热电材料晶体结构与微观缺陷相关的特异传输性质
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热电材料是一种能够实现热能和电能直接相互转换的功能材料,在温差发电和热电制冷等领域具有重要的应用价值和广泛的应用前景。随着热电材料研究的逐步深入,材料的晶体结构越来越复杂,掺杂的成分越来越多,给实际研究工作带来较大的困难。固体能带理论是凝聚态物理最成功的理论之一,固体的许多基本性质,如磁性质、电学特性等,都与固体的电子结构密切相关。因此对某些复杂体系,通过探索其电子结构,利用固体能带理论来研究热电传输问题,可以深入理解材料的热电行为,找出晶体结构与热电传输性质的演变规律。
     本论文采用基于密度泛函理论的第一性原理计算方法对几种具有特殊晶体结构的热电材料(ReSi1.75,β-Zn4Sb3和Rh3ScSi7)的晶格缺陷和电子结构(如态密度、能带结构、成键性质、有效质量等)进行了研究,并研究了掺杂工艺对这几种材料晶体结构和电子结构的影响。利用半经典的玻耳兹曼传输理论,在能带结构的基础上对这几种热电材料的传输性能进行了解析,并结合实验数据和计算结果进行比较和分析,解释了材料特殊传输性能的原因,预测了进一步提高材料热电性能的手段。
     研究结果表明,ReSi1.75为窄能隙半导体。能带中价带顶是一条平坦的能带,而导带底为具有抛物线形状的能带。ReSi1.75中Re原子的d态电子与晶格中的硅空位缺陷之间形成悬挂键,使得ReSi1.75表现半导体性质。ReSi1.75在[001]方向上空穴具有较大的有效质量,而在[100]和[010]方向上电子具有较大的有效质量。掺杂Al和Mo后ReSi1.75的费米能级向价带移动。沿[100]方向p型掺杂的ReSi1.75和沿[001]方向n型掺杂的ReSi1.75会有更好的热电性能。
     β-Zn4Sb3为窄能隙p型半导体,其电子结构对晶体结构并不敏感。β-Zn4Sb3中某些Zn-Zn键键长很短,这在能量上不稳定。驰豫后,Zn-Zn键键长显著增大,而Zn-Sb键键长却增大不多。这是由于β-Zn4Sb3中Zn-Zn键为较弱的共价键,而Zn-Sb键为较强的共价键。掺杂对β-Zn4Sb3的Seebeck系数和电导率影响趋势相反,直接通过元素掺杂对于提高β-Zn4Sb3热电材料的电性能优势并不明显。
     Rh3ScSi7是一种半金属材料,最高的价带穿过费米能级进入到导带中,使得Rh3ScSi7以空穴载流子传输为主。Rh3ScSi7是一种具有传输各向异性的热电材料。掺杂Al使得Rh3Sc(Si0.98Al0.02)7在(0001)晶面上的功率因子明显提高,最高达将近50%。Rh3ScSi7和Rh3Sc(Si0.98Al0.02)7的ZT值都随温度升高而增大。Al掺杂能够显著提高(0001)晶面上的热电性能。
Thermoelectric (TE) materials, which can convert heat and electricity directly and reversely, are a new class of functional materials. There are of great important and potential application values in TE power generators and cooling devices. With the further research of TE materials, their crystal structures become more and more complex and the doped compositions become more and more complicated, which have brought great difficulties in practical research work. The band theory of solids is one of the most successful theories of condensed matter physics. Many basic properties of solids, such as magnetic properties, electrical properties and so on, are all closely related to the electronic structures of solids. Therefore by using the band theory of solids and exploring the electronic structure to study the thermoelectric transport problems of complex systems, the TE behavior could be understood and the evolution laws between the crystal structures and TE performances could be discovered.
     In this thesis, the first principles calculation method was used based on the density functional theory to study and reveal the relations between the specific crystal defects and the electronic structures (such as density of states, band structure,bonding character,effective mass and so on) of three TE materials (ReSi1.75,β-Zn4Sb3 and Rh3ScSi7). Then the effects of doping to the crystal and electronic structures were analyzed. The transport properties of these materials were also resolved based on the band structure and semi-classical Boltzmann transport theory. The calculation results were compared and analyzed with the experimental data. The reason for the specific anisotropic transport properties was explained in detail, thus the means of improving the TE performance were predicted and proposed.
