基于实验的镁合金本构模型及其在轧制数值模拟中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文结合国家科技支撑计划项目(2012BAF09B01)“面向冶金行业关键装备、技术研发及示范应用子课题——镁合金深加工关键技术研究及大型成套设备研制”,以AZ31镁合金在不同温度、不同应变速率、沿不同方向条件下的拉伸和压缩应力-应变实验数据为基础,建立Arrhenius双曲正弦流变应力本构模型、含常软化因子的高温流变应力本构模型、非关联流动各向异性本构模型和拉-压不对称各向异性本构模型,通过数值模拟和轧制试验研究镁合金热轧轧板宽展和头部翘曲变形的规律,以指导镁合金厚板热轧工艺设计,控制板材成形质量。
     材料的本构模型是进行轧制过程数值模拟的基础,本文综述了国内外镁合金热轧成形数值模拟技术研究成果,归纳了各向异性本构理论在金属塑性成形中的应用情况,讨论了各种常用本构模型的特点。为研究AZ31镁合金的拉伸、压缩力学性能随温度和应变速率变化的规律,进行了25℃~375℃、应变速率为0.001s-1~0.1s-1条件下镁合金轧制试件的单轴拉伸和单轴压缩试验。结果表明温度和应变速率对AZ31镁合金的流变应力有较大影响:AZ31镁合金的拉伸、压缩应力水平均随变形温度的升高和应变速率的减小而降低,25℃下AZ31镁合金的拉、压初始屈服应力差别较大,随着温度的升高这种差别逐渐减小,但两种状态下的硬化关系仍具有较大差别。通过沿轧板面内各方向和垂向的单轴拉伸和单轴压缩试验,得到了AZ31镁合金不同方向的拉、压屈服应力和塑性应变比,数据表明轧制AZ31镁合金具有较强的应力应变各向异性。
     为综合考虑AZ31镁合金高温变形过程中变形温度和应变速率对流变应力的影响,利用AZ31镁合金的拉伸、压缩力学性能随温度和应变速率变化的试验数据,建立了Arrhenius双曲正弦型流变应力本构方程和含常软化因子的高温流变应力本构方程,进行了板材轧制热固耦合有限元模拟,分析了AZ31镁合金多道次热轧过程中轧板、轧辊和输送辊温度场变化的规律和轧板的翘曲变形,并通过与实际翘曲量的对比验证了热固耦合有限元方法在预测轧板翘曲变形方面的可行性。
     含常软化因子的高温流变应力本构方程未考虑AZ31镁合金应力应变的各向异性,是导致模拟结果存在误差的原因之一,本文将各向异性本构模型引入镁合金板材轧制。根据AZ31镁合金沿轧板面内各方向和垂向的压缩屈服应力和压缩塑性应变比,建立了三维应力状态下的非关联流动Hill48和非关联流动Hu2005本构模型,通过与试验数据和具有18个各向异性参数的Yld2004-18p本构模型进行比较,证明了上述非关联流动本构模型能够准确地预测AZ31镁合金沿不同方向的压缩屈服应力和压缩塑性应变比。将非关联流动Hill48和非关联流动Hu2005本构模型编写了相应的用户材料子程序VUMAT,然后在Abaqus/Explicit中调用该子程序模拟了恒温下AZ31镁合金的轧制过程,预测了方形棒材的宽展变形,仿真结果与试验数据吻合较好,验证了上述非关联流动本构模型的正确性。
     根据AZ31镁合金沿轧板面内各方向和垂向的拉伸、压缩屈服应力和塑性应变比,建立了三维应力状态下的CPB06ex2拉-压不对称各向异性本构模型,试验数据表明采用CPB06ex2拉-压不对称各向异性本构模型预测的镁合金方形棒材和板材的头部翘曲量与实际变形吻合较好。在此基础上,分析了上下轧辊辊速比、轧制速度、轧板与轧辊表面间的摩擦条件等因素对AZ31镁合金方形棒材头部翘曲的影响规律。论文的研究成果对改进轧制模拟的仿真精度、提高国产镁合金深加工装备板材成形质量具有重要的指导意义。
This research is supported by a sub-project under the National Key Technology R&DProgram (No.2012BAF09B01): Research on key technology of magnesium alloy furtherprocessing and development of large equipments. Different constitutive models, such asArrhenius hyperbolic sinusoidal flow stress constitutive equation, flow stress constitutiveequation with a constant strain-softening factor, anisotropic constitutive model undernon-associated flow rule and anisotropic-asymmetric constitutive model were built based onthe tension and compression stress-strain data of the AZ31magnesium alloy at varioustemperatures, different strain rates and along different directions. The deformation rule ofspread and head warping of the hot-rolled magnesium alloy sheet were analyzed bynumerical simulation and experiments to instruct the design of magnesium alloy rollingprocess and control the quality of the sheet forming.
