CoSb_3基热电材料的高温高压合成及性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热电材料是一种能够实现电能和热能直接转换的功能材料。由热电材料制作的温差发电和制冷器件具有无污染、无噪声、安全可靠等优点,具有广泛的应用前景。而具有“电子晶体–声子玻璃”输运特征的填充式方钴矿笼状结构化合物较传统热电材料具有潜在的更高的热电性能。压力可以改变晶体内部的电子结构及其相关的各种参数。在压力的作用下,热电材料的热电性质也会随之发生改变,因此我们通过改变压力来借此获得高性能的热电材料。而且高压合成方法具有合成时间短,调制参数连续变化等优点。因此高温高压合成是一个寻找新材料,提高材料热电性能的一个极为有效地手段。在本论文中,我们采用高温高压方法合成CoSb_3基方钴矿热电材料并对其热电性质进行了研究。
     利用高压合成方法在1.5~5.0GPa不同压力条件下成功制备出CoSb_3方钴矿热电材料,XRD衍射图谱显示合成的为单相CoSb_3。在室温下对不同压力下合成的CoSb_3的电学特性进行测试,结果表明样品的电阻率和Seebeck系数随着合成压力的升高而增大。
     利用高压合成方法成功制备了置换掺杂型CoSb_3基方钴矿化合物CoSb_(2.750)TexGe_(0.250-x) (x=0.125, 0.175, 0.200)并对其性质进行了研究,发现样品的功率因子随着合成压力的升高逐渐降低,随着Te掺杂量的增加逐渐增加。虽然样品的Seebeck系数的绝对值随着压力的升高呈增加的趋势,但由于电阻率随着压力的升高增加的更为显著,所以导致合成样品的功率因子随合成压力的升高逐渐降低。压力为2.0GPa时, CoSb_(2.750)Te0.200Ge0.050的功率因子最大,达到7.59μW cm-1 K-2。研究结果表明高压合成方法制备的样品电输运性能有了明显的提高。
     采用高压合成方法在1.5~4.5GPa压力条件下合成出了系列不同填充量的La填充型方钴矿热电材料LaxCo4Sb12(x=0.1, 0.3, 0.5, 0.8, 1.0),并研究了合成压力和不同填充量对其电输运性能的影响。从制备的样品的XRD衍射图可以看出LaxCo4Sb12具有CoSb_3立方结构,与常压下的CoSb_3的衍射图谱相吻合。随着La填充量的增加,晶格常数逐渐增加。LaxCo4Sb12样品的电阻率随着合成压力的升高而增大。在合成压力是1.5GPa时,研究了Seebeck系数、电阻率及功率因子随着La填充量的变化关系。研究结果表明,随着La填充量的增加,其电阻率和Seebeck系数均呈现出先增加后逐渐降低的趋势。当La的填充量为0.5时,CoSb_3的功率因子达到最大值5.16μW·cm-1·K-2。
     在1.5GPa压力条件下制备了系列不同填充量的Sm填充型方钴矿SmxCo4Sb12(0Thermoelectric material is one of kind of function materials that can directly convert electricity and heat. Thermoelectric devices based on thermoelectric materials could convert heat to electricity, transferred through or pumped by the charge carriers in the thermoelectric materials, and rejected at the heat sink. The advantages of solid-state thermoelectric devices are lightweight, small, portable, inexpensive, quiet performance and the ability for localized‘spot’cooling. Thus, there is now a renewed interest in research on improved for thermoelectric applications.
     The use of TE device is limited by their low efficiencies. A prerequisite for an efficient energy conversion in thermoelectric devices is indexed by the dimensionless figure of merit, ZT=TS2σ/κ, where T is the absolute temperature, S is the Seebeck coefficient,σis the electrical conductivity, andκis the thermal conductivity. Because of the low energy converting efficiency (<10%), several categories of thermoelectric materials used currently have some limitations in applications. Therefore, the development of novel thermoelectric materials with high thermoelectric properties has been the principal concerns of the related researches.
