:615-628
    [42]A. Sari, K. Kaygusuz. Thermal performance of palmitic acid as a phase change energy storage material. Energy Conversion and Management.2002,43:863-876
    [43]A.Sari. Thermal characteristics of a eutectic mixture of myristic and palmitic acids as phase change material for heating applications. Applied Thermal Engineering. 23(2003)1005-1017.
    [44]H. A. Adine, H. E. Qarnia. Numerical analysis of the thermal behaviour of a shelland tube heat storage unit using phase change materials. Applied Mathematical Modelling. 33(2009)2132-2144.
    [45]M. J. Huang, P. C. Eames, B. Norton. Thermal regulation building-integrated photovoltaics using phase change materials. Heat and Mass Transfer.47(2004) 2715-2733.
    [46]A. Sari, A. Bicer, A.Karaipekli. Synthesis, characterization, thermal properties of a series of stearic acid esters as novel solid-liquid phase change materials. Materials Letters. 63(2009)1213-1216
    [47]C. Alkan. Enthalpy of melting and solidification of sulfonated paraffins as phase change materials for thermal energy storage. Thermochimica Acta.451(2006)126-130
    [48]C. Alkan, K. Kaya, A. Sari. Preparation and thermal properties of ethylene glycole distearate as a novel phase change material for energy storage. Materials Letters. 62(2008)1122-1125
    [49]B. He, G. E. Mari, S. Fredrik. Tetradecane and hexadecane binary mixtures as phase change materials (PCMs) for cool storage in district cooling systems. Energy. 24(1999)1015-1028.
    [50]S. D. Sharma, D. Buddhi, R. L. Sawhney. Accelerated thermal cycle test of latent heat storage materials. Solar Energy.66(1999)483-490.
    [51]A. Sharma, S. D. Sharma, D. Buddhi. Accelerated thermal cycle test of acetamide, stearic acid and paraffin wax for solar thermal latent heat storage applications. Energy Conversion and Management.43(2002)1923-1930.
    [52]A. Sari, K. Kaygusuz. Some fatty acids used for latent heat storage:thermal stability and corrosion of metals with respect to thermal cycling. Renewable Energy. 28(2003)939-948.
    [53]S. Ahmet, K. Kaygusuz. Thermal performance of a eutectic mixture of laurie and stearic acids as PCM encapsulated in the annulus of two concentric pipes. Solar Energy. 72(2002)493-504
    [54]G Baran, A. Sail. Phase change and heat transfer characteristics of a eutectic mixture of palmitic and stearic acids as PCM in a latent heat storage system. Energy Conversion and Management.44(2003)3227-3246
    [55]张奕,张小松.有机相变材料储能的研究和进展.太阳能学报.2006,27(7):725-730
    [56]S. Jegadheeswaran, D. Sanjay. Performance enhancement in latent heat thermal storage system:A review. Renewable and Sustainable Energy Reviews.13(2009) 2225-2244
    [57]刘硕,张东,纳米胶囊相变材料研究进展.化学通报.2008,12:908-911
    [58]Y. Hong, G. X. Shi. Preparation of polyethylene-paraffin compound as a form-stable solid-liquid phase change material. Solar Energy Materials & Solar Cells.64(2000)37-44
    [59]Cai, Q. F. Wei, F. L. Huang, et al. Thermal stability, latent heat and flame retardant properties of the thermal energy storage phase change materials based on paraffin/high density polyethylene composites. Renewable Energy.34(2009) 2117-2123
    [60]K. Pielichowska, S. Glowinkowski, J. Lekki, et al. PEO/fatty acid blends for thermal energy storage materials. Structural/morphological features and hydrogen interactions. European Polymer Journal.44(2008) 3344-3360
    [61]K. Pielichowski, K. Flejruch. Recent developments in polymeric phase change materials for energy storage:poly(ethylene oxide)/stearic acid blends. Polymers for Advanced Technologies.16(2005)127-132.
    [62]C. Alkan, A. Sari. Fatty acid/poly(methyl methacrylate) (PMMA) blends as form-stable phase change materials for latent heat thermal energy storage. Solar Energy. 82(2008)118-124
    [63]Y. Jiang, E. Y. Ding, G. K Li. Study on transition characteristics of PEG/CDA solid-solid phase change materials. Polymer.43(2002)117-122.