     The constitutive model of the magnesium alloy is the basis of the numerical simulationof rolling process. An overview of the relevant research achievements on the numericalsimulation technology of the magnesium alloy hot-rolling process was provided, applicationof the anisotropic constitutive theory in metal forming was summarized, features of thecommonly used constitutive model were discussed. Under the condition that the range oftemperature is25℃~375℃and strain rate changes from0.001s-1s to0.1s-1s, uniaxialtension and compressive tests were carried to study the tensile and compression mechanicalproperties of AZ31magnesium alloy at various temperatures. Results indicates thattemperature and strain rate has a great effect on the flow stress of AZ31magnesium alloy,and the difference of the initial yield stress between tension and compression stage undertemperature of25℃is large. The difference decreases as the temperature rises, but thehardening relationship between two states still has a big difference. Besides, uniaxial tensionand compression tests along each direction of the rolling field and vertical direction werecarried out to obtain anisotropy in the tensile and compressive yield stress and the plasticstrain ratio of AZ31magnesium alloy. The experimental result shows that the rolling AZ31magnesium alloy has strong stress-strain anisotropy effect.
     Arrhenius hyperbolic sinusoidal flow stress constitutive equation was built to generallyconsider the effects of deformation temperature and strain rate on peak stress during theprocess of the magnesium alloy deformation at high temperatures, while the flow stressconstitutive equation with a constant strain-softening factor reflects the effects on the wholestress-strain behavior, and the simulation results of both the equations correspond well withthe experimental data. The coupled thermo-mechanical finite element method was used to analyze the temperature field of the rolled piece, the roller and the conveyor roller, thecomparison between the simulation results with the experimental warping shows thefeasibility of the coupled thermo-mechanical finite element method in predicting thewarping.
     Because the anisotropic property in stress and strain of AZ31magnesium alloy was nottaken into consideration in the the flow stress constitutive equation with a constantstrain-softening factor, so the error of the simulation is unavoidable, this paper introducedthe anisotropic constitutive model in the simulation of the rolling process of magnesiumalloy. According to the compressive yield stress and the plastic strain ratio of AZ31magnesium alloy along different directions in the plane of rolled piece and the verticaldirection, the three-dimensional Hill48and Hu2005constitutive models undernon-associated flow rule were established. Compared with the experimental data and theYld2004-18p constitutive model which has18anisotropic parameters, the result shows thatthe constitutive models under non-associated flow rule could accurately predict thecompressive yield stress and plastic strain ratio of AZ31magnesium alloy at each direction.The non-associated Hill48and Hu2005constitutive models were implemented into auser-defined material subroutine (VUMAT) to simulate the rolling process of AZ31magnesium alloy at constant temperature in Abaqus/Explicit. The simulation predicted thespread of the magnesium alloy bar. The simulation result is very close to the experimentresult. Thus the accuracy of the constitutive models under non-associated flow rule isverified.
     According to the tensile and compressive yield stress and plastic strain ratio alongdifferent directions in the plane of the rolled AZ31piece and the vertical direction, atension-compression asymmetric&anisotropic constitutive model of CPB06ex2under thethree-dimensional stress state was built. The result shows that the predicted head warpingwith the tension-compression asymmetric&anisotropic constitutive model of CPB06ex2matches well with the measured data. Then, the effects of speed ratio of the upper roller tothe lower roller, the rolling speed and the friction condition between the rolled sheet and theroller surface on head warping of the rolled AZ31sheet were analyzed. The achievements ofthis thesis have significant meaning in improving the precision of rolling simulation and thequality of magnesium alloy sheet metal.