     The results show that ReSi1.75 is a narrow gap semiconductor. The valence band maximum is a flat band; whereas the conduction band minimum is a parabolic band. The dangling bonds are formed between the Re d electrons and the Si vacancy defects, which makes ReSi1.75 show semiconductor behavior. The effective mass of holes along [001] direction is comparatively large; whereas the effective masses of electrons along [100] and [010] directions are comparatively large. The TE performance should be much more excellent along [100] direction for p-doped ReSi1.75 and [001] direction for n-doped ReSi1.75.
     β-Zn4Sb3 is a p-type narrow gap semiconductor, whose electronic structure is not sensitive to its crystal structures. The bond lengths of some Zn-Zn bond are exceptionally short, which are not stable in energy. After fully relaxed, the bond length of Zn-Zn bond increases larger significantly whereas the bond length of Zn-Sb bond increases slightly. The reason is that the covalent Zn-Zn bonds are weak and the Zn-Sb bonds are rather strong. The doping techniques cause contrary effects on the Seebeck coefficient and electrical conductivity ofβ-Zn4Sb3. Therefore, the advantage to improve TE performance ofβ-Zn4Sb3 by element doping was discovered not to be significant.
     Rh3ScSi7 is a semi-metal, the valence band maximum crosses the Fermi level and enters the conduction bands, which makes the hole carriers play a dominant role in Rh3ScSi7. Rh3ScSi7 is an anisotropic TE material. Al doping can increase the power factors on (0001) plane of Rh3Sc(Si0.98Al0.02)7 obviously; a maximum of 50% increase can be achieved. The figure of merits ZT of both Rh3ScSi7 and Rh3Sc(Si0.98Al0.02)7 increase with the rising temperatures. The thermoelectric performance ZT on (0001) plane of Rh3ScSi7 could be significantly improved Al doping.
引文
[1].江泽民,对中国能源问题的思考[J].上海交通大学学报, 2008, 42 (3): 345-359.
    [2].苗俊杰,黄蕙,邹昌钦,中国能源战略走向[J].瞭望, 2004, 15: 29-31.
    [3].DiSalvo F. J., Thermoelectric cooling and power generation[J]. Science, 1999, 285 (5428): 703-706.
    [4].Sales B. C., Thermoelectric materials - Smaller is cooler[J]. Science, 2002, 295 (5558): 1248-1249.
    [5].Service R. F., Semiconductor advance may help reclaim energy from 'lost' heat[J]. Science, 2006, 311: 1860-1860.
    [6].Nolas G. S., Slack G. A., Cohn J. L., etc. The next generation of thermoelectric materials[A], In Proceedings 17th International Conference on Thermoelectrics[C], Dresden, Germany, 1998: 294-297.
    [7].Rowe D. M., CRC Handbook of Thermoelectrics[M]. Boca Raton: CRC Press: 1995.
    [8].徐桂英,葛昌纯,热电材料的研究和发展方向[J].材料导报, 2000, 11: 38-41.
    [9].刘宏,王继扬,半导体热电材料研究进展[J].功能材料, 2000, 31 (2): 116-118.
    [10]. Schmidt M. A. Portable MEMS Power Sources[A], In IEEE International Solid-State Circuits Conference[C], San Francisco, USA, 2003: 394-395.
    [11].张建中,任保国,王泽深,空间应用放射性同位素温差发电器的发展趋势[J].电源技术, 2006, 30 (7): 525-530.
    [12].Fairbanks J. Thermoelectric generators for near-term automotive applications and beyond[A], In Proc. 4th Euro. Conf. on Thermoelectrics[C], Cardiff, UK, 2006: 1.
    [13]. Omer S. A., Infield D. G., Design optimization of thermoelectric devices for solar power generation[J]. Solar Energy Materials: Solar Cells, 1998, 53: 67-82.
    [14].张景韶,李绍莲,姜烈汉等,温差电器件低温余热发电的实验研究[J].新能源, 1996, 18 (6): 11-16.
    [15]. LaGrandeur J., Crane D., Hung S., etc. High Efficiency Waste Energy Recovery System for Vehicle Applications[A], In Proceedings 25th International Conference on Thermoelectrics[C], Wien, Austria, 2006: 349-353.
    [16]. Kanatzidis M. G., Chung D., Thermoelectric Materials 1998 - The Next Generation Materials for Small-scale Refrigeration and Power Generation Application[M]. 2000; p 233.