    [64]W. D. Li, E. Y. Ding. Preparation and characterization of cross-linking PEG/MDI/PE copolymer as solid-solid phase change heat storage material. Solar Energy Materials & Solar Cells.91(2007) 764-768.
    [65]M. Ramrakhiani, P. Parashar, S. C. Datt. Study of the degree of crystallinity in eudragit/poly(methyl methacrylate) polyblends by X-ray diffraction. Journal of Applied Polymer Science.96(2005)1835-1838.
    [66]A. San, C. Alkan, A. Karaipekli. Preparation, characterization and thermal properties of PMMA/n-heptadecane microcapsules as novel solid-liquid micro-PCM for thermal energy storage. Applied Energy.87(2010)1529-1534
    [67]C. Alkan, A.Sari, A. O. Uzun. Preparation, characterization, and thermalproperties of microencapsulated phase change material for the mal energy storage. Solar Energy Materials & Solar Cells.93(2009)2009143-147
    [68]A. Sari, C. Alkan, A. Karaipekli, et al. Microencapsulated n-octacosane as phase change material for thermal energy storage. Solar Energy.83(2009) 1757-1763
    [69]A. Borreguero, M. Carmona, M. Luz Sanchez, et al. Improvement of the thermal behaviour of gypsum blocks by the incorporation of microcapsules containing PCMS obtained by suspension polymerization with an optimal core/coating mass ratio. Applied Thermal Engineering.30(2010)1164-1169
    [70]樊耀峰,张兴祥,王学晨,等.相变材料纳米胶囊的制备与性能.高分子材料科学与工程.2005,21(1):287-291
    [71]F. Salaiina, E. Devauxa, S. Bourbigot, etal.Influence of process parameters on microcapsules loaded with n-hexadecane prepared by in situ polymerization. Chemical Engineering Journal 155 (2009) 457-65
    [72]F. G. Yin, L. Hui, Y. Fan, et al. Preparation and characterization of nano-encapsulated n-tetradecane as phase change material for thermal energy storage. Chemical Engineering Journal.153(2009)217-221
    [73]刘星,汪树军,刘红研.MUF/石蜡的微胶囊制备.高分子材料科学与工程.2006,22(2):235:237
    [74]H. D. Zhang, X. D. Wang. Synthesis and properties of microencapsulated n-octadecane with polyurea shells containing different soft segments for heat energy storage and thermal regulation. Solar Energy Materials & Solar Cells.93(2009)1366-1376
    [75]兰孝征,杨常光,谭志诚,等.面聚合法制备正二十烷微胶囊化相变储热材料.物理化学学报.2007,23(4):581-584
    [76]缪春燕,褚晓东,姚有为,等.复合固液相变储能微球的制备.功能材料.2008,39(10):1681-1684
    [77]C. C. Zhong, W. L. Ge, H.Yong. Morphology and thermal properties of electrospun fatty acids/polyethylene terephthalate composite fibers as novel form-stable phase change materials. Solar Energy Materials & Solar Cells.92(2008) 1382-1387
    [78]L. B. Garca, L.Ventol, R. Cordobilla, et al. Phase Change Materials (PCM) microcapsules with different shell compositions:Preparation, characterization and thermalstability. Solar Energy Materials& Solar Cells.94(2010) 1235-1240
    [79]柴卉,刘平安,曾令可,等.固相反应法制备微/纳米复合相变储能材料及其测试表征.分析测试学报.2008,27(8):888-890
    [80]蹇守卫,马保国,金磊.有机/无机相变储能微胶囊的制备与表征.武汉理工大学学报.2009,31(11):5-19
    [81]J. Zhang, S. S. Wang, S. D. Zhang, etc. In Situ Synthesis and Phase Change Properties of Na2SO4·10H2O@SiO2 Solid Nanobowls toward Smart Heat Storage, The Journal of Physical Chemistry C,115(2011)20061-20066
    [82]Z. G. Zhang, X. M. Fang. Study on paraffin/expanded graphite composite phase change thermal energy storage material. Energy Conversion and Management.47(2006)303-310
    [83]施韬,孙伟,王倩楠.膨胀石墨微结构表征及其储能复合材料的制备.东南大学学报(自然科学版).2009,39(3):598-601
    [84]A. Sari, A. Karaipekli. Preparation, thermalproperties and thermalreliability of palmitic acid/expanded graphite composite as form-stable PCM for thermal energy storage. Solar Energy Materials & Solar Cells.93(2009)571-576