     The recent interest in semiconducting skutterudite materials is due to their potential as effective thermoelectric materials. The structure of binary skutterudite compound belongs to the body-centred cubic space group Im3 and has two relatively large voids at positions in the crystal lattice. Filling these voids with lanthanide, actinide, and alkaline-earth ions to form filled skutterudite had been proved an effective method to reduce the lattice thermal conductivity. The void-filling atoms“rattle”in their voids and substantially affect the phonon propagation through the lattice. In this paper, we present data on the thermoelectric properties of Sm filled skutterudites to discuss the dimensionless figure of merit ZT.
     Up to date, the hot pressing (HP), spark plasma sintering (SPS), mechanical alloying (MA) and high temperature and high pressure (HTHP) have been used to synthesized the thermoelectric materials.
     Recently, high-pressure technology as a potentially tool to increase the rate of discovery of useful materials has spread all over the world. Comparing to other preparation methods for thermoelectric materials, the method of high-pressure and high-temperature (HPHT) has many advantages, including the ability to tune rapidly and cleanly, restraining the disorder phase separation and other complicating factor during the preparation of materials.
     In this work, we tries to study the performance of CoSb_3 based skutterudite compounds. Firstly, we synthesized the pure CoSb_3 skutterudite compounds by HPHT technique and studied the electrical properties of CoSb_3. The results indicated that the electrical resistivity increased with an increase of synthetic pressure. The calculation of the band structure studies show that the band gap increases with an increase of pressure, which may be source of decreasing of carrier concentration.
     Skutterudites compound CoSb_(2.750)Ge_(0.250-x)Tex (x=0.125, 0.150,0.175, 0.200) were studied by HPHT. The electrical resistivity of CoSb_(2.750)Ge_(0.250-x)Tex decreases with increasing Te concentration. Because of the compensating effect of Ge. Seebeck coefficient measurements revealed that all the samples were n-type.The measurement of transport properties show that the Seebeck coefficient and resistivity increase with an increase of synthetic pressure. The largest power factor at room temperature reaches to 9.0μW cm-1 k2 for the CoSb_(2.750) Ge0.100Te0.150 at 2.0 GPa.
     We synthesized LaxCo4Sb12 samples with different La filling content by HPHT method, at 1.5-4.5 GPa, and 900 K. all the samples are single phase with Im3 structure from the test of XRD. With increasing of La filling fraction, the lattice spacing increase linearly.
     We test the electrical resistivity and the Seebeck coefficient of LaxCo4Sb12 samples at room temperature. The results indicate that the LaxCo4Sb12 skutterudite compounds show p-type conduction. The filling La atoms may contribute some electron to the conduction band. The value of power factor 5.16μW·cm-1·K-2 was obtained at x= 0.5.
     The skutterudite compounds of SmxCo4Sb12 were synthesized by HPHT technique. The XRD patterns indicate that the major phase is CoSb_3 phase, which is crystallized in a cubic CoAs3-type structure with Im3 space group. In addition, compared with the samples prepared by a traditional method, the processing time of HPHT method is reduced from a few days to less than an hour, and the Sm filling fraction limit increases. The magnitude of Seebeck coefficients of these n-type compounds increases with increasing temperature, the values that are dependent on the doping level. The electrical resistivity of SmxCo4Sb12 samples increases and then decreases with an increasing Sm filling fraction. For the samples with filling fraction x=0.5, electrical resistivity increases with increasing temperature monotonously, indicating the character of a degenerated or heavily doped semiconductor. The power factor increases significantly and the maximum of power factor shifts toward higher temperature with the increasing the filling fraction of Sm. A maximum value of 25.1μW cm-1K-2 is obtained in Sm0.5Co4Sb12 sample at 665K, which is much higher than pure CoSb_3 prepared by the traditional method at normal pressure.
     The thermal conductivity of the Sm-filled skutterudites is lower as compared to that of CoSb_3. ZT increases almost linearly with increasing temperature for SmxCo4Sb12 compounds. The maximum ZT value is 0.81 for Sm0.5Co4Sb12 at 723K.
     In conclusion, the results obtained in our work show that HPHT is an effective technique for synthesizing the CoSb_3-based skutterudite TE materials. The performance for the TE materials with the structure of CoAs3 could be improved by high pressure according to the results by now.
引文
[1] DISALVO F J. Thermoelectric cooling and power generation [J]. Science, 1999, 285: 703.
