双波段组合激光辐照光电探测器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着光电探测器在军事和民用等诸多领域的广泛应用,半导体材料与半导体光电探测器的激光辐照效应越来越受到人们的重视。在实际应用中,光电探测器种类繁多,其光谱探测范围从紫外到可见光到远红外,然而每一种探测器都存在特定的光谱探测范围,即存在探测截止频率,我们把截止频率以内的光称为波段内光,超出截止频率的光称为波段外光。在光电对抗中,当干扰和毁伤用的激光为波段外光时,是否还能对光电探测器产生有效的干扰和毁伤,其作用机制如何,在目前国内外文献中还鲜有报道。
     本文从理论和实验两个方面较为系统的研究了波段外激光和双波段组合激光与半导体材料及光电探测器的相互作用机制,并探索研究了波段外激光对光电探测器的干扰和高效毁伤。
     对不同的光导型光电探测器进行了波段外激光辐照实验,发现了波段外激光辐照下探测器的电压响应方向与波段内正常探测的信号电压方向相反的响应规律。考虑到实际应用中,波段内信号光辐照是探测器的正常工作状态,激光干扰和毁伤通常在探测器的正常工作状态下进行,因此实验还系统研究了在波段内激光与波段外激光组合辐照下,探测器电压响应的信号输出。通过对大量实验数据的系统分析,得到双波段激光在不同功率密度组合的情况下,对探测器信号输出的影响规律,发现探测器对波段外激光辐照的电压响应也存在饱和效应,波段内背景激光辐照可以增大波段外激光的吸收系数,线性工作区间内的波段内背景光辐照可以增强波段外激光的信号干扰强度。
     对光伏型光电探测器进行了波段外激光辐照实验,得到光伏型光电探测器在不同功率密度波段外激光辐照下的动态响应规律。发现光伏型光电探测器对波段外激光的电压响应方向与波段内激光相同,但在开始和停止辐照瞬间,探测器的输出信号产生瞬间跳变,且该跳变方向随入射光功率密度不同而改变。发现了光伏型光电探测器内电动势产生的新的机制:在温度梯度存在的情况下,热激发自由载流子定向运动,在PN结区被结电场分离,在探测器两端分别累积正负电荷,形成电动势,我们把其命名为热生电动势。把热生电动势与光生电动势和温差电动势进行了对比分析,确定了热生电动势是PV型探测器在波段外激光辐照下电压响应的主要机制,在波段内激光辐照下热生电动势与光生电动势、温差电动势和Dember电动势共存,在端电压的信号输出中不能区分。
     利用双积分球-探测器系统,对半导体材料在波段内和波段外双光束组合激光辐照下的反射率和透射率进行了测量,得到了半导体材料与双波段组合激光的能量耦合规律。发现随波段内激光功率密度的增强,材料对于波段内激光的能量耦合效率降低;随波段外激光功率密度的增强,材料对波段外激光的能量耦合效率先降低后增大;波段内激光辐照可以增大材料对波段外激光的能量耦合效率。
     针对波段外激光辐照下光导型光电探测器的反向电压响应,提出了光激发热载流子输运的思想,并从玻耳兹曼方程出发,在取三阶矩的近似条件下,推导并建立了用于描述光激发热载流子输运的平衡能量流体动力学模型。并利用数值手段,自行编制了适用于描述不同探测器及不同功率密度组合激光辐照下载流子输运过程的计算程序。应用该程序对光导型HgCdTe光电探测器在双波段组合激光辐照下的载流子输运过程进行了数值模拟,结果与实验相吻合。利用该程序计算还得到了探测器在不同光功率密度以及不同激光辐照时间下探测器的破坏阈值。
With the widespread use of photoelectric detectors in different domains, especially in military, more and more attentions are being paid to the irradiation effects of semiconductor materials and photoelectric detectors. The spectrum of the photoelectric detectors ranges from ultraviolet to far-infrared since there are plenty of semiconductor materials. However, as far as a specific detector is concerned, it can only responses to a specific band. We call the lights within the band“in-band lights”; otherwise we call them“out-of-band lights”. The scientific society knows well the irradiation effects of detectors by in-band lights, while there is little knowledge of the corresponding effects by out-of-band lights, which is also important in photoelectric countermeasure.