    [17]. Chein R., Huang G., Thermoelectric cooler application in electronic cooling[J]. AppliedThermal Engineering, 2004, 24: 2207-2217.
    [18]. Biersehenk J., Gilley M. Assessment of TEC Requirements for Thermoelectrically Enhanced Heat Sinks for CPU Cooling Applications[A], In Proceedings 25th International Conference on Thermoelectrics[C], Wien, Austria, 2006.
    [19].魏公,能使计算机速度快一倍的新热电材料[J].广西节能, 2001, 1: 37.
    [20].刘华军,李来风,半导体热电制冷材料的研究进展[J].低温工程, 2004, 1: 32-38.
    [21]. Guler N. F., Ahiska R., Design and testing of a microprocessor-controlled portable thermoelectric medical cooling kit[J]. Applied Thermal Engineering, 2002, 22 (11): 1271-1276.
    [22].高敏,张景韶, Rowe D. M.,温差电转换及其应用[M].北京:兵器工业出版社: 1996.
    [23]. Majumdar A., Thermoelectricity in semiconductor nanostructures[J]. Science, 2004, 303: 777-778.
    [24].潘志军.热电材料的电子结构研究--掺杂对单晶材料热电性能的影响[D].上海交通大学2008.
    [25]. Maneewan S., Khedari J., Zeghmati B., etc., Investigation on generated power of thermoelectric roof solar collector[J]. Renewable Energy, 2004, 29: 743-752.
    [26].钱佑华,徐至中,半导体物理[M].北京:高等教育出版社: 1999.
    [27]. Pollock, Physics of Engineering Materials[M]. New Jersey: Prentice Hall Pub Press: 1990; p 330.
    [28].刘恩科,朱秉升,罗晋生,半导体物理学[M].北京:国防工业出版社: 1994; p 286-298.
    [29].姜守忠,匡奕珍,制冷原理及设备[M].北京:中国商业出版社: 1996; p 258.
    [30]. Cadoff I. B., Miller E., Thermoelectric Materials and Devices[M]. New York: Reinhold: 1959.
    [31]. Riffat S. B., Ma X. L., Thermoelectrics: a review of present and potential applications[J]. Applied Thermal Engineering, 2003, 23: 915-935.
    [32]. Sales B. C., Mandrus D.,Williams R. K., Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials [J]. Science, 1996, 272: 1325-1328.
    [33]. Gray P. E., the Dynamic Behaviour of Thermoelectric Device[M]. New York: Wiley: 1960.
    [34]. Snyder G. J., Tobeber E. S., Complex thermoelectric materials[J]. Nature, 2008, 7: 105-114.
    [35]. Mahan G. D., Sofo J. O., The best thermoelectric[J]. Proceedings of the National Academy of Sciences of USA, 1996, 93: 7436-7439.
    [36]. Christakudis G. C., Plachkova S. K., Shelimova L. E., etc. Thermoelectric figure of merit of some composition in the system (GeTe)1-x[(Ag2Te)1-y(Sb2Te3)y]x[A], In Proceedings 8th International Conference on Thermoelectrics[C], Nancy, France, 1989.
    [37]. Hsu K. F., Loo S., Guo F., etc., Cubic AgPbmsbTe2+m: Bulk thermoelectric materials with high figure of merit[J]. Science, 2004, 303 (5659): 818-821.
    [38]. Dresselhaus M. S., Chen G., Tang M. Y., etc., New Directions for Low-Dimensional Thermoelectric Materials[J]. Advanced Materials, 2007, 19: 1043-1053.
    [39].夏建白,朱邦芬,半导体超晶格物理[M].上海:上海科学技术出版社: 1995.
    [40].吉晓华.纳米结构Bi2Te3基热电材料的合成与性能[D].浙江大学2005.
    [41]. Dresselhaus M. S., Dresselhaus G., Sun X., etc., Low-dimensional thermoelectric materials[J]. Physics of the Solid State, 1999, 41 (5): 679.
    [42]. Balandina A., Wang L. K., Effect of phonon confinement on the thermoelectric figure of merit of quantum wells[J]. Journal of Applied Physics, 1998, 84 (11): 6149.
    [43]. Zhang L. T., Tsutsui M., Ito K., etc., Thermoelectric properties of Zn Sb thin films prepared by magnetron sputtering[J]. Thin Solid Films 2003, 443: 84-90.
