热电纳米线阵列的调制生长研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
寻找高效率、持久的绿色能源是21世纪人们亟待解决的重大问题。热电材料具有热能与电能方便转换的本领,优良的热电材料可以高效地回收热能,提高制冷效率,是解决能源危机的一种重要途径。目前国际上所关注的重点在于如何提高热电材料的热电优值。理论证明,低维热电体系可以比块材显著提高热电性能,这是由于在低维体系下将大大提高费米能附近的态密度而提高热电材料的塞贝克系数,另外由于电子和声子的平均自由程的不同,当尺度降低到一定大小时,可以有效地增强声子散射而不怎么影响电子的传输,从而达到整体热电性能的提高。实验结果也证实在超晶格薄膜、热电纳米线及纳米晶镶嵌体中热电优值得到了极大的提高,但是由于受到材料合成、测试手段等限制,人们对于热电纳米材料形貌控制、成份优化、结构调控等方面的研究还非常有限。
     本论文中,我们围绕氧化铝模板法合成热电纳米线材料这一途径,详细研究了电化学沉积BixTe_(1-x)纳米线阵列成份与结构控制条件。针对于国际上关于热电超晶格纳米线的研究热点,发明了一种简单实用的多重异质结纳米线阵列合成方法,并利用脉冲电化学模板法成功生长了具有调制周期的Bi_2Te_3/Sb超晶格纳米线阵列。此外,我们还制备了CdTe/Te多重异质结纳米线阵列,证明了异质结中的电子结构耦合。论文内容共分为五章,各章主要内容分别概括如下:
     第一章综述了有关热电材料及器件应用的研究进展,包括热电材料性能的影响因素及改进方法;介绍了目前较为成熟的块材热电材料和新颖的纳米热电体系,以及纳米热电材料的合成途径,并结合热电材料的应用背景阐述了当前研究中还存在的一些问题。
     第二章中,由于尺寸、成份与结构对于调节纳米热电材料性质具有决定性影响,我们系统研究了Bi_xTe_(1-x)纳米线阵列的可控性生长条件。首先合成了高度有序的氧化铝模板;研究了电化学沉积Bi_xTe_(1-x)纳米线阵列成分控制条件,发现Bi_xTe_(1-x)纳米线中Bi的原子含量随着电解液中Bi~(3+)含量增加而增加,由于Bi~(3+)和HTeO_2~+的沉积势的轻微不同使得化学计量比的Bi_2Te_3纳米线阵列需要在Bi含量为42%的电解液中制备;并且,我们发现电压是影响Bi_2Te_3纳米线阵列取向生长的重要参数,在两电极法下在1.3-1.4V电压范围内适合Bi_2Te_3纳米线阵列沿(110)高度取向生长。另外,通过预控制氧化铝模板孔径,可以有效调控生长直径在40-250nm范围内的Bi_2Te_3纳米线。
     第三章中基于限制体系下的过饱和析出原理,我们提出了一种简单实用的异质结纳米线阵列合成途径,通过过饱和Bi-Te纳米线阵列的简单退火处理制备了高品质的Bi_2Te_3/Te多重异质结纳米线阵列。所制备的异质结纳米线连续且致密,所有结区都是单晶的,并可以在结区之间观察到清晰平整的界面。我们通过差热扫描(DSC)和X射线衍射(XRD)等手段详细研究了过饱和Bi-Te纳米线阵列的晶化行为过程,发现体系在120℃附近开始晶化,而在400℃处发生了一个升华相变反应。通过观察纳米线在不同退火温度下的微结构,我们认为过饱和Bi-Te纳米线中经历了成核、生长和粗化三个过程,而当晶粒长大到模板孔径大小时受到了氧化铝孔洞的物理限制,从而导致了这种多重异质结纳米线的形成。基于成熟的物理相图分析,这种方法可以扩展到其它异质结纳米线阵列的合成当中。
     第四章详细研究了Bi-Sb-Te电解液中各物质沉积参数,并利用脉冲电化学模板法成功制备了Bi_2Te_3/Sb超晶格纳米线阵列。电镜研究结果表明纳米线都是致密连续的,EDS扫描能谱结果证明这些异质结纳米线具有完美的空间分布周期性。通过调节脉冲时间,我们可以方便地调节超晶格纳米线的周期以及结区长度比,其最小周期可达10纳米。这种可调制的热电超晶格纳米线将有可能大大降低晶格热导而具备广阔的热电应用前景。
     第五章中通过对Cd-Te相图的分析和Cd-Te电解液的伏安曲线学习,设计了过饱和Cd-Te合金纳米线阵列在限制体系下的脱溶沉淀反应,成功制备了CdTe/Te多重异质结纳米线阵列。所制备的纳米线上交替出现明显的结区,高分辨和电子衍射结果显示这些结区分别是单晶的CdTe和Te,符合相分离的结果。对比CdTe/Te异质结纳米线、纯CdTe及纯Te的吸收光谱研究发现,异质结中CdTe吸收峰的淬灭说明了异质结中的电子结构耦合,具有潜在的光电应用价值。
Providing a firm and green supply of energy would become a major problem for the 21~(st) century. The excellent thermoelectric materials can effectively scavenge the thermal energy and improve the refrigeration performance, which give a practical route to solve the energy crisis. Recently, the corresponding research is focused on the improvement of the figures of merit (ZT) of thermoelectric materials. It is indicated by theories that the thermoelectric performance of low dimensional systems can be enhanced remarkably due to the sharper density of states and enhanced phonon scattering. It has also been demonstrated by experimental results that the thermoelectric superlattice films, nanowires and the bulk materials with embedded nanocrystals reveal the impressive ZT compared to that of the bulk. However, due to the limitation of materials preparation and characterization, there are still many challenges in the study of morphology controllable synthesis of nanoscale thermoelectric materials with optimal composition and structure.
     In this dissertation, we have a deep investigation of the fabrication of thermoelectric nanomaterials by porous anodic alumina (PAA) template assisted electrodeposition method, and the conditions for the growth of Bi_xTe_(1-x) nanowire arrays with desirable composition and structure were stuied. Focusing on the hot topic of thermoelectric superlattice nanowires, we successfully developed a novel and convenient route for the spontaneous formation of multiple heterostructure nanowire arrays, and grew the Bi_2Te_3/Sb superlattice with modulated periods. In addition, the CdTe/Te multiple heterostructure nanowires were also synthesized, and the corresponding optical properties were studied systematically.
     In chapter 1, the progresses in the studies on the thermoelectric materials as well as the thermoelectric applications are reviewed. The main contents include: the dominating factors and the possible routes for improving ZT, the state-of-art thermoelectric materials and the novel nanostructured thermoelectric systems, and the synthesis approaches. Towards the thermoelectric device applications, some open questions are discussed at the end of the chapter.
     In chapter 2, due to the importance of size, composition and structure in dominating the thermoelectric properties, we systematically study the parameters for the deposition of Bi-Te alloy nanowire arrays with desirable composition. It is found that the stoichiometric Bi_2Te_3 nanowire arrays can be prepared in the electrolyte solution containing 42% Bi~(3+) ions, and the growth direction was determined by the applied voltage. Finally, the Bi_2Te_3 nanowire arrays with different diameters (40-250nm) can be fabricated by adjusting the pore size of the PAA templates.
     In chapter 3, a novel and convenient synthetic approach for the spontaneous formation of multiple heterostructure nanowire arrays was developed based on the precipitation reaction under confined system. The Bi_2Te_3/Te multiple heterostructure nanowire arrays were successfully synthesized through a simple thermal annealing process of the supersaturated Bi-Te alloy nanowire arrays. The as-prepared nanowires were dense and continuous, and the segments were single crystalline with a clear interface. The DSC and XRD results revealed that the crystallization process started at around 120℃and the Bi_2Te_3/Te multiple heterostructure nanowires decompose at 400℃. By the observation of the microstructure of nanowires annealed at different temperatures, it is considered that the precipitation confined by porous anodic alumina (PAA) membranes leads to the spontaneous formation of the block-by-block structure.
     In chapter 4, the Bi_2Te_3/Sb superlattice nanowire arrays were successfully synthesized by the template assisted pulsed electrodeposition process, based on the detailed studies of cyclic voltammograms (CVs) of the Bi-Sb-Te electrolyte solution. The microscope results showed that the nanowires were straight and uniform with high aspect ratios, and perfect periodicity in the spatial distribution of the as-prepared superlattice nanowires were confirmed by the elemental EDS mapping analyses. With manipulating the deposition time, the Bi_2Te_3/Sb nanowire arrays with tunable periods can be obtained, and the minimum period can be reached as 10 nm, which presents a good candidate for the further thermoelectric device applications.
     In chapter 5, high quality CdTe/Te multiple heterostructure nanowire arrays were successfully fabricated by a nano-confined precipitation method. It was demonstrated that the randomly selected neighboring segments are single crystalline CdTe and Te, respectively. Comparing with the absorption spectra of pure CdTe and Te nanowires, the quenching of the absorption peak strongly indicates the coupling of electronic bands in the CdTe/Te heterojunction.
引文
[1]江泽民,上海交通大学学报,42,345(2008).
    