    [2] VENKATASUBRAMANIAN R, Siivola E, Colpitts T, et al. Thin-film thermoelectric devices with high room temperature figures of merit [J]. Nature, 2001,413:597.
    [3] TRITT T M. Thermoelectric materials [J]. Science, 1999, 283: 804.
    [4] SALES B C, MANDRUS D, WILLIAMS R K. Filled skutterudite antimonides: a new class of thermoelectric materials [J]. Science, 1996, 272(5) : 1325-1328.
    [5] WOOD C. Materials for thermoelectric energy conversion [J]. Rep Prog Phys, 1988, 51:459.
    [6] VINING C B. Semiconductors are cool [J]. Nature, 2001, 413: 577.
    [7] SALES B C. Smaller is cooler [J]. Science, 2002, 295: 1248.
    [8] MAHAN G D, SALES B C, SHARP J. Thermoelectric materials [J]. Phys.Today, Mar 1997, 42.
    [9] CRANE D, JACKSON G. The potential of thermoelectric waste heat recovery for automotive electrical systems, on advanced automotive electrical/electronic components and systems. 2002.
    [10] ROWE D M. Thermoelectrics, an environmentally friendly source of electrical power. Renew. Energy, 1999, 16 (1-4): 1251-1256.
    [11] KYONO T, SUZUKI R O, ONO K. Conversion of unused heat energy to electricity by means of thermoelectric generation in condenser [J]. IEEE Trans. Energy Convers, 2003. 18(2): 330-334.
    [12] VIEGAS J. Heat wave: The wasted energy from your car's exhaust could soon replace its battery [J]. New Scientist, 2004 (04), 2463.
    [13] DOE, USA, Nuclear Power in Space. Vol. DOE/NE-0071. 2004, Washington, D.C. 20585: Office of Nuclear Energy Science and Technology, U.S. Department of Energy.
    [14] SCHERRER H, VIKHOR L, LENOIR B, et al. Solar thermoelectric generation based on skutterudites [J]. Power Sources, 2003, 115: 141.
    [15] RIFFAT S B, Ma X L. Thermoelectrics: a review of present and potential applications [J]. Appl. Therm. Eng., 2003, 23(8): 913-935.
    [16]高敏,张景韶等.《温差电转换及其应用》[M].兵器工业出版社,1996.
    [17] NOLAS G S, POON J, KANATZIDIS M, et al. Recent developments in bulk thermoelectric materials [J]. MRS Bulletin, 2006, 31(3): 199-205.
    [18]糜建立.方钴矿基热电材料的纳米化及热电性能[D].浙江大学博士论文, 2008.
    [19] SHI X, CHEN L, YANG J, et al. Enhanced thermoelectric figure of merit of CoSb3 via large-defect scattering [J]. Applied Physics Letters, 2004, 84: 2301.
    [20] LEE C, KITO H, IHARA H, et al. Single crystal growth of skutterudite CoP3 under high pressure [J]. Journal of Crystal Growth, 2004, 263: 358.
    [21] YANG L, WU J, ZHANG L, Microstructure evolvements of a rare-earth filled skutterudite compound during annealing and spark plasma sintering [J]. Materials and Design, 2004, 25: 97.
    [22] KIM S, KIM W, KIMURA Y, et al. Effects of doping on the high-temperature thermoelectric properties of IrSb3 skutterudite compounds [J]. Journal of Electronic Materials, 2003, 32: 1141.
    [23] BORSSHCHEVSKY A, FLEURIAL J P, et al. Proceedings of the International Conference on Theremoelectrics [J]. AIP Conference Proc. 316: 31-33.
    [24] LI D ,YANG K, HNG H H , et al. Synthesis and high temperature thermoelectric properties of calcium and cerium double-filled skutterudites Ca0.1CexCo4Sb12 [J] J. Phys. D: Appl. Phys., 2009, 42: 105408.
    [25] PUYET M, LENOIR B, DAUSCHER A, et al. High temperature transport properties of partially filled CaxCo4Sb12 skutterudites [J]. Journal of Applied of Physics, 2004, 95: 4852.
    [26] FELDMAN J L, SINGH D J, KENDZIORA C, et al. Lattice dynamics of filled skutterudites: La(Fe,Co)4Sb12 [J]. Physical Review B, 2003, 68: 94301.