    [44]. Dresselhaus M. S., Koga T., Sun X., etc. Low dimensional thermoelectrics[A], In Proceedings 17th International Conference on Thermoelectrics[C], Dresden, Germany, 1997: 12-20.
    [45]. Vashaee D., Shakouri A., Improved thermoelectric power factor in metal-based superlattice[J]. Physical Review Letters, 2004, 92 (10): 106103.
    [46]. Khitun A., Wang K. L.,Chen G., Thermoelectric figure of merit enhancement in a quantum dot superlattice[J]. Nanotechnology, 2000, 11: 327.
    [47]. Hicks L. D., Dressehaus M. S., Thermoelectric figure of merit of a one-dimensional conductor[J]. Physical Review B, 1993, 47 (19): 12727.
    [48]. Harmann T. C., Taylor P. J., Walsh M. P., etc., Quantum dot superlattice thermoelectric materials and devices[J]. Science, 2002, 297 (5590): 2229-2232.
    [49]. Harman T. C., M.P.Walsh, Laforge B. E., etc., Nanostructured thermoelectric materials[J]. Journal of Electronic Materials, 2005, 34 (5): 19-22.
    [50]. Jovanovic V., Ghamaty S.,Elsner N. B. Design, fabrication and testing of quantum well thermoelectric generator[A], In The 10th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems, ITHERM'06[C], San Diego, U.S.A, 2006: 1417-1423.
    [51]. Rabina O., Lin Y. M., Dressehaus M. S., Anomalously high thermoelectric figure of merit in Bi1-xSbx nanowires by carrier pocket alignment[J]. Applied Physics Letters, 2001, 79 (1): 81-83.
    [52]. Zhao X. B., Ji X. H., Zhang Y. H., etc., Bismuth telluride nanotubes and the effect on the thermoelectric properties of nanotube-containing nanocomposites[J]. Applied Physics Letters, 2005,86: 062111.
    [53]. Hochbaum A. I., Chen R., Delgado R. D., etc., Enhanced thermoelectric performance of rough silicon nanowires[J]. Nature, 2008, 451: 163-167.
    [54]. Boukai A. I., Bunimovich Y., Tahir-Kheli J., etc., Silicon nanowires as efficient thermoelectric materials[J]. Nature, 2008, 451: 168-171.
    [55]. Chen G., Dresselhaus M. S., Fleurial J. P., etc., Recent developments in thermoelectric materials[J]. International Materials Reviews, 2003, 48 (1): 1-22.
    [56].朱文,杨君友,张同俊等,热电材料的最新进展[J].金属功能材料, 2002, 9 (4): 20-23.
    [57]. Slack G. A., In CRC Handbook of Thermoelectrics, Rowe, D. M., Ed. CRC Press: Boca Raton, 1995; p 407.
    [58]. Dyck J. S., Chen W., Uher C., etc., Thermoelectric properties of the n-type filled skutterudites Ba0.3Co4Sb12 doped with Ni[J]. Journal of Applied Physics, 2002, 91 (6): 3698-3705.
    [59]. Chen L. D. Section Barium-filled skutterudite: A high performance n-type thermoelectric material.[A], In High-Performance Ceramics[C], 2002: 197-200.
    [60]. Tang X. F., Chen L. D.,Takashi G., Solid state reaction synthesis of filled skutterudite compounds (Ce or Yb)yFexCo4-xSb12 and the effect of filling atoms Ce or Y or lattice thermal conductivity[J]. Science In China (Series B), 2000, 43 (3): 306-312.
    [61]. Lamberton G. A., Bhattacharya J. S.,Littleton R. T., High figure of merit in Eu-filled CoSb3-based skutterudites[J]. Applied Physics Letters, 2002, 80 (4): 598-600.
    [62]. Zhou Z. H., Uher C., Jewell A., etc., Influence of point-defect scattering on the lattice thermal conductivity of solid solution Co(Sb1-xAsx)3[J]. Physical Review B, 2005, 71: 235209-235214.
    [63]. Berardan D., Godart C., Alleno E., etc., Chemical properties and thermopower of the new series of skutterudite Ce1-pYbpFe4Sb12[J]. Journal of Alloys and Compounds, 2003, 351 (1-2): 18-23.
    [64]. Liu H., Wang J. Y., Xu X. B., etc., Preparation of filled skutterudites nanowire by a hydrothermal method[J]. Journal of Alloys and Compounds, 2002, 334: 313-316.