    [85]S. Kim, L. T. Drzal. High latent heat storage and high thermal conductive phase change materials using exfoliated graphite nanoplatelets. Solar Energy Materials & Solar Cells. 93(2009)136-142
    [86]O. M. Sadek, W. K. Mekhamer. Ca-montmorillonite clay as thermal energy storage material. Thermochimica Acta.363(2000)47-54
    [87]施韬,孙伟,王倩楠.凹凸棒土吸附相变储能复合材料制备及其热物理性能表征.复合材料学报.2009,26(5):143-147
    [88]陈中华,肖春香.十二醇/蒙脱土复合相变储能材料的制备及性能研究.功能材料.2008.39(4):629-631
    [89]X. M. Fang, Z. G. Zhang. A novel montmorillonite-based composite phase change material and its applications in thermal storage building materials. Energy and Buildings. 38(2006)377-380
    [90]X. M. Fang, Z. G Zhang, Z. H. Chen.Study on preparation of montmorillonite-based composite phase change materials and their applications in thermal storage building materials. Energy Conversion and Management.49(2008)718-723
    [91]N. Sarier, E. Onderb, S. Ozaya, et al. Preparation of phase change material-montmorillonite composites suitable for thermal energy storage. Thermochimica Acta.524 (2011) 39-46
    [92]沈艳华,徐玲玲.新戊二醇/皂土复合储能材料的制备.材料科学与工艺.2007,15(3):350-353
    [93]A.Sari, A. Karaipekli. Preparation, thermal properties and thermal reliability of capric acid/expanded perlite composite for thermal energy storage. Materials Chemistry and Physics.109(2008)459-464
    [94]A. Karaipekli, A. Sari. Capric-myristic acid/expanded perlite composite as form-stable phase change material for latent heat thermal energy storage. Renewable Energy.33(2008)2599-2605
    [95]C. M. Jiao, B. H. Ji, D. Fang. Preparation and properties of lauric acid-stearic acid/expanded perlite composite as phase change materials for thermal energy storage. Materials Letters.67 (2012) 352-354
    [96]L. Hui, L. Xu, F. G Yin. Preparation and characteristics of n-nonadecane/cement composites as thermal energy storage materials in buildings. Energy Buildings.2010, doi:10.1016/j.enbuild.2010.04.009
    [97]杨玉山,董发勤,甘四洋.相变储能混凝土的研究.功能材料.2007,38(2):276-278
    [98]肖力光,丁锐,魏宏亮.新型相变储能材料的研究.吉林建筑工程学院学报.2008,25(3):7-12
    [99]C. Castellon, M. Medrano, J. Roca, et al. Effect of microencapsulated phase change material in sandwich panels. Renewable Energy,35(2010) 2370-2374
    [100]P. Schossig, H.-M. Henning, S. Gschwander, et al. Microencapsulated phase change materials integrated into construction materials. Solar Energy Materials & Solar Cells, 89(2005)297-306
    [101]闫飞,陆大年.织物整理用相变微胶囊的制备.印染助剂.2011,28(1):32-34
    [102]F. Salaiin, E. Devaux, S. Bourbigot, et al. Thermoregulating response of cotton fabric containing microencapsulated phase change materials. Thermochimica Acta, 506(2010):82-93
    [103]A. I. Renzi, C. Carfagna, P. Persico. Thermoregulated natural leather using phase change materials:An example of bioinspiration. Applied Thermal Engineering, 30(2010)1369-1376
    [104]M. J. Huang, P.C. Eames, S. McCormack,et al. Microencapsulated phase change slurries for thermal energy storage in a residential solar energy system. Renewable Energy,36 (2011):2932-2939
    [105]Y. L. Zhang, S. F. Wang, Z.H. Rao,et al. Experiment on heat storage characteristic of microencapsulated phase change material slurry.Solar Energy Materials Solar Cells, 95(2011)2726-2733
    [106]P. W. Griffiths, P. C. Eames. Performance of chilled ceiling panels using phase change material slurries as the heat transport medium. Applied Thermal Engineering, 27(2007)1756-1760
    [107]R. A. Mckinney, Y. G. Bryant, D. P. Colvin. Method of reducing infrared viewability of objects. US6373058.2002-4-14
    [108]李发学,张广平,吴丽莉,等.相变材料在新型红外伪装服装上的应用.纺织学报.2003,24(2):167-169
    [109]T. L. Saaty. How to make a decision:the analytic hierarchy process. European Journal of Operational Research.48 (1990) 9-26.