    [27] KUZNETSOV V L, KUZNETSOVA L A, ROWE D M, et al. Effect of partial void filling on the transport properties of NdxCo4Sb12 skutterudites [J]. J. Phys. Condens. Mat, 2003, 15: 5035.
    [28] BERARDAN D, GODART C, ALLENO E, et al. Chemical properties and thermopower of the new series of skutterudite Ce1-pYbpFe4Sb12 [J]. Journal of Alloys Compounds, 2003, 351: 18.
    [29] BAUER E, BERGER S, PAUL C, et al. Crystal field effects and thermoelectric properties of PrFe4Sb12 skutterudite [J]. Physical Review B, 2002, 66: 214421.
    [30] ABE K, SATO H, MATSUDA T D, et al. Transport properties in thefilled-skutterudite compounds RERu4Sb12 (RE-La, Ce, Pr and Nd); an exotic heavy fermion semimetal CeRu4Sb12 [J]. J. Phys. Condens Mat, 2002, 14: 11757.
    [31] GRYTSIV A, ROGL P, BERGER S, et al. Structure and physical properties of the thermoelectric skutterudites EuyFe4-xCoxSb12 [J]. Physical Review B, 2002, 66: 94411.
    [32] DYCK J S, CHEN W, YANG J H, et al. Effect of Ni on the transport and magnetic properties of Co1-xNixSb3 [J]. Physical Review B, 2002, 65: 115204.
    [33] HE Q Y, HU S J, TANG X G, et al. The great improvement effect of pores on ZT in Co1?xNixSb3 system [J]. Applied Physics Letters, 2008, 93: 042108 (1-3)
    [34] HE Z M, STIEWE C, PLATZEK D, et al. Effect of ceramic dispersion on thermoelectric properties of nano-ZrO2/CoSb3 composites [J]. Journal Applied of Physics, 2007, 101: 043707 (1-7).
    [35] MUHAMMET S. TOPRAK, CHRISTIAN S, DIETER P, et al. The impact of nanostructuring on the thermal conductivity of thermoelectric CoSb3 [J]. Advanced Functional Materials, 2004, 14(12): 1189-1196.
    [36] MI J L, ZHAO X B, ZHU T J, et al. Improved thermoelectric figure of merit in n-type CoSb3 based nanocomposites [J]. Applied Physics Letters, 2007, 91: 172116.
    [37] IVERSEN B B, ANDERS E C, DAVID E C, et al. Why are clathrates good candidates for thermoelectric materials [J]. Journal of Solid State Chemistry, 2000, 149 (2): 455-458.
    [38] NOLAS G S,COHN J L,SLACK G A, et al. Semiconducting Ge clathrates: promising candidates for thermoelectric applications [J]. Applied Physics Letters, 1998, 73(2) : 178-180.
    [39] NICK P B, SUSAN L, BRYAN J D, et al. Band structures and thermoelectric properties of the clathrates Ba8Ga16Ge30, Sr8Ga16Ge30, Ba8Ga16Si30, and Ba8In16Sn30 [J]. Journal of Chemitry Physics, 2001, 115(17): 8060-8073.
    [40] HSU K F, LOO S, et al. Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high figure of merit [J]. Science, 2004, 303: 818.
    [41] CAI K, MULLER E, DRASAR C, et al. Preparation and thermoelectric properties of Al-doped ZnO ceramics [J]. Mat. Sci. Eng. B-Soid, 2003, 104: 45.
    [42] TERASAKI I, SASAGO Y, UCHINOKURA K. Large thermoelectric power in NaCo2O4 single crystals [J]. Physical Review B, 1997, 56(20): R12685~12687.
    [43] WANG Y, ROGADO N, CAVA R, et al. Spin entropy as the likely source ofenhanced thermopower in NaxCo2O4 [J]. Nature, 2003, 423: 425.
    [44] IWASAKI K, Yamane H, Kubota S, et al. Power factors of Ca3Co2O6 and Ca3Co2O6-based solid solutions [J]. Journal of Alloys Compounds, 2003, 358 : 210.
    [45] HE Q Y, HAO Q, CHEN G, et al.Thermoelectric property studies on bulk TiOx with x from 1 to 2 [J]. Applied Physics Letters, 2007, 91: 052505.