引文
[1]田勇,王国栋,赵忠,等.中厚板轧制过程头部弯曲成因分析及其控制[J].东北大学学报(自然科学版),2007,11:016.
    [2]陈振华.变形镁合金[M].北京:化学工业出版社,2005.
    [3]方霖.镁合金板材轧制及数值模拟研究[D].重庆大学,2010.
    [4]蔡志勇. AZ31B镁合金板材热轧变形行为研究[D].中南大学,2010.
    [5]詹美燕,李春明,尚俊玲.镁合金的塑性变形机制和孪生变形研究[J].材料导报,2011(003):1-7.
    [6] Chino Y, Kimura K, Mabuchi M. Twinning behavior and deformation mechanisms ofextruded AZ31Mg alloy [J]. Materials Science and Engineering: A,2008,486(1):481-488.
    [7] Jain A, Duygulu O, D. Brown W, et al. Grain size effects on the tensile properties anddeformation mechanisms of a magnesium alloy, AZ31B, sheet [J]. Materials Scienceand Engineering: A,2008,486(1):545-555.
    [8] Barnett M R, Keshavarz Z, Beer A G, et al. Influence of grain size on the compressivedeformation of wrought Mg–3Al–1Zn [J]. Acta Materialia,2004,52(17):5093-5103.
    [9] Agnew S R, Duygulu. Plastic anisotropy and the role of non-basal slip inmagnesium alloy AZ31B [J]. International Journal of Plasticity,2005,21(6):1161-1193.
    [10] Jiang L, Jonas J J, Luo A A, et al. Twinning-induced softening in polycrystalline AM30Mg alloy at moderate temperatures [J]. Scripta materialia,2006,54(5):771-775.
    [11] Lou X Y, Li M, Boger R K, et al. Hardening evolution of AZ31B Mg sheet [J].International Journal of Plasticity,2007,23(1):44-86.
    [12] Keshavarz Z, Barnett M R.. EBSD analysis of deformation modes in Mg–3Al–1Zn [J].Scripta materialia,2006,55(10):915-918.
    [13] Ji Y H, Park J J, Kim W J. Finite element analysis of severe deformation inMg–3Al–1Zn sheets through differential-speed rolling with a high speed ratio [J].Materials Science and Engineering: A,2007,454:570-574.
    [14] Ji, Y H, Park J J. Analysis of thermo-mechanical process occurred in magnesium alloyAZ31sheet during differential speed rolling [J]. Materials Science and Engineering: A,2008,485(1):299-304.
    [15] Xia W, Chen Z, Chen D, et al. Microstructure and mechanical properties of AZ31magnesium alloy sheets produced by differential speed rolling [J]. Journal of materialsprocessing technology,2009,209(1):26-31.
    [16] Watanabe H, Mukai T, Ishikawa K. Differential speed rolling of an AZ31magnesiumalloy and the resulting mechanical properties [J]. Journal of Materials Science,2004,39(4):1477-1480.
    [17] Kim S H, You B S, Dong Yim C, et al. Texture and microstructure changes inasymmetrically hot rolled AZ31magnesium alloy sheets [J]. Materials Letters,2005,59(29):3876-3880.
    [18] Del Valle J A, Pérez-Prado M T, Ruano O A. Texture evolution during large-strain hotrolling of the Mg AZ61alloy [J]. Materials Science and Engineering: A,2003,355(1):68-78.
    [19] Pérez-Prado M T, Del Valle J A, Contreras J M, et al. Microstructural evolution duringlarge strain hot rolling of an AM60Mg alloy [J]. Scripta Materialia,2004,50(5):661-665.
    [20] Pérez-Prado M T, Del Valle J A, Ruano O A. Effect of sheet thickness on themicrostructural evolution of an Mg AZ61alloy during large strain hot rolling [J].Scripta Materialia,2004,50(5):667-671.
    [21] Eddahbi M, Del Valle J A, Pérez-Prado M T, et al. Comparison of the microstructureand thermal stability of an AZ31alloy processed by ECAP and large strain hot rolling[J]. Materials Science and Engineering: A,2005,410:308-311.