    [2] G. J. Snyder, and E. C. Toberer, Nature 7,105 (2008).
    
    [3] R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O'Quinn, Science 413,597 (2001).
    
    [4] K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis, M.G. Kanatzidis, Science, 303, 818 (2004).
    
    [5] A. I. Hochbaum, R. K. Chen, R. D. Delgado, W. J. Liang, E. C. Garnett, M. Najarian, A.Majumdar, and P. D. Yang, Nature 451,163 (2007).
    
    [6] T. J. Seebeck, Abhandlungen der Deutschen Akademie der Wissenschaften zu Berlin, 265,(1823).
    
    [7] A. F. Ioffe, Semiconductor Thermoelements and Thermoelctric cooling. London, Infosearch,10-59,1959.
    
    [8] J. C. Peltier, Ann. Chim., LV1 371, (1834).
    
    [9] M. Cutler, J. F. Leavy, and R. L. Fitzpatrick, Phys. Rev. 133, A1143-A1152 (1964)
    
    [10] H. J. Goldsmid, Applications of Thermoelectricity Methuen, London, (1960).
    
    [11] Slack, G. A. (ed.) Solid State Physics (Academic Press, New York, 1979).
    
    [12] C. Dames, and G. Chen, in Thermoelectrics Handbook Macro to Nano (ed. Rowe, D. M.) Ch.42 (CRC, Boca Raton, 2006).
    
    [13] Slack, G. A. in CRC Handbook of Thermoelectrics (ed. Rowe, M.) 407-440 (CRC, BocaRaton, 1995).
    
    [14] G. S. Nolas, D. T. Morelli, T. M. Tritt, Annu. Rev. Mater. Sci, 29, 89, (1999)
    
    [15] T. Caillat, A. Borshchevsky, J.-P. Fleurial, J. Appl. Phys. 80,4442, (1996)
    
    [16] Y.-M. Lin, Ph.D. Thesis, Massachusetts Institute of Technology (2003).
    
    [17] L. D. Hicks, T. C. Harman, X. Sun, M. S. Dresselhaus, Phys. Rev. B: Condens. Matter Mater.Phys. 53,R10493,(1996).
    