    [46] MIGIAKIS P, ANFROULAKIS J, GIAPINTZAKIS J, Thermoelectric properties of LaNi1-xCoxO3 solid solution [J]. Journal of Applied Physics, 2003, 94: 7616.
    [47] BHANDARI C M. Handbook of thermoelectrics [M]. Florida. CRC Press, 1995.
    [48] MAHAN G D. Solid State Physics [M]. 1998, 51: 81.
    [49] CHASMAR R P, STRATTON R J. Electron control [M]. 1959, 7: 52.
    [50] KEN K, ATSUKO K, HIROAKI M, et al. Ag9TlTe5: A high-performance thermoelectric bulk material with extremely low thermal conductivity [J]. Applied Physics Letters, 2005, 87: 061919.
    [51] TOPRAK S M, CHRISTIAN S, DIETER P, et al. The impact of nano-structuring on the thermal conductivity of thermoelectric CoSb3 [J]. Advanced Functional Materials, 2004, 14(12): 1189.
    [52] DILLEY N R, BAUER E D, MAPLE M B, et al. Thermoelectric properties of chemically substituted skutterudites YbxCo4SnxSb12-x [J]. Journal of Applied Physics, 2000, 88(7): 1948.
    [53] PUYET M, DAUSCHER A, LENIOR B, et al. Beneficial effect of Ni substitution on the thermoelectric properties in partially filled CayCo4-xNixSb12 skutterudites [J]. Journal of Applied Physics, 2005, 97(8): 044317-1.
    [54] NOLAS G S, FOWLER G, et al. Partially filling of skutterudites: Optimization for thermoelectric applications [J]. Journal of Materials Research, 2005, 20(12): 3234.
    [55] STIEWE C, BERTINI L, TOPRAK M, et al. Nanostructured Co1-xNix (Sb1-yTey)3 skutterudites: Theoretical modeling, synthesis and thermoelectric properties [J]. Journal of Applied Physics, 2005, 97(4):044317.
    [56] NOLAS G S, COHN J L, SLACK G A. Effect of partial void filling on the lattice thermal conductivity of skutterudites [J]. Phys Rev B, 1998, 58(1): 164-170.
    [57] CHAKOUMAKOS B C, SALES B C. Skutterudites: Their structural response to filling [J]. J. Alloys Compd, 2006, 407(1-2): 87-93.
    [58] MEI Z G, YANG J, PEI Y Z, ZHANG W, et al. Alkali-metal-filled CoSb3 skutterudites as thermoelectric materials: Theoretical study [J]. Phys Rev B., 2008,77(4): 045202.
    [59] BADDING J V. High-pressure Synthesis, Characterization, and Tuning of Solid State Materials [J]. Annu Rev Mater Sci, 1998, 28: 631-658.
    [60] ZHU P W, JIA X, CHEN H Y, et al. Giant improved thermoelectric properties in PbTe by HPHT at room temperature [J]. Chem. Phys. Lett., 2002, 359(1-2): 89-94.
    [61] HIROTSUGU T, KEIICHI M, MASAYUKI I, et al. Atom insertion into the CoSb3 skutterudite host lattice under high pressure [J]. Journal of Alloys and Compounds, 1999, 282: 79–83.
    [62] ICHIMIN S, YOUSUKE S, KUNIHIRO K,et al. Systematic high-pressure synthesis of new filled skutterudites with heavy lanthanide, LnFe4P12 (Ln=heavy lanthanide, including Y) [J]. Journal of Solid State Chemistry, 2003. 174: 32–34.
    [63] KENYA T, DAISUKE K, YUSUKE K, et al. Transport properties of the filled skutterudite PrxFe4Sb12 synthesized under high pressure [J]. Physica B, 2007. doi:10.1016/j.physb.2007.10.050.
    [64] SEKINE C, UCHIUMI T, SHIROTANI I, et al. Magnetic properties of the filled skutterudite-type structure compounds GdRu4P12 and TbRu4P12 synthesized under high pressure [J]. Physical Review B, 2000, 62: 11581-11584.
    [65] MA H A, SU T C, ZHU P W, et al. Preparation and transport properties of AgSbTe2 by High-pressure and High-temperature [J]. Journal of Alloys and Compounds, 2008, 454: 415-418.