    [110]R.V. Rao. A material selection model using graph theory and matrix approach. Materials Science and Engineering:A.431 (2006) 248-55.
    [111]S. Opricovic, G. H. Tzeng. Extended VIKOR method in comparison with outranking methods. European Journal of Operational Research.178 (2007) 514-29.
    [112]Y. C. Deng, H. Willis. Intercompany comparison using TOPSIS with objective weights. Computer Operational Research.27 (2000) 963-73.
    [113]G. Vats, R. Vaish. Piezoelectric material selection for transducers under fuzzy environment. Journal of Advanced Ceramics.2 (2013) 141-8.
    [114]A. Chauhan, R. Vaish. A comparative study on material selection for micro-electromechanical systems. Materials & Design.41 (2012) 177-81.
    [115]A. Chauhan, R. Vaish. Magnetic material selection using multiple attribute decision making approach. Materials & Design.36 (2012) 1-5
    [116]贾超,唐炳涛,张淑芬,等.超声辅助溶胶-凝胶法制备硬Si02定形相变储能材料.复合材料学报.2011,29(1):86-90
    [117]童晓梅,张敏,张弘,等.蓄热调温石蜡/P(MMA-co-AA)相变微胶囊的制备及性能研究.功能材料.2011,42:138-140
    [118]张正国,邵刚,方晓明.石蜡膨胀石墨复合相变储热材料的研究.太阳能学报.2005,26(5):699
    [119]单新丽,王建平,刘妍.丙烯酸共聚物囊壁的正十八烷微胶囊的制备和性能表征.物理化学学报,2009,25(12)
    [120]Y. Hamada, W. Ohtsu, J. Fukai. Thermal response in thermal energy storage material around heat transfer tubes:effect of additives on heat transfer rates. Solar Energy.75 (2003)317-28.
    [121]饶中浩,汪双凤,张艳来.相变材料热物理性质的分子动力学模拟.物理学报.2013,62(5):1-4
    [122]M. Esen, A. Durmus, A. Durmus. Geometric design of solar-aided latent heat store depending on various parameters and phase change materials. Solar Energy.62 (1998) 19-28.
    [123]B. Zivkovic, I. Fujii. An analysis of isothermal phase change material within rectangular and cylindrical containers. Solar Energy 2001,70(1):51-6.
    [124]陶乃敏,田妥,宋健等.十八醇/DMDBS凝胶态相变材料的制备与性能研究.功能材料.2013,13(44):1943-1947
    [125]Y. Wang, A. Amiri, K. Vafai. An experimental investigation of the melting process in a rectangular Enclosure. International journal of heat and mass transfer.42 (1999) 3659-72.
    [126]A. Sari, Form-stable paraffin/high density polyethylene composites as solid-liquid phase change materials for thermal energy storage: preparation and thermal properties, Energy Conversion and Management.45 (2004) 2033-2042.
    [127]P. Meshgin, Y. P. Xia, Y. Li, Utilization of phase change materials and rubber particles to improve thermal and mechanical properties of mortar, Construction and Building Materials.28 (2012) 713-721
    [128]Z. G. Zhang, G Q Shi, S. P Wang, X. M Fang, X. H. Liu,Thermal energy storage cement mortar containing n-octadecane/expanded graphite composite phase change material, Renewable Energy. 50 (2013) 670-675
    [129]H. R. Seyf, Z Zhou, H. B. Ma, Y. W Zhang, Three dimensional numerical study of heat-transfer enhancement by nano-encapsulated phase change material slurry in microtube heat sinks with tangential impingement, International Journal of Heat and Mass Transfer.56 (2013) 561-573
    [130]M. M. Kenisarin, High-temperature phase change materials for thermal energy storage, Renewable and Sustainable Energy Reviews 14 (2010) 955-970
    [131]P. Sanchez, M. V. Sanchez-Fernandez, A. Romero, J. F. Rodriguez, L. Sanchez-Silva. Development of thermo-regulating textiles using paraffin wax microcapsules, Thermochimica Acta.498 (2010) 16-21
    [132]J. F. Su, L. X. Wang, L. Ren, Preparation and characterization of double-MF shell microPCMs used in building materials, Journal of Applied Polymer Science.97 (2005) 1755-1762.