    [65]. Berardan D., Alleno E., Godart C., etc. Synthesis of nanocrystalline filled skutterudites by mechanical alloying[A], In Proceedings 25th International Conference on Thermoelectrics[C], Wien, Austria, 2006: 151-154.
    [66]. Bao S., Yang J., Zhu W., etc., Preparation and thermoelectric properties of La filled skutterudites by mechanical alloying and hot pressing[J]. Materials Letters, 2006, 60 (16): 2029-2032.
    [67]. Chu Y., Tang X. F., Wan L., etc., Synthesis of nano-skuterudite compound powder by cross-coprecipitation method[J]. Journal of Inorganic Materials, 2006, 21 (2): 298-302.
    [68]. Bobev S., Sevov S. C., Clathrate III of group I4 exists after all[J]. Journal of the American Chemical Society, 2001, 123 (14): 3389-3390.
    [69]. Iverson B. B., Palmqvist A. E., Cox D. E., etc., Why are clathrates good candidates for thermoelectric materials?[J]. Journal of Solid State Chemistry, 2000, 149 (2): 455-458.
    [70]. Nolas G. S., Poon J.,Kanatzidis D. G., Recent developments in bulk thermoelectric materials[J]. MRS Bulletin, 2006, 31: 199-205.
    [71]. Herrmann R. F., Tanigaki K., Kawaguchi T., etc., Electronic structure of Si and Ge gold-doped clathrates[J]. Physical Review B, 1999, 60: 13245-13248.
    [72]. Saramat A., Svensson G., Palmqvist A. E., etc., Large thermoelectric figure of merit at high temperature in Czochralski-grown clathrate Ba8Ga16Ge30[J]. Journal of Applied Physics, 2006, 99: 023708-023712.
    [73]. Cohn J. L., Nolas G. S.,Tessatidis V., Glasslike heat conduction in high-mobility crystalline semiconductors[J]. Physical Review Letters, 1999, 82: 779.
    [74]. Nolas G. S., Weakley T. J.,Cohn J. L., Structural properties and thermal conductivity of crystalline Ge clathrates[J]. Physical Review B, 2000, 61: 3845.
    [75]. Dong J. J., Sankey O. F.,Myles C. W., Theoretical study of the lattice thermal conductivity in Ge framework semiconductors[J]. Physical Review Letters, 2001, 86 (11): 2361-2364.
    [76]. Myles C. W., Dong J., Sankey O. F., etc., Vibrational properties of tin clathrate materials[J]. Physical Review B, 2002, 65 (23).
    [77]. Kuznetsova V. L., Kuznetsova L. A., Kaliazin A. E., etc., Preparation and thermoelectric properties of A8B16B30 clathrate compounds[J]. Journal of Applied Physics, 2000, 82 (4): 7871-7875.
    [78]. Kim J. H., Okamoto N. L., Kishida K., etc., High temperature performance of type-III clathrate compounds of the Ba-Ge-Ga system[J]. Acta Materialia, 2006, 54 (8): 2057-2062.
    [79]. Shen Q., Chen L., Goto T., etc., Effect of partial substitution of Ni by Pd on the thermoelectric properties of ZrNiSn-based half-Heusler compound[J]. Applied Physics Letters, 2001, 79 (25): 4165-4167.
    [80]. Sakurada S., Shutoh N., Effect of Ti substitution on the thermoelectric properties of (Zr, Hf)NiSn half-Heusler compounds[J]. Applied Physics Letters, 2005, 86 (8): 082105.
    [81]. Culp S. R., Poon S. J., Hickman N., etc., Effect of substitutions on the thermoelectric figure ofmerit of half-Heusler phases at 800°C,[J]. Applied Physics Letters, 2006, 88: 042106.
    [82]. Xia Y., Bhattacharya S., Ponnambalam V., etc., Thermoelectric properties of semimetallic (Zr, Hf)CoSb half-Heusler phases[J]. Journal of Applied Physics, 2000, 88 (4): 1952-1955.
    [83]. Yang J., Li H. M.,Wu T., Evaluation of Half-Heusler Compounds as Thermoelectric Materials Based on the Calculated Electrical Transport Properties [J]. Advanced Functional Materials, 2008, 18 (19): 2880-2888.
    [84]. Kimura Y., Tamura Y.,Kita T., Thermoelectric properties of directional solidified half-Heusler compound NBCoSn alloys[J]. Applied Physics Letters, 2008, 92 (1): 012105.