     This dissertation is focused on the mechanism of the interaction between in-band and out-of-band lasers and photoelectric semiconductor detectors via theoretical and experimental researches. Exploratory research is also made on the interference and efficient damage of out-of-band lasers on photodetectors.
     We carried out plenty of experiments in which different types of photoconductive (PC) detectors were irradiated by out-of-band lasers, finding that the voltage responses of detectors irradiated by out-of-band lasers were opposite to those by in-band lasers. We also studied the output of the detectors when irradiated by both in-band and out-of-band laser beams. Basing on the experimental results, we find the relationship between the output and the laser intensity. We conclude that a) there also exists saturation effect for the voltage response of PC detectors when irradiated by out-of-band lasers, b) in-band laser irradiation can increase the absorption of the out-of-band lasers, and c) in-band laser irradiation within linear-response domain can enhance the response of out-of-band lasers.
     We carried out experiments on photovoltage (PV) detectors irradiated by out-of-band lasers, and get the ruls of dynamic responses. We find that the voltage response of PV-type detector to out-of-band lasers is similar to that to in-band laser, while there were instantaneous jump for the voltage both at the beginning and at the end of laser irradiation. The direction of the voltage jump varied with laser intensity. Analysing the physical progress, we find new mechanics of voltage response, which we call thermovoltage. Comparing with photovoltage and thermopower, thermovoltage is the main mechanics of voltage response when out-of-band laser irradiating,and thermovoltage combines with photovoltage, thermopower and Dember voltage when in-band laser irradiating.
     Using double integrating sphere-photo detector system, we measured reflectance and transmittance for semiconductor materials under irradiation of both in-band and out-of-band lasers, getting the energy-coupling rules of semiconductor materials and lasers. We find that a) the energy-coupling coefficient of materials with in-band lasers decreases with in-band-laser power density increase; b) the coefficient for out-of-band lasers increases first and diminishes subsequently when the out-of-band laser power density increase; and c) irradiation of in-band lasers can increase the coupling coefficient for the out-of-band lasers.
     To explain the abnormal response of the PC-type detector for out-of-band lasers, we bring forward a concept of photoexcited hot carriers transportation. Basing on Boltzman formula, we obtain the energy balance hydrodynamic model under third-order approximation, which can describe the transportation of pohtoexcited hot carriers. Accordingly, we made a procedure that can describe different cases. Simulations for a PC-type HgCdTe detector irradiated by in-band and out-of-band lasers were done, agreeing well with experimental results. Basing on the procedure, we also have got the destruction threshold of detectors under different irradiating time and power.
引文
[1] Kruer M, Esterowitz L, Allen R. Thermal models for laser damage in InSb photovoltaic and photoconductive detectors[J]. Infrared Physics. 1976, 16(3): 375-384.
    [2] Lax M. Temperature rise induced by laser beam[J]. Journal of Applied Physics. 1977, 48(9): 3919-3924.
    [3] Lax M. Temperature rise induced by laser beam II. The nonlinear case[J]. Applied Physcics Letters. 1978, 33(8): 786-788.
    [4] Meyer J R, Bartoli F J, Kruer M R. Optical heating in semiconductors[J]. Physical Review B. 1980, 21(4): 1559-1568.
    [5] Meyer J R, Kruer M R, Bartoli F J. Optical heating in semiconductors:Laser damage in Ge,Si,InSb,and GaAs[J]. Journal of Applied Physics. 1980, 51(10): 5513-5522.
    [6] Yoffa E J. Dynamics of defense laser-induced plasmas[J]. Physical Review B. 1980, 21(6): 2415-2425.
    [7] Yoffa E J. Role of carrier diffusion in lattice heating during pulsed laser annealing[J]. Applied Physics Letters. 1980, 36(1): 37-38.