    [22] Chino Y, Sassa K, Kamiya A, et al. Enhanced formability at elevated temperature of across-rolled magnesium alloy sheet [J]. Materials Science and Engineering: A,2006,441(1):349-356.
    [23] Chino Y, Sassa K, Kamiya A, et al. Stretch formability at elevated temperature of across-rolled AZ31Mg alloy sheet with different rolling routes [J]. Materials Scienceand Engineering: A,2008,473(1):195-200.
    [24] Lim H K, Lee J Y, Kim D H, et al. Enhancement of mechanical properties andformability of Mg–MM–Sn–Al–Zn alloy sheets fabricated by cross-rolling method [J].Materials Science and Engineering: A,2009,506(1):63-70.
    [25] Jin L, Dong J, Wang R, et al. Effects of hot rolling processing on microstructures andmechanical properties of Mg–3%Al–1%Zn alloy sheet [J]. Materials Science andEngineering: A,2010,527(7):1970-1974.
    [26]王建利,王立民,王立东,等.热轧对Mg-5Al-0.3Mn-2Ce合金组织与性能的影响[J].热加工工艺,2011(24):45-48.
    [27]张佳,吴炜.热轧变形对Mg-0.6Zr合金组织和力学性能的影响[J].轻合金加工技术,2013,9(41):19-22.
    [28]曹勇.多向轧制对AZ31镁合金板材组织与性能的影响[D].重庆大学,2009.
    [29]黄鑫.不同轧制工艺对AZ31镁合金板材组织与性能的影响[D].重庆大学,2012.
    [30]曲家惠,姚路明,王福. AZ31镁合金在不同轧制方式下的织构演变[J].轻合金加工技术,2008,36(8):29-32.
    [31]詹美燕,李元元,陈宛德,等.大应变轧制技术制备细晶AZ31镁合金板材[J].华南理工大学学报(自然科学版),2007,35(8):16-21.
    [32] Duan X, Sheppard T. Three dimensional thermal mechanical coupled simulationduring hot rolling of Aluminium alloy3003[J]. International journal of mechanicalsciences,2002,44(10):2155-2172.
    [33] Duan X, Sheppard T. The influence of the constitutive equation on the simulation of ahot rolling process [J]. Journal of materials processing technology,2004,150(1):100-106.
    [34] Sheikh H. Thermal analysis of hot strip rolling using finite element and upper boundmethods [J]. Applied Mathematical Modelling,2009,33(5):2187-2195.
    [35] Shahani A R, Setayeshi S, Nodamaie S A, et al. Prediction of influence parameters onthe hot rolling process using finite element method and neural network [J]. Journal ofmaterials processing technology,2009,209(4):1920-1935.
    [36] Tieu A K, Jiang Z Y, Lu C. A3D finite element analysis of the hot rolling of strip withlubrication [J]. Journal of materials processing technology,2002,125:638-644.
    [37] Jiang Z Y, Tieu A K, Lu C, et al. A three-dimensional thermo-mechanical finite elementmodel of complex strip rolling considering sticking and slipping friction [J]. Journal ofmaterials processing technology,2002,125:649-656.
    [38] Riahifar R, Serajzadeh S. Three-dimensional model for hot rolling of aluminum alloys[J]. Materials&design,2007,28(8):2366-2372.
    [39]余琨,王晓艳,蔡志勇,等. AZ31镁合金热轧开坯变形行为的有限元模拟[J].中南大学学报(自然科学版),2009,40(6):1536.
    [40]王露萌. AZ31镁合金板材轧制工艺的数值模拟研究[D].哈尔滨工业大学,2008.
    [41]李成. AZ31镁合金薄板轧制及热处理工艺的研究[D].东北大学,2009.
    [42]颜亮. AZ31镁合金板材轧制过程的有限元模拟与工艺研究[D].湖南大学,2010.
    [43]刘声宏.镁合金板带热轧热力耦合有限元仿真分析[D].重庆大学,2010.
    [44]戴庆伟.镁合金轧制变形及边裂机制研究[D].重庆大学,2011.