    [66] SU T C, JIA X P, MA H A, et al. Enhanced power factor of Ag0.208Sb0.275Te0.517 prepared by HPHT [J]. Physics Letters A, 2008, 372: 515-518.
    [67] GuO J G, JIA X P, SU T C, et al. Composition-Dependent Electrical Transport Properties of Pb50Te52 Doped with PbI2 Prepared by HPHT [J]. Journal of Alloys and Compounds, 2008, 458: 428-431.
    [68] BUNDY F P. In Progress in Very High pressure research. Edited by F. P. Bundy [M]. J. W. R. Hibbard, and H. M. Strong Wiley, New York, 1961.
    [69] WANG X J, SUI Y, SONG X D, et al. Influence of hot pressure on the magnetoresistance of CrO2 [J]. Journal of Applied Physics, 2007, 101(9): 09J509.
    [70] QIN J M, YAO B, JIA X P, et al. Characterizations of single-phased cubic Mg0.5Zn0.5O prepared at high pressure and high temperature [J]. J. Phys. D: App. Phys. 2008, 41: 155408
    [71] BADDING J V, MENG J F, POLVANI D A, Pressure tuning in the search for new and improved solid state materials [J]. Chemistry. Materials, 1998, 10: 2889.
    [72] PLACHKOVA S K. Phys. Status Solid A, 1985, 92: 273.
    [73] CHRISTAKUDIS G C, PLACHKOVA S K, SHELIMOVA L E. Thermoelectric Power of (GeTe)1-x ((Ag2Te)1-y (Sb2Te3)y)x Solid Solutions (y = 0.6; 0≤x≤1) [J]. Phys. State Sol. (a), 1987, 102: 357.
    [74] CHRISTAKUDIS G C, PLACHKOVA S K, AVILOV E S, et al. Electrical resistivity and scattering mechanisms of (GeTe)1-x ((Ag2Te)1-y (Sb2Te3)y)x solid solutions [J]. Phys. State Sol. (a), 1987, 99: 593.
    [75] CHRISTAKUDIS G C, PLACHKOVA S K, PETROV K, et al. Bulg. J. Phys, 1984, 11: 36.
    [76] ROSI F D, HOCKINGS E F, LINDBLAD N E. Semiconducting materials for thermoelectric power generation [J]. RCA Rev, 1961, 22: 82.
    [77] CHUNG D Y, HOGAN T, BRAZIS P, et al. CsBi4Te6: A high-performance thermoelectric material forlow-temperature applications [J]. Science, 2000, 287:1024.
    [78] ASSENOV R, POLYCHRONIADIS E K. On the comparative characterization of single crystalline PbTe (I) grown by vertical Bridgman and traveling heater methods, [J]. Journal of crystal growth, 1991, 112 (1): 227.
    [79] NAKANISHI T, TAKESHITA N, MORI N. A newly developed high-pressure cell by using modified Bridgman anvils for precise measurements in magnetic fields at low temperatures, [J]. Review of Scientific Instruments, 2002, 73 (4): 1828-1831.
    [80] DISTANOV V E, NENASHEV B G, KIRDYASHHHKIIIN A G., et al. Proustite single-crystal growth by the Bridgman–Stockbarger method using ACRT, [J]. Journal of Crystal Growth, 2002, 235, (1-4): 457-464
    [81] RADOJEVIC V, VALCIC A, NIKOLIC S. Interface shape and distribution of solute during vertical Bridgman growth of Al–Cu alloy [J]. Materials Letters, 2002, 52(4-5): 248-254
    [82] SRIFHAR K, CHATTOPADHYAY K. Synthesis by mechanical alloying and thermoelectric properties of Cu2Te [J]. J of Alloys and Compounds, 1998, 264: 293.
    [83] HIROAKI A, JIRO N, KAKUEI M. Electric and thermoelectric properties of YbyFe4-xNixSb12 filled skutterudites In: Proceeding of the 21st International Conference on the Thermoelectric, 2002. 56
    [84] BERARDEN D, GODART C, ALLENO E, et al. Existence, structure and valence properties of the skutterudites CeyFe4-xCoxSb12 [J]. J Alloys and Comp, 2003, 350: 30.