    [8] Kim D M, Kwong D L. Laser heating of semiconductors-effect of diffusion in nonlinear dynamic heat transport progress[J]. Journal of Applied Physics. 1981, 52(8): 4995-5006.
    [9] Kim D M, Kwong D L. Pulsed laser annealing of single-crystal and ion-implanted semiconductors[J]. IEEE Journal Of Quantum Electronics. 1982, 18(2): 224-232.
    [10]李彦文,刘成海. InSb材料的激光吸收机制和熔融破坏阈值的研究[J].强激光与粒子束. 1990, 2(3): 334-337.
    [11]陆启生,蒋志平,刘泽金.激光辐照下InSb探测器(PV型)瞬变行为[J].强激光与粒子束. 1991, 3(1): 102-107.
    [12]陆启生,蒋志平,刘泽金等. PC型HgCdTe探测器的记忆效应[J].红外与毫米波学报. 1998, 17(4): 317-320.
    [13] Lu Q S, Jiang Z P, Liu Z J. The power saturation of the photovoltage (PV) in infrared detector when laser irradiated[J]. Semiconductor Science And Technology. 1991, 6: 1039-1041.
    [14]曾雄文.半导体光电探测器的混沌干扰机制研究[D].长沙:国防科学技术大学, 1999.
    [15]蒋志平,陆启生,刘泽金.激光辐照InSb(PV型)探测器的温升计算[J].强激光与粒子束. 1990, 2(2): 247-255.
    [16]蒋志平,梁天骄,陆启生.激光辐照PC型HgCdTe探测器的热效应计算[J].应用激光. 1995, 15(4): 155-156.
    [17]强希文,张健泉,刘峰等.强激光辐照探测器材料力学效应的解析研究[J].红外与激光工程. 1999, 28(6): 47-51.
    [18]强希文,刘峰,张建泉.脉冲强激光辐照半导体材料损伤效应的解析研究[J].光电子技术. 2000, 20(1): 52-58.
    [19]王睿,程湘爱,陆启生. 3.8um激光破坏三元PC型HgCdTe探测器系统的实验研究[J].强激光与粒子束. 2004, 16(1): 31-34.
    [20]王睿,司磊,陆启生.响应波段外激光辐照PC HgCdTe探测器系统实验研究[J].激光与红外. 2003, 33(5): 335-338.
    [21]程湘爱,陆启生,马丽芹等. 1.319μm连续波激光辐照PV型HgCdTe探测器的实验研究[J].光学学报. 2003, 23(5): 622-626.
    [22]李文煜,程湘爱,陆启生.连续波激光辐照PV型HgCdTe探测器的新效应[J]. 2002.
    [23]李修乾,程湘爱,王睿等.激光辐照PC型HgCdTe探测器的实验研究[J].强激光与粒子束. 2003, 15(1): 40-44.
    [24]李修乾,程湘爱,王睿等.波段外CW CO2激光辐照HgCdTe探测器热效应研究[J].中国激光. 2003, 30(12): 1070-1074.
    [25]马丽芹,程湘爱,许晓军等. PV型HgCdTe光电探测器中的混沌及其诊断[J].强激光与粒子束. 2003, 15(1): 37-39.
    [26]马丽芹,陆启生,程湘爱等.激光辐照光电探测器的非线性效应研究[J].青岛科技大学学报. 2003, 24(1): 87-90.
    [27]马丽芹,程湘爱,陆启生等. 1.319 m激光诱导HgCdTe(PV型)探测器混沌的研究[J].激光与红外. 2003, 33(1): 61-63.
    [28] Ma L Q, Cheng X A, Xu X J, et al. Chaos in photovoltaic HgCdTe detectors under laser irradiation[J]. Applied physics B. 2002, 75: 667-670.
    [29]张震,程湘爱,姜宗福.可见光CCD的光致过饱和现象研究[J].强激光与粒子束. 2008, 20(6): 917-920.