    [45]喻海良,刘相华.多道次立-平轧制热力耦合有限元分析[J].热加工工艺,2007,36(1):85-88.
    [46]张金玲,崔振山,王英杰.中厚板多道次热轧过程有限元连续模拟[J].上海交通大学学报,2009,43(1):65-70.
    [47]余琨,蔡志勇,王晓艳,史褆,黎文献.半连续铸造AZ31B镁合金连续热轧变形行为的数值模拟[J].材料工程,2010,09:33-39.
    [48]熊尚武,李洪斌.热带粗轧机组调宽工艺中数学模型的建立[J].上海金属,1997,19(1):39-43.
    [49]熊尚武,孟祥君.粗轧机组板坯调宽预测模型的实验验证与应用[J].钢铁,1999,34(8):41-44.
    [50]贾春玉.热轧带钢宽展预报的人工智能方法[J].轧钢,2001,18(1):13-15.
    [51]孟令启,孟梦. Elman神经网络在中厚板轧机宽展预测中的应用[J].吉林大学学报(工学版),2008,38(1):193-196.
    [52]孟令启,孟梦.基于GRNN神经网络的4200轧机宽展模型[J].钢铁研究学报,2008,20(3):23-26.
    [53]李学通,杜凤山,孙登月,等.热轧带钢粗轧区轧制宽展模型的研究[J].钢铁,2005,40(6):44-47.
    [54]王爱丽,杨荃,何安瑞,等.热连轧粗轧区FES宽展模型及其优化[J].北京科技大学学报,2010,(4):515-519.
    [55] Liu C, Hartley P, Sturgess C E N, et al. Finite-element modelling of deformation andspread in slab rolling [J]. International journal of mechanical sciences,1987,29(4):271-283.
    [56] Zaharoff T L, Johnson R E, Karabin M E. Spread in sheet rolling: a comparison usingexperiments, analytical solutions and numerical techniques [J]. International journal ofmechanical sciences,1992,34(6):435-442.
    [57] Sheppard T, Duan X. A new spread formula for hot flat rolling of aluminium alloys [J].Modelling and simulation in materials science and engineering,2002,10(6):597.
    [58] Yea Y, Ko Y, Kim N, et al. Prediction of spread, pressure distribution and roll force inring rolling process using rigid–plastic finite element method [J]. Journal of materialsprocessing technology,2003,140(1):478-486.
    [59] Bayoumi L S, Byon S M. Simplified approach for prediction of spread, roll load andtorque in grooveless rolling of billets [J]. Ironmaking&steelmaking,2004,31(5):417-423.
    [60] Esteban L, Elizalde M R, Ocana I. Mechanical characterization and finite elementmodelling of lateral spread in rolling of low carbon steels [J]. Journal of materialsprocessing technology,2007,183(2):390-398.
    [61]姜远军,王刚.热轧时铝板带头部产生翘曲原因分析及预防[J].轻合金加工技术,2001,29(9):18-19.
    [62]胡衍生,程晓茹,李虎兴,等.中厚板轧制头部弯曲的实验研究[J].武汉科技大学学报(自然科学版),2003,26(1):3-4.
    [63]孙蓟泉,张海滨,于全成.热轧带钢头部翘曲原因分析[J].钢铁研究学报,2006,18(7):30-34.
    [64] Knight C W, Hardy S J, Lees A W, et al. Investigations into the influence ofasymmetric factors and rolling parameters on strip curvature during hot rolling [J].Journal of materials processing technology,2003,134(2):180-189.
    [65]刘泽田,董瑞峰,高军,等.中厚板轧制过程中头部弯曲原因及其控制[J].金属材料与冶金工程,2013,41(4).
    [66]李学通,杜凤山,王敏婷,等.板材轧制头部翘曲的非线性有限元研究[J].钢铁研究学报,2005,17(5):43-47.
    [67]李顺华,吕勇,李友荣,等.热轧板坯头部翘曲的热力耦合仿真[J].塑性工程学报,2011,18(3):43-47.
    [68] Hill R. A theory of the yielding and plastic flow of anisotropic metals [J]. Proceedingsof the Royal Society of London. Series A. Mathematical and Physical Sciences,1948,193(1033):281-297.