    [18] J. Heremans, in Thermoelectric Materials 2003-Research and Applications, MRS Symp.Proc. (Eds: G. S. Nolas, J. Yang, T. P. Hogan, D. C. Johnson), Materials Research SocietyPress, Pittsburgh, PA 2004, pp. 3-14.
    
    [19] T. Koga, S. B. Cronin, M. S. Dresselhaus, in Thermoelectric Materials-The NextGeneration Materials for Small-Scale Refrigeration and Power Generation Applications,MRS Symp. (Eds: T. M. Tritt, G. S. Nolas, G. Mahan, M. G. Kanatzidis, D. Mandrus),Materials Research Society Press, Pittsburgh, PA, 2000, pp. Z4.3.1-4.3.6.
    [20] G. Chen, Phys. Rev. B: Condens. Matter Mater. Phys. 57, 14 958, (1998).
    
    [21] G. Chen, in Proc. 1996 Int. Mech. Eng Congress, Vol. 59, AMSE, New York, 13-23, (1996).
    [22] R. R. Heikes, and R. W. Ure, Thermoelectricity: Science and Engineering (Interscience, New York, 1961).
    
    [23] F. D. Rosi, Solid-State Electron. 11, 833 (1968).
    [24] G. S. Nolas, J. Sharp, and H. J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments, Springer: Berlin (2001)
    [25] C. Wood, Rep. Prog. Phys. 51,459 (1988).
    
    [26] H. J. Goldsmid, and R. W. Douglas, Brit. J. Appl. Phys. 5, 386 (1954).
    [27] H. Scherrer, and S. Scherrer, in Thermoelectrics Handbook Macro to Nano (ed. rowe, D. M.) Ch. 27 (CRC, Boca Raton, 2006).
    [28] V. A. Kutasov, L. N. Lukyanova, and M. V. Vedernikov, in Thermoelectrics Handbook Macro to Nano Ch. 37 (CRC, Boca Raton, 2006).
    [29] R. W. Fritts, in Thermoelectric Materials and Devices (eds. Cadoff, I. B. & Miller, E.) 143-162 (Reinhold, New York, 1960).
    [30] E. A. Skrabek, and D. S. Trimmer, in CRC Handbook of Thermoelectrics (ed. Rowe, D. M.)267-275 (CRC, Boca Raton, 1995).
    [31] C. B. Vining, W. Laskow, J. O. Hanson, R. R. Vanderbeck, and P. D. Gorsuch, J. Appl. Phys.69,4333(1991).
    
    [32] S. R. Brown, S. M. Kauzlarich, F. Gascoin, and G. J. Snyder, Chem. Mater. 18,1873 (2006).
    [33] F. D. Rosi, E. F. Hockings, and N. E. Lindenblad, RCA Rev. 22,82 (1961).
    [34] C. Wood, Rep. Prog. Phys. 51, 459 (1988).
    
    [35] Y. Gelbstein, Z. Dashevsky, M. P. Dariel, Physica B 363,196 (2005).
    [36] R. W. Fritts, in Thermoelectric Materials and Devices (eds. Cadoff, I. B. & Miller, E.) 143-162 (Reinhold, New York, 1960).
    
    [37] H. Fleischmann, H. Luy, and J. Rupprecht, Zeitschrift Fur Naturforschung A 18,646 (1963).
    [38] W. M. Yim, and A. Amith, Solid State Electronics 15,1141 (1972).
    [39] G. E. Smith, and E. Wolfe, J Appl Phys, 33, 841 (1962)
    [40] B. Lenoir, M. Cassart, J.-P. Michenaud, H. Scherrer, and S. Scherrer, J. Phys. Chem. Solids 57, 89 (1996).
    
    [41] S. Golin, Phys. Rev. 176, 830 (1968).
    
    [42] E. J. Tichovolski, and J. G. Mavroides, Solid State Commun. 7, 927 (1969).
    [43] G. A. Mironova, M. V. Sudakaova, and Ta. G. Ponomarev, Sov. Phys. Solid State 22, 2124 (1980).
    
    [44] A. L. Jain, Phys. Rev. 114,1518 (1959).
    
    [45] L. W. Da Silva, M. Kaviany, and C. Uher, J. Appl. Phys. 97,114903 (2005).
    [46] T. M. Tritt, Science 283, 804 (1999).
    [47] Yu, J. Q.; Yi, W. Z.; Chen, B. D.; Chen, H. J. A Collection of the Binary alloy States; Shanghai Science and Technology Press: Shanghai, China (1987).
    [48] G. R. Miller, and C. Y. Li, J. Phys. Chem. Solids, 26, 173 (1965).
    [49] D. Y. Chung, T. P. Hogan, P. Brazis, M. Rocci-Lane, C. Kannewurf, M. Bastea, C. Uher, and M. G. Kanatzidis, Science 287, 1024 (2000).
    [50] D. Y. Chung, T. P. Hogan, M. Rocci-Lane, P. Brazis, J. R. Ireland, C. R. Kannewurf, M.Bastea, C. Uher, and M. G. Kanatzidis, J. Am. Chem. Soc. 126,6414 (2004).
    [51] G. Mahanm, and B. Slase, J. Sharp, Phys. Today 50, 42 (1997).
    [52] B. C. Sales, D. Mandrus, and R. K. Williams, Science 272, 1325 (1996).
    [53] B. C. Sales, D. Mandrus, B. C. Chakoumakos, V. Keppens, J. R. Thompson, Phys. Rev. B 56, 15081 (1997).
    
    [54] G. S. Nolas, J. L. Cohn, G. A. Slack and S. B. Schujman, Appl. Phys. Lett. 73,178, (1998).
    [55] J. L. Cohn, G. S. Nolas, and V. Fessatidis, Phys. Rev. Lett. 82, 779 (1999)
    [56] J. F. Meng, N. V. Chandra Shekar, J. V. Badding and G. S. Nolas, J. Appl. Phys. 89, 1730, (2001).
    