    [85]. Muta H., Kanemitsu T., Kurosaki K., High-temperature thermoelectric properties of Nb-doped MNiSn (M = Ti, Zr) half-Heusler compound [J]. journal of Alloys and Compounds, 2009, 469 (1-2): 50-55.
    [86]. Wang L. L., Miao L.,Wang Z. Y., Thermoelectric performance of half-Heusler compounds TiNiSn and TiCoSb [J]. Journal of Applied Physics, 2009, 105: 013709.
    [87]. Singh D. J., Electronic structure of NaCo2O4[J]. Physical Review B, 2000, 61 (20): 13397.
    [88]. Terasaki I., Sasago Y., Uchinokura K., Large thermoelectric power in NaCo2O4 single crystals[J]. Physical Review B, 1997, 56: 12685.
    [89]. Takeuchi T., Kita T., Kondo T., etc. Electronic structure and its contribution to the thermoelectric power of Ca3Co4O9 and NaxCoO2 layered cobalt oxides[A], In Proceedings 24th International Conference on Thermoelectrics[C], Clemson, U.S.A, 2005.
    [90]. Yamada Y. F., Ohtomo A., Kawasaki M., Parallel syntheses and thermoelectric properties of Ce-doped SrTiO3 thin films[J]. Applied Surface Science, 2007, 254 (3): 768-771.
    [91].刑学玲.钴酸盐热电材料的制备、性能及量子化学计算[D].武汉理工大学2006.
    [92]. Fujita K., Mochida T., Nakamura K., High-temperature thermoelectric properties of NaxCoO2-d single crystals[J]. Japanese Journal of Applied Physics, 2001, 39: 1127-1129.
    [93]. Takada K., Sakurai H., Takayama E., etc., Superconductivity in two-dimensional CoO2 layers[J]. Nature, 2003, 422 (6927): 53-55.
    [94]. Funahashi R., Matsubara I., Sodeoka S., Thermoelectric properties of Ba2Sr2Co2Ox polycrystalline materials[J]. Applied Physics Letters, 2000, 76 (17): 2385.
    [95]. Mikami M., Funahashi R., Yoshimura M., High-temperature thermoelectric properties of single-crystal Ca3Co2O6[J]. Journal of Applied Physics, 2003, 94 (10): 6579.
    [96]. Shin W., Murayama N., High performance p-type thermoelectric oxide based on NiO [J]. Materials Letters, 2000, 45 (6): 302-306.
    [97]. Koshibae W., Tsutsui K., Maekawa S., Thermopower in cobalt oxides[J]. Physical Review B, 2000, 62 (11): 6869.
    [98]. Nan J., Wu J., Deng Y., etc., Thermoelectric properties of La-doped Ca-Co-O misfit cobaltites[J]. Solid State Communications,2002, 124: 243.
    [99].Mahan G. D., Bartkowiak M., Wiedemann–Franz law at boundaries[J]. Applied Physics Letters, 1999, 74: 953-954.
    [100].Mahan G. D., Figure of merit for thermoelectrics[J]. Journal of Applied Physics, 1989, 65 (4): 1578-1583.
    [101].Scheidemantel T. J., Ambrosch-Draxl C., Thonhauser T., etc., Transport coefficients from first-principles calculations[J]. Physical Review B, 2003, 68 (125210).
    [102].谢希德,陆栋,固体能带理论[M].上海:复旦大学出版社: 1998.
    [103].方俊鑫,陆栋,固体物理学[M].上海:上海科学技术出版社: 1981.
    [104].Grosso G., Solid state physics[M]. Academic Press: 2000.
    [1].冯端,金国钧,凝聚态物理学(上卷)[M].北京:高等教育出版社: 2003.
    [2].Madsen G. K. H., Automated search for new thermoelectric materials: The case of LiZnSb[J]. Journal of the American Chemical Society 2006, 128 (37): 12140-12146.
    [3].Singh D. J. Oxide thermoelectrics[A], In Materials Research Society Symposium Proceedings[C], Boston, MA, 2008: 43-49.
    [4].Mei Z. G., Yang J., Pei Y. Z., etc., Alkali-metal-filled CoSb3 skutterudites as thermoelectric materials: Theoretical study[J]. Physical Review B, 2008, 77 (4).
    [5].吴兴惠,项金钟,现代材料计算与设计教程[M].北京:电子工业出版社: 2002.