    [69] Hill R. Theoretical plasticity of textured aggregates [J]. Math. Proc. Cambridge Philos.Soc.,1979,85(1):179-191.
    [70] Hill R. Constitutive modelling of orthotropic plasticity in sheet metals [J]. Journal ofthe Mechanics and Physics of Solids,1990,38(3):405-417.
    [71] Hill R. A user-friendly theory of orthotropic plasticity in sheet metals [J]. InternationalJournal of Mechanical Sciences,1993,35(1):19-25.
    [72] Hu W. Characterized behaviors and corresponding yield criterion of anisotropic sheetmetals [J]. Materials Science and Engineering: A,2003,345(1):139-144.
    [73] Hu W. An orthotropic yield criterion in a3-D general stress state [J]. Internationaljournal of plasticity,2005,21(9):1771-1796.
    [74] Hu W. Constitutive modeling of orthotropic sheet metals by presentinghardening-induced anisotropy [J]. International Journal of Plasticity,2007,23(4):620-639.
    [75] Barlat F, Lian K. Plastic behavior and stretchability of sheet metals. Part I: A yieldfunction for orthotropic sheets under plane stress conditions [J]. International Journalof Plasticity,1989,5(1):51-66.
    [76] Lian J, Barlat F, Baudelet B. Plastic behaviour and stretchability of sheet metals. PartII: Effect of yield surface shape on sheet forming limit [J]. International journal ofplasticity,1989,5(2):131-147.
    [77] Barlat F, Lege D J, Brem J C. A six-component yield function for anisotropic materials[J]. International Journal of Plasticity,1991,7(7):693-712.
    [78] Barlat F, Maeda Y, Chung K, et al. Yield function development for aluminum alloysheets [J]. Journal of the Mechanics and Physics of Solids,1997,45(11):1727-1763.
    [79] Barlat F, Becker R C, Hayashida Y, et al. Yielding description for solution strengthenedaluminum alloys [J]. International Journal of Plasticity,1997,13(4):385-401.
    [80] Barlat F, Brem J. C, Yoon J W, et al. Plane stress yield function for aluminum alloysheets—part1: theory [J]. International Journal of Plasticity,2003,19(9):1297-1319.
    [81] Yoon J W, Barlat F, Dick R E, et al. Plane stress yield function for aluminum alloysheets—part II: FE formulation and its implementation [J]. International Journal ofPlasticity,2004,20(3):495-522.
    [82] Aretz H. Applications of a new plane stress yield function to orthotropic steel andaluminium sheet metals [J]. Modelling and simulation in Materials Science andEngineering,2004,12(3):491.
    [83] Barlat F, Aretz H, Yoon J W, et al. Linear transfomation-based anisotropic yieldfunctions [J]. International Journal of Plasticity,2005,21(5):1009-1039.
    [84] Yoon J W, Barlat F, Dick R E, et al. Prediction of six or eight ears in a drawn cup basedon a new anisotropic yield function [J]. International Journal of Plasticity,2006,22(1):174-193.
    [85] Yoon J W, Hong S H. Modeling of aluminum alloy sheets based on new anisotropicyield functions [J]. Journal of materials processing technology,2006,177(1):134-137.
    [86] Cazacu O, Barlat F. Generalization of Drucker's yield criterion to orthotropy [J].Mathematics and Mechanics of Solids,2001,6(6):613-630.
    [87] Cazacu O, Barlat F. Application of the theory of representation to describe yielding ofanisotropic aluminum alloys [J]. International Journal of Engineering Science,2003,41(12):1367-1385.
    [88] Cazacu O, Barlat F. A criterion for description of anisotropy and yield differentialeffects in pressure-insensitive metals [J]. International Journal of Plasticity,2004,20(11):2027-2045.
    [89] Cazacu O, Plunkett B, Barlat F. Orthotropic yield criterion for hexagonal closedpacked metals [J]. International Journal of Plasticity,2006,22(7):1171-1194.
    [90] Plunkett B, Lebensohn R A, Cazacu O, et al. Anisotropic yield function of hexagonalmaterials taking into account texture development and anisotropic hardening [J]. ActaMaterialia,2006,54(16):4159-4169.