    [57] I. Yerasaki, Y. Sasago, and K. Y. Uchinokura, Phys. Rev. B B56,12685 (1997).
    [58] S. Li, R. Funahashi, I. Matsubara, K. Ueno, S. Sodeoka, and H. Yamada, Chem. Mater. 12, 2424 (2000).
    [59] S. Li, R. Funahashi, I. Matsubara, K. Ueno, S. Sodeoka, and H. Yamada, J. Mater. Sci. Lett. 19, 1339 (2000).
    [60] G. J. Xu, R. Funahashi, M. Shikano, I. Matsubara, and Y. Q. Zhou, Appl. Phys. Lett. 80,3760 (2002).
    
    [61] R. Funahashi, I. Matsubara, and M. Shikano, Chem. Mater. 13,4473 (2001)
    [62] R. Funahashi, and M. Shikano, Appl. Phys. Lett. 81,1459 (2002)
    [63] I. Matsubara, R. Funahashi, T. Takeuchi, S. Sodeoka, T. Shimizu, and K. Ueno, Appl. Phys. Lett. 78, 3627 (2001).
    
    [64] L. D. Hicks, and M. S. Dresselhaus, Phys. Rev. B. 47,12727 (1993).
    [65] M. V. Simkin, and G. D. Mahan, Phys. Rev. Lett. 84, 927 (2000).
    
    [66] S. Cho, Y. Kim, S. J. Youn, A. DiVenere, G. K. L. Wong, A. J. Freeman, and J. B. Ketterson, L. J. Olafsen, I, Vurgaftman, J. R. Meyer and C. A. Hoffman, Phys. Rev. B 64, 235330 (2001).
    [67] E. Quarez, K. F. Hsu, R. Pcionek, N. Frangis, E. K. Polychroniadis, and M. G. Kanatzidis, J. Am. Chem. Soc. 127, 9177 (2005)
    [68] P. F. P. Poudeu, J. D'Angelo, H. J. Kong, A. Downey, J. L. Short, R. Pcionek, T. P. Hogan, C. Uher, and M. G. Kanatzidis, J. Am. Chem. Soc. 128, 14347 (2006)
    [69] J. Androulakis, C. H. Lin, H. J. kong, C. Uher, C. I Wu, T. Hogan, B. A. Cook, T. Caillat, K. M. Parakevopoulos, and M. G. Kanatzidis, J. Am. Chem. Soc. 129, 9780 (2007).
    [70] R. Venkatasubramanian, T. Colpitts, B. O'Quinn, S. Liu, N. Ei-Masry, M. Lamvik, Appl. Phys. Lett. 75, 1104(1999).
    
    [71] T. C. Harman, P. J. Taylor, M. P. Walsh, and B. E. Laforge, Science 297, 2229 (2002).
    [72] A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J. K. Yu, W. A. Goddard III and J. R. Heath, Nature 451, 168(2007).
    [73] P. Rodgers, Nature 3, 76 (2008)
    [74] L. Shi, J. Heat Transf. 125, 881-888 (2003).
    [75] Y. S. Ju, and K. E. Goodson, Appl. Phys. Lett. 74, 3005 (1999).
    [76] K. Q. Peng, Y. Wu, H. Fang, X. Y. Zhong, Y. Xu, and J. Zhu, Angew. Chem. Int. Ed. 44, 2737, (2005).
    
    [77] L. Weber, and E. Gmelin, Appl. Phys. A 53, 136 (1991).
    [78] C. Dames, and G. Chen, J. Appl. Phys. 95,682 (2004).
    [79] Y. M. Lin, and M. S. Dresselhaus, Phys. Rev. B 68, 075304 (2003).
    [80] D. Y. Li, and Y. Y. Wu, R. Fan, P. D. Yang, and A. Majumdar, Appl. Phys. Lett. 83, 3186 (2003).
    
    [81] B. C. Sales, Science 295, 1248 (2002).
    [82] M. S. Dresselhaus, G. Chen, M. Y. Tang, R. G. Yang, H. Lee, D. Z. Lee, Z. F. Ren, J. P. Fleurial, and P. W. Gogna, Adv. Mater. 19, 1043 (2007).
    [83] A. M. Morales, and C. M. Lieber,Science 279, 208 (1998).
    [84] M. S. Gudiksen, and C. M. Lieber, J. Am. Chem. Soc. 122, 8801 (2000).
    [85] Y. Li, F. Qian, J. Xiang, and C. M. Lieber, Mater. Today 9, 18 (2006).
    [86] L. J. Lauhon, M. S. Gudiksen, D. L. Wang, and C. M. Lieber, Nature 420 57 (2002).
    [87] C. Yang, Z. H. Zhong, and C. M. Lieber, Science 310, 1304 (2005).
    [88] M. S. Gudiksen, L. J. Lauhon, J. F. Wang, D. C. Smith, and C. M. Lieber, Nature 415, 617 (2002).
    
    [89] Y. Wu, J. Xiang, C. Yang, W. Lu, and C. M. Lieber, Nature 430, 61 (2004).
    [90] Y. Y. Wu, R. Fan, and P. D. Yang, Nano. Lett. 2, 83 (2002).
    [91] A. Purkayastha, F. Lupo, S. Kim, T. Borca-Tasciuc, and G. Ramanath, Adv. Mater. 18, 496 (2006).
    [92] W. G. Lu, Y. Ding, Y. X. Chen, Z. L. Wang, and J. Y. Fang, J. Am. Chem. Soc. 127, 10112 (2005).
    [93] X. A. Fan, J. Y. Yang, Z. Xie, K. Li, W. Zhu, X. K. Duan, C. J. Xiao, and Q. Q. Zhang, Journal of Physics D-Applied Physics 40, 5975 (2007).
    [94] A. Purkayastha, S. Kim, D. D. Gandhi, P. G. Ganesan, T. Borca-Tasciuc, and G. Ramanath, Adv. Mater. 18,2958 (2006).
    