    [30]郭少锋,程湘爱,傅喜泉.高重复频率飞秒激光对面阵CCD的干扰和破坏[J].强激光与粒子束. 2007, 19(11): 1783-1786.
    [31]李文煜,王金宝,程湘爱等.激光对面阵CCD器件破坏的一种新机理[J].强激光与粒子束. 2005, 17(10): 1457-1459.
    [32]沈洪斌,沈学举,周冰. 532nm脉冲激光辐照CCD实验研究[J].强激光与粒子束. 2009, 21(10): 1449-1454.
    [33]姜楠,张雏,牛燕雄等.脉冲激光辐照CCD探测器的硬破坏效应数值模拟研究[J].激光与红外. 2008, 38(10): 1004-1007.
    [34]江继军,罗福,陈建国. CCD在fs激光辐照下的损伤研究[J].强激光与粒子束. 2005, 17(4).
    [35]倪晓武,沈中华,陆建.强激光对光电探测器件及半导体材料的破坏研究[J].光电子·激光. 1997, 8(6): 487-490.
    [36]陈金宝,陆启生,舒柏宏等. CW CO2激光对PV型InSb探测器的破坏效应[J].激光技术. 2002, 2: 47-49.
    [37]陈金宝,陆启生,钟海荣等.连续波氧碘激光对光伏型锑化铟探测器的破坏阈值[J].强激光与粒子束. 1998, 10(2): 221-224.
    [38]许晓军,曾交龙,陆启生等. 1.06μm激光对PC型HgCdTe探测器的破坏阈值研究[J].强激光与粒子束. 1998, 10(4): 552-556.
    [39]强希文,刘峰,张健泉等.连续波激光辐照半导体InSb材料的熔融破坏[J].中国激光. 2000, 27(4): 372-376.
    [40]强希文,刘峰,张建泉.红外激光辐照探测器材料温升的数值计算[J].红外与激光工程. 1999, 38(3): 46-50.
    [41]强希文.连续波激光辐照光伏型探测器的光电饱和效应[J].半导体光电. 2000, 21(5): 352-354.
    [42]刘天华,钟海荣,陆启生等.光电探测器的激光破坏机理研究[J].激光杂志. 2001, 22(6): 5-8.
    [43]柯常军,万重怡.红外光电探测器的激光损伤分析[J].光学技术. 2002, 28(2): 118-122.
    [44]朱克学,张赟,李向阳.激光辐照对HgCdTe长波光导探测器性能的影响[J].激光与红外. 2001, 31(4): 234-235.
    [45]朱克学,张赟,李向阳.激光辐照对长波HgCdTe光导探测器电学参数的影响[J].红外与激光工程. 2000, 31(1): 55-59.
    [46]张大勇,赵剑衡,王伟平. 1.319um连续YAG激光束对可见光面阵CCD系统的干扰研究[J].强激光与粒子束. 2003, 15(11): 1050-1052.
    [47]曾雄文,陆启生,马丽芹, et al.混沌激光对非本征光导型探测器的混沌干扰机制[J].强激光与粒子束. 2002, 14(4): 481-484.
    [48]姜宗福.激光引起半导体红外光电探测器失效的一种新机制[J].中国激光. 1996, 23(3): 229.
    [49]钟海荣,刘天华,陆启生等.光电探测器的激光破坏(损伤)阈值分析[J].激光杂志. 2001, 22(4): 1-5.
    [50]段晓锋,牛燕雄,张雏.半导体材料的激光辐照效应计算和损伤阈值分析[J].光学学报. 2004, 24(8): 1057-1061.
    [51]段晓锋,牛燕雄,张雏.激光辐照HgCdTe探测器的温度场数值分析[J].光电子激光. 2003, 14(2): 191-193.
    [52]舒伯宏,候静,陆启生.砷化镓材料与激光相互作用的实验研究[J].红外与激光工程. 1999, 28(1): 40-42.
    [53]刘恩科,朱秉升,罗晋生.半导体物理学(第6版)[M].北京:电子工业出版社, 2003.