    [91] Plunkett B, Cazacu O, Barlat F. Orthotropic yield criteria for description of theanisotropy in tension and compression of sheet metals [J]. International Journal ofPlasticity,2008,24(5):847-866.
    [92] Karafillis A P, Boyce M C. A general anisotropic yield criterion using bounds and atransformation weighting tensor [J]. Journal of the Mechanics and Physics of Solids,1993,41(12):1859-1886.
    [93] Banabic D, Balan T, Comsa D S. A new yield criterion for orthotropic sheet metalsunder plane-stress conditions [C]. Proceedings of the7th Conference ‘TPR2000’, ClujNapoca, Romania,2000:217-224.
    [94] Banabic D, Kuwabara T, Balan T, et al. Non-quadratic yield criterion for orthotropicsheet metals under plane-stress conditions [J]. International Journal of MechanicalSciences,2003,45(5):797-811.
    [95] Montmitonnet P, Gratacos P, Ducloux R. Application of anisotropic viscoplasticbehaviour in3D finite-element simulations of hot rolling [J]. Journal of materialsprocessing technology,1996,58(2):201-211.
    [96] MasséT, Chastel Y, Montmitonnet P, et al. Impact of mechanical anisotropy on thegeometry of flat-rolled fully pearlitic steel wires [J]. Journal of Materials ProcessingTechnology,2011,211(1):103-112.
    [97] Cvitani V, Vlak F, Lozina. A finite element formulation based on non-associatedplasticity for sheet metal forming [J]. International Journal of Plasticity,2008,24(4):646-687.
    [98] Yoon J W, Stoughton T B, Dick R E. Earing Prediction in Cup Drawing Based onNon-Associated Flow Rule [C]. MATERIALS PROCESSING AND DESIGN;Modeling, Simulation and Applications; NUMIFORM'07; Proceedings of the9thInternational Conference on Numerical Methods in Industrial Forming Processes.American Institute of Physics,2007:685-690.
    [99] Park T, Chung K. Non-associated flow rule with symmetric stiffness modulus forisotropic-kinematic hardening and its application for earing in circular cup drawing [J].International Journal of Solids and Structures,2012,49(25):3582-3593.
    [100] Stoughton T B, Yoon J W. Review of Drucker’s postulate and the issue of plasticstability in metal forming [J]. International journal of plasticity,2006,22(3):391-433.
    [101] Stoughton T B. A non-associated flow rule for sheet metal forming [J]. InternationalJournal of Plasticity,2002,18(5):687-714.
    [102] Stoughton T B, Yoon J W. Anisotropic hardening and non-associated flow inproportional loading of sheet metals [J]. International Journal of Plasticity,2009,25(9):1777-1817.
    [103] Taherizadeh A, Green D E, Ghaei A, et al. A non-associated constitutive model withmixed iso-kinematic hardening for finite element simulation of sheet metal forming [J].International Journal of Plasticity,2010,26(2):288-309.
    [104] Safaei M, Lee M G, Zang S, et al. An evolutionary anisotropic model for sheet metalsbased on non-associated flow rule approach [J]. Computational Materials Science,2014,81:15-29.
    [105] Lou X Y, Li M, Boger R K, et al. Hardening evolution of AZ31B Mg sheet [J].International Journal of Plasticity,2007,23(1):44-86.
    [106] Hosford W F. Texture strengthening. Metals Eng Quart,1966,6:13–19.
    [107] Graff S, Brocks W, Steglich D. Yielding of magnesium: From single crystal topolycrystalline aggregates [J]. International Journal of Plasticity,2007,23(12):1957-1978.
    [108] Khan A S, Kazmi R, Farrokh B. Multiaxial and non-proportional loading responses,anisotropy and modeling of Ti–6Al–4V titanium alloy over wide ranges of strain ratesand temperatures [J]. International Journal of Plasticity,2007,23(6):931-950.
    [109] Woodthorpe J, Pearce R. The anomalous behaviour of aluminium sheet under balancedbiaxial tension [J]. International Journal of Mechanical Sciences,1970,12(4):341-347.