    [95] Y. Chu, X. F. Tang, W. Y. Zhao, and Q. J. Zhang, Crystal Growth & Design 8,208 (2008).
    [96] W. D. Shi, J. B. Yu, H. S. Wang, and H. J. Zhang, J. Am. Chem. Soc. 128, 16490 (2006).
    [97] W. D. Zhang, B. Poudel, J. Yang, D. Z. Wang, and Z. F. Ren, J. Am. Chem. Soc. 127, 13792 (2005).
    
    [98] L. Z. Zhang, J. C. Yu, M. S. Mo, L. Mu, K. W. Kwong, and Q. Li, Small 1, 349 (2005).
    [99] Christian, J. W. The Theory of Transformations in Metals and Alloys; Pergamon Press: Oxford, 2002.
    [100] T. Ikeda, S. M. Haile, V. A. Ravi, H. Azizgolshani, F. Gascoin, and G. J. Snyder, Acta Materialia 55, 1227(2007).
    [101] T. Ikeda, L. A. Collins, V. A. Ravi, F. S. Fascoin, S. M. Haile, and G. J. Snyder, Chem. Mater. 19, 763 (2007).
    
    [102] A. P. Ling, F. Muller, A. Birner, K. Nielsch, and U. Gosele, Adv. Mater. 11,483 (1999).
    [103] W. Lee, R. Ji, U. Gosele, and K. Nielsch, Nat. Mater. 5,741 (2006).
    [104] H. Masuda, F. Hasegwa, and S. Ono, J. Electrochem. Soc. 144, L127 (1997).
    [105] A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, J. Appl Lett. 84, 6023 (1998).
    [106] X. L. Lu, T. Zhang, J. F. Qu, C. G. Jin, and X. G. Li, Adv. Funct. Mater. 16, 1754 (2006).
    [107] G. W. Crabtree, U. Welp, Z. L. Xiao, J. S. Jiang, V. K. Vlasko-Vlasov, S. D. Bader, J. Liang, H. Chik, and J. M. Xu, Physical C 49, 387 (2003).
    [108] Y. Lei, and W. K. Chim, Chem. Mater. 17, 580 (2005).
    [109] Y. C. Sui, D. R. Acosta, J. A. Gonzalez-Leon, A. Bermudez, J. Feuchtwanger, B. Z. Cui, J. O. Flores, and J. M. Saniger, J. Phys. Chem. B 105, 1523, (2001).
    [110] A. L. Prieto, M. S. Sander, M. S. Martin-Gonzalez, R. Gronsky, T. Sands, and A. M. Stacy, J. Am. Chem. Soc. 123, 7160 (2001).
    [111] A. L. Prieto, M. S. Martin-Gonzalez, J. Keyani, T. Sands, and A. M. Stacy, J. Am. Chem. Soc. 125, 2388 (2003).
    [112] M. S. Martin-Gonzalez, A. L. Prieto, R. Gronsky, T. Sands, and A. M. Stacy, Adv.Mater. 15, 1003 (2003).
    
    [113] L. Trahey, C. R. Becher, and A. M. Stacy, Nano Lett. 7, 2535 (2007).
    [114] C. G. jin, X. Q. Xiang, C. Jia, W. F. Liu, W. L. Cai, L. Z. Yao, and X. G. Li, J. Phys. Chem. B 108, 1844(2004).
    [115] L. Li, Y. W. Yang, X. H. Huang, G. H. Li, and L. D. Zhang, Nanotechnology 17, 1706 (2006).
    
    [116] X. H. Li, B. Zhou, L. Pu, and J. J. Zhu, Grystal Growth & Design 8, 771 (2008).
    [117] F. H. Xue, G. T. Fei, B. Wu,. P. Cui, and L. D. Zhang, J. Am. Chem. Soc. 127, 15348 (2005).
    [118] B. Y. Yoo, F. Xiao, K. N. Bozhilov, J. Herman, M. A. Ryan, and N .V. Myung, Adv. Mater. 19, 296 (2007).
    [119] X. B. Zhao, X. H. Ji, Y. H. Zhang, T. J. Zhu, J. P. Tu, and X. B. Zhang, Appl. Phys. Lett. 86,062111(2005).
    
    [120] J. Keyani, A. M. Stacy, and J. Sharp, Appl. Phys. Lett. 89,233106 (2006).
    [121] J. H. Zhou, C. G. Jin, J. H. Seol, X. G. Li, and L. Shi, Appl. Phys. Lett. 87, 133109 (2005).
    
    [122] G. J. Snyder, J. R. Lim, C. K. Huang, and J. P. Fleurial, Nat. Mater. 2, 528 (2003).
    [123] J. R. Lim, J. F. Whitacre, J. P. Fleurial, C. K. Huang, M. A. Ryan, and N. V. Myung, Adv. Mater. 17, 1488,(2005).
    [1] M. S. Dresselhaus, G. Chen, M. Y. Tang, R. G. Yang, H. Lee, D. Z. Lee, Z. F. Ren, J. P. Fleurial, and P. W. Gogna, Adv. Mater. 19,1043 (2007).
    
    [2] G. J. Snyder, and E. C. Toberer, Nature 7,105 (2008).
    
    [3] D. W. Rowe, CRC Handbook of Thermoelectric; CRC Press: Boca Raton (1995).
    