    [133]J. F. Su, L. X. Wang, L. Ren, Fabrication and thermal properties of microPCMs:used melamine-formaldehyde resin as shell material, Journal of Applied Polymer Science. 101 (2006)1522-1528.
    [134]E. Y. Kim, H. D. Kim, Preparation and properties of microencapsulated octadecane with waterborne polyurethane, Journal of Applied Polymer Science.96 (2005) 1596-1604.
    [135]Y B. Cai, L. Song, Q. L. He, Preparation, thermal and flammability properties of a novel form-stable phase change materials based on high density polyethylene/poly(ethylene-co-vinyl acetate)/organophilic montmorillonite nanocomposites/paraffin compounds, Energy Conversion and Management.49 (2008) 2055-2062
    [136]M. Xiao, B. Feng, K. C. Gong, Preparation and performance of shape stabilized phase change thermal storage materials with high thermal conductivity, Energy Conversion and Management.43(2002):103-108.
    [137]Y. P. Zhang, K.P. Lin, R. Yang, Preparation, thermal performance and application of shape-stabilized PCM in energy efficient buildings, Energy and Buildings.38 (2006):1262-1269.
    [138]B. Y. Ahn, S I. Seok, I. C. Baek, S. I Hong, Core/shell silica-based in-situ microencapsulation:A self-templating method, Chemical Communications.2006, 189-190
    [139]H. L. Wang, K. Schaefer, A. Pich, M. Moeller, Synthesis of Silica Encapsulated Perylenetetracarboxylic Diimide Core-Shell Nanoellipsoids, Chemical Material. 23(2011)4748-4755
    [140]T. Zhang, Y. Wang, H. Shi, W. T. Yang, Fabrication and performances of new kind microencapsulated phase change material based on stearic acid core and polycarbonate shell, Energy Conversion and Management 64 (2012) 1-7
    [141]L. Sanchez-Silva, J. F. Rodriguez, A. Romero, A. M. Borreguero, M. Carmona, P. Sanchez, Microencapsulation of PCMs with a styrene-methyl methacrylate copolymer shell by suspension-like polymerization, Chemical Engineering Journal 157 (2010) 216-222
    [142]C. Alkan, A. San, A.Karaipekli, Preparation, thermal properties and thermal reliability of microencapsulated n-eicosane as novel phase change material for thermal energy storage, Energy Conversion and Management.52 (2011) 687-692
    [143]A. Loxley, B. Vincent, Preparation of poly(methylmethacrylate) microcapsules with liquid Cores, Journal of Colloid and Interface Science,208 (1998) 49-62.
    [144]X. L. Qiu, W. Li, G. L. Song, X. D. Chu, G. Y. Tang, Fabrication and characterization of microencapsulated n-octadecane with different crosslinked methylmethacrylate-based polymer shells. Solar Energy Materials & Solar Cells 98 (2012) 283-293
    [145]A. R. Shirin-Abadi, A. R. Mahdavian, S. Khoee, New Approach for the Elucidation of PCM Nanocapsules through Miniemulsion Polymerization with an Acrylic Shell. Macromolecules 44(2011)7405-7414
    [146]R. Xie, R. Oleschuk, Photoinduced polymerization for entrapping of octadecylsilane microsphere columns for capillary electrochromatography, Anal. Chem.79 (2007) 1529-1535.
    [147]H. D. Kim, T. W. Kim, Preparation and properties of UV-curable polyurethane acrylate ionomers, Journal of Applied Polymer Science.67(1998) 2153-2162
    [148]Y. Wang., H. Shi., T. D. Xia, et al, Fabrication and performances of microencapsulated paraffin composites with polymethylmethacrylate shell based on ultraviolet irradiation-initiated, Materials Chemistry and Physics 135 (2012) 181-187
    [149]F. Mauguiere-Guyonnet, D. Burget,. Photopolymerization of wood coatings under visible lights. Progress in Organic Coatings.57(2006)23-32.