    [110] Lin S B, Ding J L. A modified form of Hill's orientation-dependent yield criterion fororthotropic sheet metals [J]. Journal of the Mechanics and Physics of Solids,1996,44(11):1739-1764.
    [111] Stout M G, Hecker S S. Role of geometry in plastic instability and fracture of tubes andsheet [J]. Mechanics of Materials,1983,2(1):23-31.
    [112] Banabic D. Plastic Behaviour of Sheet Metal [M]. Germany: Sheet Metal FormingProcesses,2009, pp.27-140.
    [113] Habraken F, Dautzenberg J H. Some applications of the Barlat1991yield criterion [J].CIRP Annals-Manufacturing Technology,1995,44(1):185-188.
    [114] Chung K, Lee M G, Kim D, et al. Spring-back evaluation of automotive sheets basedon isotropic-kinematic hardening laws and non-quadratic anisotropic yield functions:Part I: theory and formulation [J]. International Journal of Plasticity,2005,21(5):861-882.
    [115] Yoon J W, Barlat F, Gracio J J, et al. Anisotropic strain hardening behavior in simpleshear for cube textured aluminum alloy sheets [J]. International journal of plasticity,2005,21(12):2426-2447.
    [116] J. H. Yoon, O. Cazacu, J. Whan Yoon, et al. Earing predictions for strongly texturedaluminum sheets [J]. International Journal of Mechanical Sciences,2010,52(12):1563-1578.
    [117] Lee M G, Kim D, Kim C, et al. A practical two-surface plasticity model and itsapplication to spring-back prediction [J]. International Journal of Plasticity,2007,23(7):1189-1212.
    [118] Ahn D C, Yoon J W, K. Y. Kim. Modeling of anisotropic plastic behavior of ferriticstainless steel sheet [J]. International Journal of Mechanical Sciences,2009,51(9):718-725.
    [119] Taherizadeh A. Numerical Simulation of Sheet Metal Forming Using Non-AssociatedFlow Rule and Mixed Isotropic Nonlinear Kinematic Hardening Model [D]. Canada:The University of Windsor,2009.
    [120](美)陈惠发,(美)A.F.萨里普著,余天庆等编译.弹性与塑性力学[M].中国建筑工业出版社,2004.
    [121] M. B.斯托罗热夫著,杨鸿勋译.金属压力加工的理论基础[M]..北京:科学出版社,1962.
    [122]赵志业,王国栋.现代塑性加工力学[M].沈阳:东北工学院出版社.
    [123]卢健.液压成形数值仿真力学模型的适应性分析与软件工具开发[D].上海交通大学,2013.
    [124] Moran B, Ortiz M, Shih C F. Formulation of implicit finite element methods formultiplicative finite deformation plasticity [J]. International Journal for NumericalMethods in Engineering,1990,29(3):483-514.
    [125] Belytschko T, Liu W K, Moran B. Nonlinear finite elements for continual andstructures [M]. New York: Wiley New York,2000.
    [126]张先宏.镁合金热变形过程试验研究和数值模拟[D].上海交通大学,2003.
    [127] Jain A, Agnew S R. Modeling the temperature dependent effect of twinning on thebehavior of magnesium alloy AZ31B sheet [J]. Materials Science and Engineering: A,2007,462(1):29-36.
    [128]孙卫华,王国栋.带钢热轧过程中轧件横断面上温度场的解析[J].山东冶金,1994,16(4):30-35.
    [129] Sasaki K, Sugitani Y, Kawasaki M. Heat transfer in spray cooling on hot surface [J].Tetsu-to-Hagane (Journal of the Iron and Steel Institute of Japan),1979,65(1):90-96.
    [130]日本钢铁协会编,王国栋等译.板带轧制理论与实践[M].北京:中国铁道出版社,1989.
    [131]王露萌. AZ31镁合金板材轧制工艺的数值模拟研究[D].哈尔滨工业大学,2008.
    [132] Barlat F, Aretz H, Yoon J W, et al. Linear transformation-based anisotropic yieldfunctions [J]. International Journal of Plasticity,2005,21(5):1009-1039.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700