    [4] D. Y. Chung, T. P. Hogan, P. Brazis, M. Rocci-Lane, C. Kannewurf, M. Bastea, C. Uher, and M. G. Kanatzidis, Science 287, 1024 (2000).
    [5] D. Y. Chung, T. P. Hogan, M. Rocci-Lane, P. Brazis, J. R. Ireland, C. R. Kannewurf, M. Bastea, C. Uher, and M. G. Kanatzidis, J. Am. Chem. Soc. 126, 6414 (2004).
    [6] L. D. Hicks, and M. S. Dresselhaus, Phys. Rev. B. 47, 12727 (1993).
    [7] B. C. Sales, Science 295, 1248 (2002).
    [8] A. I. Hochbaum, R. K. Chen, R. D. Delgado, W. J. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. D. Yang, Nature 451, 163 (2007).
    [9] X. B. Zhao, X. H. Ji, Y. H. Zhang, T. J. Zhu, J. P. Tu, and X. B. Zhang, Appl. Phys. Lett. 86, 062111(2005).
    [10] A. L. Prieto, M. S. Sander, M. S. Martin-Gonzalez, R. Gronsky, T. Sands, and A. M. Stacy, J. Am. Chem. Soc. 123, 7160 (2001).
    
    [11] A. L. Prieto, M. S. Martin-Gonzalez, J. Keyani, T. Sands, and A. M. Stacy, J. Am. Chem. Soc. 125, 2388 (2003).
    
    [12] M. S. Sander, A. L. Prieto, R. Gronsky, T. Sands, and A. M. Stacy, Adv. Mater. 14, 665 (2002).
    [13] C. G. Jin, X. Q. Xiang, C. Jia, W. F. Liu, W. L. Cai, L. Z. Yao, and X. G. Li, J. Phys. Chem. B 108,1844(2004).
    [14] M. Martin-Gonzalez, A. L. Prieto, R. Gronsky, T. Sands, and A. M. Stacy, Adv. Mater. 15, 1003 (2003).
    
    [15] M. S. Sander, R. Gronsky, T. Sands, and A. M. Stacy, Chem. Mater. 15, 335 (2003).
    [16] L. Li, Y. W. Yang, X. H. Huang, G. H. Li, and L. D. Zhang, Nanotechnology 17, 1706 (2006).
    [17] M. Martin-Gonzalez, G. J. Snyder, A. L. Prieto, R. Gronsky, T. Sands, and A. M. Stacy, Nano Lett. 3, 973 (2003).
    [18] J. P. Fleurial, L. Gailliard, R. Triboulet, H. Scherrer, and S. Scherrer, J. Phys. Chem. Solids 49, 1237(1988).
    [19] J. H. Zhou, C. G. Jin, J. H. Seol, and L. Shi, Appl. Phys. Lett. 87, 133109 (2005).
    [20] C. G. Jin, G. Q. Zhang, W. L. Cai, L. Z. Yao, T. Qian, X. G. Li, and Z. Yao, J. Phys. Chem. B 109,1844(2005).
    
    [21] J. Choi, G. Sauer, K. Nielsh, R. Wehrspohn, and U. Gosele, Chem. Mater. 15,776 (2003).
    [22] H. Masuda, and K. Fukuda, Science 268, 1466 (1995).
    
    [23] A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, J. Appl. Lett. 84,6023 (1998).
    [24] M. S. Martin-Gonzalez, A. L. Prieto, R. Gronsky, T. Sands, and A. M. Stacy, J. Electrochem. Soc. 149, C546 (2002)
    [25] Yu, J. Q.; Yi, W. Z.; Chen, B. D.; Chen, H. J. A Collection of the Binary alloy States; Shanghai Science and Technology Press: Shanghai, China (1987).
    [26] A. Adam, Mater. Res. Bull. 42,1986 (2007).
    [27] Y. Miyazaki, and T. Kajitani, J. Cryst. Growth 229, 542 (2001).
    [1] D. K. C. MacDonald, Thermoelectricity: An Introduction to the Priciples, Wiley: New York (1962).
    
    [2] G. Mahan, B. Sales, and J. Sharp, Phys. Today 50,42 (1997).
    
    [3] K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis, M. G. Kanatzidis, Science, 303, 818 (2004).
    [4] P. F. P. Poudeu, J. D'Angelo, H. J. Kong, A. Downey, J. L. Short, R. Pcionek, T. P. Hogan, C. Uher, and M. G. Kanatzidis, J. Am. Chem. Soc. 128,14347 (2006)
    [5] J. Androulakis, C. H. Lin, H. J. kong, C. Uher, C. I Wu, T. Hogan, B. A. Cook, T. Caillat, K. M. Parakevopoulos, and M. G. Kanatzidis, J. Am. Chem. Soc. 129,9780 (2007).
    [6] E. Quarez, K. F. Hsu, R. Pcionek, N. Frangis, E. K. Polychroniadis, and M. G. Kanatzidis, J. Am. Chem. Soc. 127,9177 (2005)
    [7] G. J. Snyder, and E. C. Toberer, Nature 7,105 (2008).
    [8] R. Venkatasubramanian, Phys. Rev. B 61,3091 (2000).
    [9] M. V. Simkin, and G. D. Mahan, Phys. Rev. Lett. 84,927 (2000).
    [10] R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O'Quinn, Science 413,597 (2001).
    
    [11] A. I. Hochbaum, R. K. Chen, R. D. Delgado, W. J. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. D. Yang, Nature 451,163 (2007).
    
    [12] L. Weber, and E. Gmelin, Appl. Phys. A 53,136 (1991).
    
    [13] Y. M. Lin, and M. S. Dresselhaus, Phys. Rev. B 68,075304 (2003).
    
    [14] M. T. Bjork, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg, and L. Samuelson, Nano Lett, 2, 87 (2002)
    [15] M. S. Gudiksen, L. J. Lauhon, J. F. Wang, D. C. Smith, and C. M. Lieber, C. M. Nature 415, 617(2002).
    