    [6].潘志军.热电材料的电子结构研究[D].上海交通大学2008.
    [7].Born M., Huang K., Dynamical theory of crystal lattices[M]. Oxford University press: 1954.
    [8].Ashcroft N. W., Mermin N. D., Solid state physics[M]. Thomason & Learning Inc.: 1976.
    [9].Slater J. C., Wave Functions in a Periodic Potential[J]. Physical Review, 1937, 51 (846-851).
    [10]. Dreizler R. M., Gross E. K., Density Functional Theory[M]. Berlin: Springer-Vertag: 1990.
    [11]. Hohenberg P.,Kohn W., Inhomogeneous Electron Gas[J]. Physical Review B, 1964, 136: 864-871.
    [12].Kohn W., Sham L. J., Self-Consistent Equations Including Exchange and Correlation Effects[J]. Physical Review A, 1965, 140: 1133-1138.
    [13]. Ceperley D. M., Alder B. I., Ground State of the Electron Gas by a Stochastic Method[J]. Physical Review Letter, 1980, 45: 566.
    [14]. Perdew J. P., Zunger A., Self-interaction correction to density-functional approximations for many-electron systems[J]. Physical Review B, 1981, 23: 5048.
    [15]. Anisimov V. I., Aryasetiawan F.,Lichtenstein A. I., First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA+U method[J]. Journal of Physics Condensed Matter, 1997, 9: 767-808.
    [16]. Cococcioni M., Gironcoli S. d., Linear response approach to the calculation of the effective interaction parameters in the LDA+U method[J]. Physical Review B, 2005, 71: 035105-035105.
    [17]. Qian M. C., Khanna S. N., An ab initio investigation on the endohedral metallofullerene Gd3NC80[J]. Journal of Applied Physics, 2007, 101 (9).
    [18]. Schwarz K., Blaha P.,Madsen G. K. H., Electronic structure calculations of solids using the WIEN2k package for material sciences[J]. Computer Physics Communications, 2002, 147: 71-76.
    [19]. Perdew J. P., Density-functional approximation for the correlation energy of the inhomogeneous electron gas[J]. Physical review B, 1986, 33: 8822-8824.
    [20]. Perdew J. P., Burke K., Ernzerhof M., Generalized Gradient Approximation Made Simple[J]. Physical Review Letters, 1996, 77: 3865.
    [21]. Perdew J. P., Chevary J. A., Vosko S. H., etc., Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation[J]. Physical Review B, 1992, 46: 6671-6687.
    [22]. Singh D. J., Planewaves, pseudopotentials and the LAPW method[M]. Boston: Kluwer Academic Publishers: 1993.
    [23]. Schwarz K., Blaha P., Solid state calculations using WIEN2k[J]. Computational Materials Science, 2003, 28 (2): 259-273.
    [24]. Andersen O. K., Linear methods in band theory[J]. Physical Review B, 1975, 12: 3060-3085.
    [25]. Madsen G. K., Blaha P., Schwarz K., etc., Efficient linearization of the augment plane-wave method[J]. Physical Review B, 2001, 64: 195134.
    [26].钱佑华,徐至中,半导体物理[M].北京:高等教育出版社: 1999.
    [27]. Nunes R. W., Mazin I. I., Theoretical search for Chevrel-phase-based thermoelectric materials[J]. Physical Review B, 1999, 59: 7969-7972.
    [28]. Mishra S. K., Satpathy S., Jepsen O., Electronic structure and thermoelectric properties of bismuth telluride and bismuth selenide[J]. Journal of Physics Condensed Matter, 1997, 9: 461-470.
    [29]. Kentaro U., John S. T., Calculations of transport properties with the linearized augmented plane-wave method[J]. Physical Review B, 2000, 61: 1639-1642.
    [30]. Stern E. A., Rigid-Band Model of Alloys[J]. Physical Review, 1967, 157: 544-551.
    [31]. Scheidemantel T. J., Ambrosch-Draxl C., Thonhauser T., etc., Transport coefficients from first-principles calculations[J]. Physical Review B, 2003, 68 (125210).
    [32]. Johnsen S., Bentien A., Madsen G. K. H., etc., Crystal structure, band structure, and physical properties of Ba8Cu6-xGe40+x (0≤x≤0.7) [J]. Chemistry of Materials, 2006, 18 (19): 4633-4642.