    [150]M. Sangermano, G. Malucelli, Photopolymerization of epoxy coatings containing silica nanoparticles. Progress in Organic Coatings.54(2005)134-138
    [151]J. L. Li, P. Xue, W. Y. Ding, Micro-encapsulated paraffin/high-density polyethylene/wood flour composite as form-stable phase change material for thermal energy storage. Solar Energy Material & Solar Cells.93 (2009) 1761-1767
    [152]D. Zhang, S. Tian, D. Xiao, Experimental study on the phase change behavior of phase change material confined in pores, Solar Energy.81 (2007) 653-660.
    [153]刘海林,马晓燕,袁莉,等.分子自组装研究进展.材料科学与工程学报.2004,22(2):308-211
    [154]M. N. A. Hawlader, M. S. Uddin, M. M. Khin, Microencapsulated PCM thermal energy storage system, Applied Energy. 74 (2003) 195-202.
    [155]S. Phadungphatthanakoon, S. Poompradub, S. P. Wanichwecharungruang, Increasing the thermal storage capacity of a phase change material by encapsulation:preparation and application in natural rubber, Applied Material Interfaces,3(2011)3691-3696
    [156]张洪.紫外光引发制备聚甲基丙烯酸甲酯及其纳米复合材料乳液.兰州:兰州大学,2012
    [157]Y. P. Yuan, W. Q. Tao, X. L. Cao, B. Li, Theoretic prediction of melting temperature and latent heat for a fatty acid eutectic mixture, Journal of Chemical Engineering Data. 56(2011)2889-2891
    [158]J. F. Su, X. Y. Wang, Z. Huang, Y. H. Zhao, X. Y. Yuan. Thermal conductivity of microPCMs filled epoxy-matrix composites, Colloid Polymer Science. 289(2011)1535-1542
    [159]J. F. Su, L. X. Wang, L. Ren, Synthesis of polyurethane microPCMs containing n-octadecane by interfacial polycondensation:Influence of styrene-maleic anhydride as a surfactant, Colloids Surf. A:Physicochem. Eng. Aspects.299 (2007) 268-275
    [160]L. Sanchez, P. Sanchez, M. Carmona, A. de Lucas, J.F. Rodriguez, Influence of operation conditions on the microencapsulation of PCMs by means of suspension-like polymerization, Colloid Polymer Science.286 (2008) 1019-1027
    [161]Z. H. Chen, F. Yu, X. R. Zeng, Z. G. Zhang, Preparation, characterization and thermal properties of nanocapsules containing phase change material n-dodecanol by miniemulsion polymerization with polymerizable emulsifier, Applied Energy.91 (2011) 7-12
    [162]G. H. Zhang, S. A. F. Bon, C. Y. Zhao, Synthesis, characterization and thermal properties of novel nanoencapsulated phase change materials for thermal energy storage, Solar Energy.86 (2012) 1149-1154
    [163]L. Y. Liu, W. T. Yang, Photoinitiated, inverse emulsion polymerization of acrylamide: Some mechanistic and kinetic aspects, J. Polym. Sci., Part A:Polym. Chem.42(2004) 846-852
    [164]P. C. Chen, S. C. Wang, C. Y. Huang, J. T. Yeh, K. N. Chen, New crosslinked polymer from a rapid polymerization of acrylic acid with triaziridine-containing compound, Journal of Applied Polymer Science.104(2007)809-815.
    [165]G. Y. Fang, Z. Chen, H. Li, Synthesis and properties of microencapsulated paraffin composites with SiO2 shell as thermal energy storage materials, Chemical Engineering Journal.163(2010) 154-159
    [166]T. Sawada, M. Korenori, K. Ito, et al. Preparation of melamine resin micro/nanocapsules by using a microreactor and telomeric surfactants. Macromolecular Materials and Engineering,288(2003) 920-924.