    [16] Y. Wu, J. Xiang, C. Yang, W. Lu, and C. M. Lieber, Nature 430, 61 (2004).
    [17] Y. Y. Wu, R. Fan, and P. D. Yang, Nano lett. 2, 83 (2002).
    
    [18] D. Y. Li, Y. Y. Wu, R. Fan, P. D. Yang, and A. Majumdar, Appl. Phys. Lett., 83,3186 (2003).
    [19] R. D. Robinson, B. Sadtler, D. O. Demchenko, C. K. Erdonmez, L. W. Wang, and A. P. Alivisatos, Science 317,355 (2007).
    
    [20] A. Dong, F. D. Wang, T. L. Daulton, and W. E. Buhro, Nano Lett. 7, 1308 (2007).
    [21] L. Ouyang, K. N. Maher, C. L. Yu, J. McCarty, and H. K. Park, J. Am. Chem. Soc. 129, 133 (2007).
    
    
    
    [22] F. H. Xue, G. T. Fei, B. Wu, P. Cui, and L. D. Zhang, J. Am. Chem. Soc. 127, 15348 (2005).
    
    [23] B. Y. Yoo, F. Xiao, K. N. Bozhilov, J. Herman, M. A. Ryan, and N .V. Myung, Adv. Mater.19,296 (2007).
    
    [24] O. B. Girin, J. Electr. Mater. 24, 947 (1995).
    
    [25] S. Haruyama, Denkikagaku 31,478 (1963).
    
    [26] Y. Y. Wu, G. S. Cheng, K. Katsov, S. W. Sides, J. F. Wang, J. Tang, G. H. Fredrickson, M.Moskovits, and G. D. Stucky, Nat. Mater. 3, 816 (2004).
    
    [27] Yu, J. Q.; Yi, W. Z.; Chen, B. D.; Chen, H. J. A Collection of the Binary alloy States;Shanghai Science and Technology Press: Shanghai, China (1987).
    
    [28]胡荣祖,史启祯,热分析动力学,科学出版社:北京(2001).
    
    [29] H. E. Kissinger, Analyst Chem. 29,1702 (1957).
    
    [30] T. Ikeda, L. A. Collins, V. A. Ravi, F. S. Fascoin, S. M. Haile, and G. J. Snyder, Chem.Mater. 19, 763 (2007).
    
    [31] F. Debbagh, E. L. Ameziane, and M. Azizan, Sol. Energ. Mat. Sol. C. 90, 1429 (2006).
    
    [32] J. W. Christian, The Theory of Transformations in Metals and Alloys; Pergamon Press:Oxford (2002).
    
    [33] I. M. Lifshitz, and V. V. Slyozov, J. Phys. Chem. Solids 19, 35 (1961).
    
    [34] C. Z. Wanger, Elektrochem. 65, 581 (1951).
    [1] E. K. Liu, B. S. Zhu, J. S. Luo, Semiconductor Physics, National Defence Industry Press: Beijing (2004).
    
    [2] J. X. Fu, Solid States Optoelectronics, University of Science and Technology of China Press: Hefei (2004).
    
    [3] S. M. Sze, Physics of Semiconductor Devices, Wiley-Interscience: New York (1981).
    [4] M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lierber, Nature 415, 617 (2002).
    
    [5] Y. Wu, J. Xiang, C. Yang, W, Lu, and C. M. Lieber, Nature 430, 61 (2004).
    [6] C. Yang, Z. H. Zhong, and C. M. Lieber, Science 310, 1304 (2005).
    [7] Y. M. Lin, M. S. Dresselhaus, Phys. Rev. B 68, 075304 (2003).
    [8] M. S. Dresselhaus, G. Chen, M. Y. Tang, R. G. Yang, H. Lee, D. Z. Lee, Z. F. Ren, J. P. Fleurial, and P. W. Gogna, Adv. Mater. 19, 1043 (2007).
    [9] M. T. Bjork, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson, K. Deppert. L. R. Wallenberg, and 1. Samuelson, Appl. Phys. Lett. 80,1058 (2002).
    [10] R. D. Robinson, B. Sadtler, D. O. Demchenko, C. K. Erdonmez, L. W. Wang, and A. P. Alivisatos, Science 317, 355 (2007).
    
    [11] B. Y. Yoo, F. Xiao, K. N. Bozhilov, J, Herman, M. A. Ryan, and N. V. Myung, Adv. Mater. 19, 296 (2007).
    
    [12] J. Choi, S. J. Oh, H. Ju, and J. Cheon, Nano Lett. 5, 2179 (2005).
    
    [13] M. Chen, C. L. Chien, and P. C. Searson, Chem. Mater. 18, 1595 (2006).
    
    [14] L. Piraux, S. Dubois, J. L. Duvail, K. Ounadjela, and A. Fert, J. Magn. Magn. Mater. 175, 127(1997).
    [15] M. T. Bjork, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Walenberg, and L. Samuelson, Nano Lett. 2, 87 (2002).
    [16] R. Venkatasubramanian, Phys. Rev. B 61, 3091 (2000).
    
    [17] R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O'Quinn, Science 413, 597 (2001).
    [18] F. H. Xue, G. T. Fei, B. Wu, P. Cui, and L. D. Zhang, J. Am. Chem. Soc. 127, 15348 (2005).
    [19] X. C. Dou, Y. G. Zhu, X. H. Huang, L. Li, and G. H. Li, J. Phys. Chem. B 110, 21572 (2006).
    [20] J. H. Lee, J. H. Wu, H. L. Liu, J. U. Cho, M. K. cho, B. H. An, J. H. Min, S. J. Noh, and Y. K. Kim, Angew. Chem. In. Ed. 46, 3663 (2007).
    [21] S. Valizadeh, L. Hultman, J. M. George, and P. Leisner, Adv. Funct. Mater. 12, 766 (2002).
    