    [54]叶良修.半导体物理学[M].北京:高等教育出版社, 1983.
    [55] Banoo K. Direct solution of the Boltzmann transport equation in nanoscale Si devices[D]. Purdue University, 2000.
    [56]雷啸霖.半导体输运的平衡方程解法[M].上海:上海科学技术出版社, 2000.
    [57]赛尔博勃赫s.半导体器件的分析与模拟[M].上海:上海科学技术文献出版社, 1986.
    [58]何野,魏同立.半导体器件计算机模拟方法[M].北京:科学出版社, 1989.
    [59]那斯尔江·吐尔逊,吴金,杨廉峰.半导体器件流体动力学模型研究[J].东南大学学报. 1999, 29(5): 52-56.
    [60] Smith A W, Brennan K F. Hydrodynamic simulation of semiconductor devices[J]. Progress In Quantum Electronics. 1988, 21(4): 293-360.
    [61] van Roosbroeck W V. Theory of flow of electrons and holes in germanium and other semiconductors[J]. Bell Sytem Technical Journal. 1950, 29: 560-607.
    [62] Gummel H K. A self-consistent iterative scheme for one-dimensional steady state transistor calculations[J]. IEEE Transactions On Electron Devices. 1964, 11: 455-465.
    [63] Fossum F G, Mertens R P, Lee D S. Carrier recombination and lifetime in highly doped silicon[J]. Solid-State Electronics. 1983, 26(6): 569-576.
    [64]马丽芹.半导体光电探测器中载流子输运过程研究[D].长沙:国防科学技术大学, 2005.
    [65] Stratton R. Diffusion of hot and cold electrons in semiconductor barriers[J]. Physical Review. 1962, 126(6): 2002-2014.
    [66] Stratton R. Semiconductor current-flow equations[J]. IEEE Transaction on Electronics Device. 1972, ED19(12): 1288-1292.
    [67] Blotekjaer K. Transport equations for two-valley semiconductors[J]. IEEE Transaction on Electronics Device. 1970, 17: 38-47.
    [68] Scharfetter D L, Gummel H K. Large-signal analysis of a silicon read diode oscillator[J]. IEEE Transaction on Electronics Device. 1969, 16: 64-77.
    [69] Mcandrew C C, Singhal K, Heasell E L. A consistent nonisothermal extension of the Scharfetter-Gummel stable difference approximation[J]. IEEE Electronics DeviceLetters. 1985, 6: 446-447.
    [70] Forghieri A, Al E. A new discretization strategy of the semiconductor eautions comprising momentum and energy balance[J]. IEEE Transactions On Computer-Aided Design Of Integrated Circuits And Systems. 1988, 7(2): 231-241.
    [71] Cook R K, E A. Numerical simulation of hot-carrier transport in silicon bipolar transistors[J]. IEEE Transaction on Electronics Device. 1983, 30(9): 1103-1110.
    [72] Szeto S, E A. An unified electrothermal hot-carrier transport model for silicon bipolar trasistor simulation[J]. Solid-State Electronics. 1989, 32(4): 307-315.
    [73] Apanovich Y, E A. Numerical simulation of submicrometer devices including couopled nonlocal transport and nonisothermal effects[J]. IEEE trans Elec Dev. 1995, 42(5): 890-897.
    [74] Winston D W. Physical simulation of optoelectronic semiconductor devices[D]. Colorado: University of Colorado, 1996.
    [75] Chan H C, E A. A three-dimensional semiconductor device simulator for GaAs/AlGaAs heterojunction bipolar transistor analysis[J]. IEEE Transactions On Electron Devices. 1991, 38(11): 2427-2432.
    [76] Tang T W, Sridhar R, Joonwoo N. An improved hydrodynamic transport model for silicon[J]. IEEE Trans Elec Dev. 1993, 40(8): 1469-1477.