    [85]唐新峰,陈立东,等. Fe对CeyFexCo4-xSb12化合物结构和热电传输性质的影响.物理学报,2000, 49(12): 2417.
    [86] KEHR C T, SCHULTS L. Magnetic properties of nanocrystalline mechanically alloyed Fe-M (M=Al, Si, Cu) [J]. J. Appl. Phys., 1993, 73: 1975.
    [87] ZHOU M, LI J F, KITA T. Nanostructured AgPbmSbTem+2 system bulk materials with enhanced thermoelectric performance [J]. Am. Chem. Soc., 2008, 130 (13): 4527–4532
    [88] HARMAN T C, TAYLOR P J, SPEARS D L, et al. in Proc. 1999, [C]. Piscataway, NJ: 18th Int. Conf. on Thermoelectric (ed.Ehrlich, A.) 280-284 (IEEE,).
    [89] HARMAN T C, WALSH M P, LAFORGE B E, et al. Nanostructure thermoelectric materials [J]. J. Electron. Mater, 2005, 34 (5): 19-22.
    [90] HAYGARTH T C, GEFFING I C, KENNED y G C. Determination of the pressure of the barium I-II transition with single-stage piston-cylinder apparatus [J]. J. Appl. Phys, 1967, 38:4557
    [91]郝兆印,陈宇飞,邹广田.《人工合成金刚石》[M]吉林大学出版社,1996,252页
    [92]贾晓鹏.高品质金刚石的合成及杂质的研究[D]博士学位论文,1996
    [93]HARMAN T. C. Special techniques for measurement of thermoelectric properties [J] J. Appl. Phys. 1958, 29, 1373.
    [94] HARMAN T C, CAHN J H, LOGAN M J. Measurement of thermal conductivity by utilization of the peltier effect [J] J. Appl. Phys. 1959, 30, 1351.
    [95] PENN A. W. The corrections used in the adiabatic measurement of thermal conductivity using the peltier effect [J] J. Sci. Instrum. 1964, 41, 626.
    [96] St?hver U, SCI M, Technol. Measurement of the transport properties of FeSi2 and HMS by utilization of the Peltier effect in the temperature range 50-800℃[J]. Measurement Science and Technology, 1994, 5, 440.
    [97] UHLIR A. Bell System Tech [M]. 1955, 34,105.
    [98] SMITS F M. Bell System Tech [M]. 1958, 37, 711.
    [99] POLVANI D A, MENG J F, HASEGAWA M, et al. Measurement of the thermoelectric power of very small samples at ambient and high pressures Rev. Sci. Instrum. 1999, 70, 3586.
    [100] SLACK G A. New materials and performance limits of thermoelectric [M]. CRC: CRC Handbook of Thermoelectrics, CRC Press, 1995: 407- 440.
    [101] SALES B C, MANDRUS D, CHAKOUMAKOS B C, et al. Filled skutterudite antimonides: electron-crystals phonon-glasses [J]. Phys Rev B, 1997, 56 (23): 15081-15089.
    [102] CHEN B X, XU J H, UCHER C, et al. Low-temperature transport properties of the filled skutterudites CexFe4-xCoxSb12 [J]. Phys Rev B, 1997, 55 (3): 1476-1480.
    [103] NOLAS G S, MORELLI D T, TRITT T M. Skutterudites: a phonon-glass-electron crystal approach to advanced thermoelectric energy conversion applications [J]. Annual Review of Matetials Science, 1999, 29: 89-116.
    [104] CAILLAT T, FLEURIAL J P, BORSHEHEVSKY A. bridgman-solution crystal growth and charaeterizationof the skutterudite compounds CoSb3 and RhSb3 [J]. Crystal Growth, 1996. 722.
    [105] LAURENT C, DIDIER R, T. JEAN C. Synthese par broyage mecahique de CeFe4Sb12 et des composes substitues CeFe3.5Ni0.5Sb12 et CeFe4Sb12Te [J]. Solid Chem and Crystal Chem, 1998, 761.
    [106] SAVEHUK V, SEHUMANN J, SEHUPP B, et al. Formation and thermal stability of the skutterudite phase in films sputtered from Co20Sb80 targets [J]. J. Alloys and Comp, 2003. 351: 248.