    
    [22] C. A. Ross, L. M. Goldman, and F. Spaepen, J. Electrochem. Soc. 140,91 (1993).
    
    [23] S. W. Yao, Y. X. Kong, and G. J. Chi, Chemical industry and engineering progress 23, 136(2004).
    
    [24] M. S. Martin-Gonzalez, A. L. Prieto, R. Gronsky, T. Sands, and A. M. Stacy, J. Electrochem.Soc. 149, C546 (2002).
    
    [25] W. J. Danaber, and L. E. Lyons,Aust. J. Chem. 37,689 (1984).
    
    [26] L. Piraux, J. M. George, J. F. Despres, C. Leroy, E. Ferain, R. Legras, K. Ounadjela, and A.Fert, Appl. Phys. Lett. 65,2484 (1994).
    
    [27] F. D. M. D. Horne, L. Piraux, and S. Michotte, Appl. Phys. Lett. 86,152510 (2005).
    
    [1] J. T. Hu, T. W. Odom, C. M. Lieber, Acc. Chem. Res. 32,435 (1999).
    
    [2] C. M. Lieber, MRS Bull. 28,486 (2003).
    
    [3] Y. Huang, C. M. Lieber, Pure Appl. Chem. 76,2051 (2004).
    
    [4] L. Samuelson, Mater. Today 6,22 (2003).
    
    [5] Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, and Y. Q.Yan,Adv. Mater. 15, 353 (2003).
    
    [6] Z. L. Wang, Mater. Today 7,26 (2004).
    
    [7] S. Jin, D. M. Whang, M. C. McAlpine, R. S. Friedman, Y. Wu, and C. M. Lieber, Nano Lett.4,915(2004).
    
    [8] G. F. Zheng, W. Lu, S. Jin, and C. M. Lieber, Adv. Mater. 16,1890 (2004).
    
    [9] M. C. McAlpine, R. S. Friedman, and C. M. Lieber, Nano Lett. 3,443 (2003).
    
    [10] R. S. Friedman, M. C. McAlpine, D. S. Ricketts, D. Ham, and C. M. Lieber, Nature 434,1085 (2005).
    
    [11] Y. Cui, Q. Q. Wei, H. K. Park, and C. M. Lieber, Science 293,1289 (2001).
    
    [12] J. Hahm, and C. M. Lieber, Nano Lett. 4, 51 (2004).
    
    [13] F. Patolsky, G. F. Zheng, O. Hayden, M. Lakadamyali, X. W. Zhuang, and C. M. Lieber, Proc.Natl. Acad. Sci. USA 101,14017 (2004).
    
    [14] W. U. Wang, C. Chen, K. H. Lin, Y. Fang, and C. M. Lieber, Proc. Natl. Acad. Sci. USA 102,3208 (2005).
    
    [15] M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, Nature 415, 617(2002).
    
    [16] Y. Wu, J. Xiang, C. Yang, W. Lu, and C. M. Lieber, Nature 430, 61 (2004).
    
    [17] K. Durose, P. R. Edwards, and D. P. Halliday, J. Cryst. Growth 197,733 (1999).
    
    [18] M. E. Rodriguez, O. Zelaya-Angel, J. J. Perez Bueno, S. Jimenez-Sandoval, and L. Tirado. J.Gryst. Growth 213, 259 (2000).
    
    [19] J. Q. Zhu, X. P. Zhang, B. Li, and J. H. Chu, Inf. Phys. Tech. 40, 411 (1999).
    
    [20] W. Wang, X. L. Lu, T. Zhang, G. Q. Zhang, W. J. Jiang, and X. G. Li, J. Am. Chem. Soc. 129,6702 (2007).
    
    [21] Yu, J. Q.; Yi, W. Z.; Chen, B. D.; Chen, H. J. A Collection of the Binary alloy States;Shanghai Science and Technology Press: Shanghai, China (1987).
    
    [22] A. W. Zhao, G. W. Meng, L. D. Zhang, T. Gao, S. H. Sun, and Y. T. Pang, Appl. Phys. A 76, 537 (2003).
    [23] M. S. Martin-Gonzalez, A. L. Prieto, R. Gronsky, T. Sands, and A. M. Stacy, J. Electrochem. Soc. 149, C546 (2002).
    
    [24] Z. Y. Tang, N. A. Kotov, and M. Giersig, Science 291,237 (2002).
    [25] V. Sgobba, C. Schulz-Drost, and D. M. Guldi, Chem. Commun. 6, 565 (2007).
    [26] M. Kuno, O. Ahmad, V. Protasenko, D. Bacinello, ang T. H. Kosel, Chem. Mater. 18, 5722 (2006).
    
    [27] H. S. Qian, S. H. Yu, J. Y. Gong, L. B. Luo, and L. F. Fei, Langmuir 22, 3830 (2006).
    [28] R. D. Robinson, B. Sadtler, D. O. Demchenko, C. K. Erdonmez, L. W. Wang, and A. P. Alivisatos, Science 317, 355 (2007).
    
    [29] D. Battaglia, B. Blackman, and X. G. Peng, J. Am. Chem. Soc. 127, 10889 (2005).
    [30] G. Haeffler, A. E. Klinkmuller, J. Rangell, U. Berzinsh, and D. Hanstorp, ZEITSCHRIFT FUR PHYSIK D-A TOMS MOLECULES AND CL USTERS 38,211 (1996).
    [31] B. Sharma, and R. Purohit, Semiconductor Heterojunctions Pergamon Press (1974).
    [32] X. G. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. ALivisatos, J. Am. Chem. Soc. 119, 7019(1997).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700