    [77] Wang Q N, E A. Photorefractive phase shift induced by hot-electron transport: multiple-quantum-well structures[J]. J Opt Sot Am B. 1994, 11(9): 1773-1779.
    [78] Cai J, Cui H L. Semiconductor device simulation with the Lei-Ting balance equations[J]. Journal of Applied Physics. 1995, 78(11): 6802-6813.
    [79] Lee C C, Cui H L, Cai J, et al. Transient device modeling using the Lei-Ting hydrodynamic balance equations[J]. Journal of Applied Physics. 1996, 80p(3): 1891-1900.
    [80] Andreas B, Gerd S. Extended moment equations for electron transport in semiconductor submicron structures[J]. Journal of Applied Physics. 1998, 64(5): 2447-2455.
    [81] Brubaker R M, E A. Nonlocal photorefractive screening from hot electron velocity saturation in semiconductors[J]. Physics Review Letters. 1996, 77(20): 4249-4252.
    [82] Marshak A H, E A. Electrical current in solids with position-dependent band structure[J]. Solid-State Electronics. 1978, 21: 417-427.
    [83]陆启生,曾雄文等.光电探测器中的非线性过程[C].浙江宁波: 1996.
    [84] Teitsworth S W, Westervelt R M, Italler E E. Nonlinear oscillation and chaos in electrical breakdown in Ge[J]. Physical Review Letters. 1983, 51(9): 825-828.
    [85] Teitsworth S W. The physics of space charge instabilities and temporal chaos in extrinsic photoconductors[J]. Applied Physics A. 1989, A48(2): 127-136.
    [86] Seiler D G, E A. Photoexcited hot electron relaxation processes in n-HgCdTe through impact ionization into traps[J]. J. Vac. Sci. Technol. B. 1991, 9(3): 1847-1851.
    [87] Kusababe K. Dynamics of photoexcited picosecond space-charge field with hot electron nonlinerat transport in DC-biased semi-insulating GaAs[J]. Japanese Journal of Applied Physics. 1997, 36.
    [88] Seeger K.半导体物理学[M].北京:人民教育出版社, 1980.
    [89]钱佑华,徐至中.半导体物理[M].北京:高等教育出版社, 1999.
    [90] Klingshirn C F. Semiconductor Optics[M]. Berlin: Springer-Verlag, 1997.
    [91]孙承纬,陆启生.激光辐照效应[M].北京:国防工业出版社, 2002.
    [92]余金中.半导体光电子技术[M].北京:化学工业出版社, 2003.
    [93]贤堃.半导体物理与器件[M].上海:上海科学技术文献出版社, 1996.
    [94]李晓军,尹长松.半导体光电探测器及进展[J].半导体杂志. 1997, 22(2): 34-40.
    [95]王印月.半导体物理学[M].兰州:兰州大学出版社, 1990.
    [96] Keyes R J.光探测器与红外探测器[M].北京:科学出版社, 1984.
    [97]李修乾.激光辐照碲镉汞光电探测器实验研究[D].长沙:国防科学技术大学, 2002.
    [98] Arora N D. Electron and hole mobilities in Silicon as a function of concentration and temperature.[J]. IEEE Transaction on Electronics Device. 1982, ED29(2): 292-295.
    [99] Scott W. Electron mobility in Hg (1-x) CdxTe[J]. Journal of Applied Physics. 1972, 43(3): 1055-1062.
    [100]沈学础.半导体光谱与光学性质(第2版)[M].北京:科学出版社, 2002.
    [101]高观志,黄维.固体中的电输运[M].北京:科学出版社, 1991.
    [102] Zeng X W, Lu Q S, Zhao Y J. The dynamic response of PV-type detector under laser illumination[J]. Journal of Optoelectronics and Laser. 1998, 9(6): 461-464.
    [103]黄昆,韩汝琦.固体物理学[M].北京:高等教育出版社, 1985.
    [104]郭东升,程湘爱,陆启生. 1.319um连续波激光辐照PV型HgCdTe探测器的实验研究[J].光学学报. 2003(5): 622-625.