    [107] LIU H, WANG J Y, HU X B, et al. Preparation of filling skutterudite nanowire by a hydrothermal method [J]. J. Alloys and Comp., 2002, 334: 313.
    [108] NOLAS G S,TAKIZAWA H,ENDO T, et al. Thermoelectric properties of Sn-filled skutterudites [J] Applied Physics Letters, 2000, 77:52.
    [109] ZHU P W, IMAI Y, ISODA Y, et al. Electrical transport and thermoelectric properties of PbTe prepared by HPHT [J]. Materials Transactions, 2004, 45 (11): 3102-3105.
    [110] SU T C, ZHU P W, MA H A, et al. Electrical transport and thermoelectric properties of PbTe doped with Sb2Te3 prepared by High-pressure and
    High-temperature [J]. J Alloys Comp, 2006, 422 (1): 328-331.
    [111]宿太超.高性能热电材料的高温高压合成研究[D].吉林大学博士论文,2009.
    [112] MA Y M, EREMETS M, OGANOV A R, et al. Transparent dense sodium [J] Nature letter, 2009, 458:182.
    [113] DENG L, MA H A, SU T C, et al. Enhanced thermoelectric properties in Co4Sb12 ? xTex alloys prepared by HPHT [J]. Mater Lett, 2009, 63: 2139-2141.
    [114] POLVANI D A, MENG J F, SHARP J, et al. Large improvement in thermoelectric properties in pressure-tuned p-type Sb1.5Bi0.5Te3 [J]. Chem Matter. 2001, 13: 2068-2071.
    [115] MENG J F, SHEKAR N V C, CHUNG D Y, et al. Improvement in the thermoelectric figure of merit for pressure-tuned beta-K2Bi8Se13 [J]. J Appl Phys. 2003, 94: 4485-4487.
    [116] THONHAUSER T, JEON G S, MAHAN G D, et al. Stress-induced defects in Sb2Te3 [J]. Phys. Rev. B, 2003, 68:205-207.
    [117]董楠. Na填充型和Fe置换型CoSb3方钴矿热电材料的高温高压制备和热电特性研究[D].吉林大学硕士论文, 2009.
    [118] MENG J F, POLVANI D A, JONES C D, et al. Pressure tuning in the chemical search for improved thermoelectric materials: NdxCe3-xPt3Sb4 [J]. Chemistry. Materials, 2000, 12: 197.
    [119] YOON G, HEIKE S, JOHNSON D C. Calorimetric study of the nucleation of LaxCo4Sb12 prepared from modulated elemental reactants [J]. Thermochimica acta, 2002, 388 (1-2): 151-158.
    [120] FELDMAN J L, SINGH D J. Lattice dynamics of skutterudites: first-principles and model calculations for CoSb3 [J]. Phys Rev B, 1996, 53: 6273.
    [121] BLANTER Y M , KAGANOV M I, PANTSULAYA A V, et al. the Theory of Electronic Topological Transitions [J].Phys. Rep, 1994, 245 :159-257.
    [122] ITSKEVICH E S, KASHIRSKAY L M , KRAIDENOV V F. Anomalies in the Low-temperature Thermoelectric Power of p-Bi2Te3 and Te Associated with Topological Electronic transitions under pressure [J]. Semiconductors, 1996, 31:276-278.
    [123] ZHOU J S, ARCHIBALD W, GOODENOUGH J B. Pressure Dependence of Thermoelectric Power in La1-xNdxCuO3 [J]. Phys. Rev. B, 1998, 57: 2017.
    [124] NOLAS G S, SLACK G A, MORELLI D T, et al. The effect of Rara-earth filling on the lattice thermal conductivity of Skutterudites [J]. J Appl Phys, 1996, 87: 4002-4008
    [125] PEI Y Z, BAI S Q, ZHAO X Y, et al. Thermoelectric Properties of EuyCo4Sb12 Filled Skutterudites [J]. Solid State Science, 2008, 10: 1422-1428
    [126] CAILAT T, BORSHCHEVSKY A, FLEURIAL J P. Properties of Single Crystalline Semiconducting CoSb3 [J]. J. Appl. Phys, 1996, 80: 4442-4449.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700