    [167]O. L. Gribkova, A. A. Nekrasov, M. Trchova, Chemical synthesis of polyaniline in the presence of poly(amidosulfonic acids) with different rigidity of the polymer chain. Polymer 52 (2011) 2474-2484
    [168]S. Deepshikha, Manish. Kr. Priydarshi, B. Tinku, Effect of various structure directing agents on the properties of nanostructured conducting polyaniline. Int. J. Nanotechnol.,9 (2012)995-1006
    [169]Sadia Ameen, M. Shaheer Akhtar, Young Soon Kim, et al. Sulfamic Acid-Doped Polyaniline Nanofibers Thin Film-Based Counter Electrode:Application in Dye-Sensitized Solar Cells, J. Phys. Chem. C. 114(2010) 4760-4764
    [170]S. E.Bourdo, B. A.Warford, T. Viswanathan, Electrical and thermal properties of graphite/polyaniline composites, Journal of Solid State Chemistry 196 (2012) 309-313
    [171]X. N. Wu, X. R. Qian, X. H.An, Flame retardancy of polyaniline-deposited paper composites prepared via in situ polymerization, Carbohydrate Polymers 92 (2013) 435-440
    [172]D. Ragupathy, P. Gomathi, S. C. Lee, One-step synthesis of electrically conductive polyaniline nanostructures by oxidative polymerization method, Journal of Industrial and Engineering Chemistry 18 (2012) 213-1215
    [173]X. Zhang, J.H. Zhu, N. Haldolaarachchige, Synthetic process engineered polyaniline nanostructures with tunable morphology and physical properties, Polymer 53 (2012) 2109-2120
    [174]E. M. Genies, J. F. Penneua, M. LaPkowski, A. Boyle, Electro polymerization reaction mechanism of Paarmainodiphenylamine, J. Electro.Chem.269(1986) 63-75
    [175]Y Wei, X. Tnag, Y. Sun, W. Foeke, A study of the mechanism of aniline polymerization, J. Poylm. Sci. Poylm.Chem.1989,27,2385-2396.
    [176JN. Gospodinova, P. Mokreva, L. Terlemezyan, Chemical oxidative polymerization of aniline in aqueous medium without added acids. Polymer.34(1993)2438-2439
    [177]S. Baheeei, L.Toppare, E.Yurtsever. Hydrogen bonding in polyanilines. Synthestic Metals.21(1994)57-60
    [178]Ghun-GueyWu, Jieh-Yih Chen. Chemieal deposition of ordered conducting polyaniline film via molecular self-assembly. Chemistry of Materials.9(1997) 399-402
    [179]郭亚平,郭亚军,吕君英.甲基对聚邻甲苯胺结构和性能的影响.高分子材料科学与工 程.2005,21(5):94-97
    [180]P. Kiliaris, C. D. Papaspyrides, Polymer/layered silicate (clay) nanocomposites:An overview of flame retardancy. Progress in Polymer Science 35(2010) 902-958
    [181]J. Konta, Clay and man:clay raw materials in the service of man, Applied Clay Science 10(1995)275-335
    [182]A. R. McLauehlin, N. L. Thomas. Preparation and thermal characterization of Poly(lactic acid) nanocomposites prepared from organoclays based on anchoretic surfactant. Polymer Degradation and Stability.94(2009) 868-872.
    [183]M. Li, Z. S. Wu, H. T. Kao, et al. Experimental investigation of preparation and thermal performances of paraffin/bentonite composite phase change material. Energy Conversion and Management 52 (2011) 3275-3281
    [184]M. Yuehonga, Z. Jianxi, H. Hongpinga, Y. Peng, S. Weia, L. Dong, Infrared investigation of organo-montmorillonites prepared from different surfactants, Spectrochim. Acta Part A.76 (2010) 122-129.
    [185]D. D. Mei, B. Zhang, R. C. Liu, et al, Preparation of capric acid/halloysite nanotube composite as form-stable phase change material for thermal energy storage. Solar Energy Materials & Solar Cells.95 (2011) 2772-2777
    [186]D. Feldman, D. Banu, D. W. Hawes, Development and application of organic phase change mixtures in thermal storage gypsum wallboard, Solar Energy Materials and Solar Cells 36(1995),147-157.
    [187]A.San, A. Karaipekli, C. Alkan, Preparation, characterization and thermal properties of lauric acid/expanded perlite as novel form-stable composite phase change material, Chemical Engineering Journal 155 (2009) 899-904
    [188]A. Sari, A. Karaipekli, K. Kaygusuz, Capric acid and stearic acid mixture impregnated with gypsum wallboard for low-temperature latent heat thermal energy storage, International Journal of Energy Research 32 (2008) 154-160.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700