    [105]赵建军,宋春荣,张灵振.激光辐照InSb(PV)型探测器的热损伤[J].强激光与粒子束. 2005, 17(7).
    [106]阎守胜.固体物理基础[M].北京:北京大学出版社, 2003.
    [107]车念曾,闫达远.辐射度学和光度学[M].北京:北京理工大学出版社, 1990.
    [108] Goebel D G. General Integrating Sphere Theory[J]. Applied Optics. 1967(1): 125-128.
    [109] Crowther B G. Computer modeling of integrating sphere[J]. Applied optics. 1996, 35(30): 5880-5886.
    [110] Wang J J, Wang Y Y, Zhi W. A new Application of Integrating Sphere[J]. SPIE. 2000, 4221: 197-200.
    [111] Prokhorov A V, Sapritsky V I, Mekhontsev S N. Modeling of integrating spheres for photometric and radiometric applications[J]. Proc. SPIE. 1996, 2815: 118-125.
    [112] Pickering J M, Prahl S A, Wieringen N V. Double-integrating-sphere system for measuring the optical properties of tissue[J]. 1993, 32(4): 399-410.
    [113]江月松.光电技术与实验[M].北京:北京理工大学出版社, 2000.
    [114]张永强,王伟平,唐小松.两种光纤增强复合材料与连续激光耦合规律[J].强激光与粒子束. 2007, 19(10): 1599-1602.
    [115]王贵兵,刘仓理.芳纶纤维复合材料对激光的吸收特性研究[J].强激光与粒子束. 2003, 15(11): 1065-1067.
    [116]陈金宝,陆启生,蒋志平.半导体材料对连续波YAG激光的热耦合系数的测量[J].应用激光. 1995, 15(4): 167-168.
    [117]陈金宝,张正文,赵伊君.金属材料对连续波红外激光的热耦合系数[J].激光技术. 1997, 21(4): 81-83.
    [118]立大奎,黄永楷,扬天立.高反射率测量中的测量精度与误差分析[J].激光技术. 1989, 13(14).
    [119]滕敏康.实验误差与数据处理[M].南京:南京大学出版社, 1989.
    [120]孙炳耀.数据处理与误差分析基础[M].郑州:河南大学出版社, 1990.
    [121]李景镇.光学手册[M].西安:陕西科学技术出版社, 1984.
    [122]安毓英,白琨璞等.光学手册[M].西安:陕西科学技术出版社, 1985.
    [123]徐长发,李红.偏微分方程数值解法(第2版)[M].武汉:华中理工大学出版社, 2000.
    [124]陆金甫,关治.偏微分方程数值解法[M].北京:清华大学出版社, 1987.
    [125]马丽芹,杜少军,陆启生.光导型半导体探测器中载流子分布的数值计算[J].青岛科技大学学报. 2003, 24(3): 23-276.
    [126]马丽芹,陆启生,杜少军等.光导型光电探测器瞬变行为的仿真[J].中国激光. 2004, 31(3): 342-346.
    [127]褚君浩.窄禁带半导体物理学[M].北京:科学出版社, 2005.
    [128]李标,褚君浩,常勇. Hg1-xCdxTe禁带以上的本征光吸收[J].物理学报. 1996, 45(5): 743-753.
    [129] Moss T S. Semiconductors Opto-electronics[M]. London: Buttorworth, 1973.
    [130] Dawar A L, Roy S, Mall R P, et al. Effect of laser irradiation on structural. Electrical. and optical properties of p-mercury cadmium telluride[J]. Appl Phys. 1991, 70(7): 3516-3520.
    [131] Arora V K, Dawar A L. Effect of laser irradiation on the responsivity of mercury cadmium telluride detectors[J]. Infrared physics&Technology. 1996, 37(2): 245-249.
    [132] Dawar A L, Roy S, Nath T, et al. Effect of laser annealing on electrical and optical properties of n-mercury cadmium telluride[J]. J. Appl.Phys. 1991, 69(7): 3849-3852.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700