    [1]. Rowe D. M., Thermoelectrics Handbook: Macro to Nano[M]. Boca Raton: Taylor & Francis Group: 2006.
    [2]. Murarka S. P., Silicides for BVLSI application[M]. New York: Academic Press: 1983.
    [3]. Zur A., McGill T. C., Lattice match: An application to heteroepitaxy[J]. Journal of Applied Physics, 1984, 55: 378.
    [4]. Nguyen T. A., Veuillen J. Y., Muret P., Semiconducting rhenium silicide thin films on Si(111)[J]. Journal of Applied Physics, 1995, 77: 2514.
    [5]. Searcy A. W., McNees Jr R. A., The silicides of rhenium[J]. Journal of the American Chemical Society, 1953, 75 (7): 1578-1580.
    [6]. Jorda J. L., Ishikawa M., Muller J., Journal of the Less-Common Metals, 1982, 85 (1): 27-35.
    [7]. Gottlieb U., Lambert-Andron B., Nava F., etc., Structural and electronic transport properties of ReSi2-d single crystals[J]. Journal of Applied Physics, 1995, 78 (6): 15.
    [8]. Gu J. J., Kuwabara K., Tanaka K., etc. Crystal structure and thermoelectric properties of ReSi1.75 silicide[A], In George, E. P., Inui, H., Mills, M. J., etc., Materials Research Society Symposium - Proceedings[C], Boston, MA, 2003: 501-506.
    [9]. Inui H. Rhenium silicide as a new class of thermoelectric material[A], In Materials Research Society Symposium Proceedings[C], Boston, MA, 2006: 219-229.
    [10]. Filonov A. B., Migas D. B., Shaposhnikov V. L., etc., Electronic properties of semiconducting rhenium silicide[J]. Europhysics Letters, 1999, 46 (3): 376-381.
    [11]. Shaposhnikov V. L., Krivosheeva A. V., Ivanenko L. I., etc., Structural, electronic and optical properties of semiconducting rhenium silicide[J]. Journal of Physics Condensed Matter, 2004, 16 (3): 303-312.
    [12]. Gu J. J., Oh M. W., Inui H., etc., Anisotropy of mobility ratio between electron and hole along different orientations in ReGexSi1.75-x thermoelectric single crystals[J]. Physical Review B, 2005, 71 (11): 1-4.
    [13].顾家俊. ReSi1.75基硅化物的微结构与热电性能[D].上海交通大学2004.
    [14]. Gu J. J., Zhang D.,Guo Q. X., Giant Seebeck coefficient decrease in polycrystalline materials with highly anisotropic band structures: Implications in seeking high-quality thermoelectric materials[J]. Solid State Communications, 2008, 148: 10-13.
    [15]. Kleint C. A., Heinrich A., Griessmann H., etc., Thermoelectric transport properties of ReSi1.75 thin films[J]. Materials Research Society Symposium - Proceedings, 1999, 545: 165-170.
    [16]. Heinrich A., Kleint C., Griessmann H., etc. Thermoelectric properties of rhenium disilicide[A], In International Conference on Thermoelectrics, ICT, Proceedings[C], Baltimore, MD, USA, 1999: 161-164.
    [17]. Sakamaki Y., Kuwabara K., Jiajun G., etc. Crystal structure and thermoelectric properties ofReSi1.75 based silicides[A], In Chandra, T., Torralba, J. M., Sakai, T., Materials Science Forum[C], Madrid, 2003: 1777-1782.
    [18]. Terada E., Oh M. W., Wee D. M., etc. Crystal structure and thermoelectric properties of Al-containing Re silicides[A], In Mills, M. J., Inui, H., Clemens, H., etc., Materials Research Society Symposium Proceedings[C], Boston, MA, 2005: 425-430.
    [19]. Oh M. W., Gu J. J., Kuwabara K., etc. Effects of alloying elements on thermoelectric properties of ReSi1.75[A], In Nolas, G. S., Yang, J., Hogan, T. P., etc., Materials Research Society Symposium - Proceedings[C], Boston, MA., 2003: 385-390.
    [20]. Oh M. W., Inui H., Oh M. H., etc., Effect of addition of Ge on the thermoelectric properties of ReSi1.75 single crystals[J]. Journal of Korean Institute of Metals and Materials, 2007, 45 (1): 55-60.
    [21]. Inui H., Sakamaki Y., Kuwabara K., etc. Thermoelectric Properties of ReSi1.75 Based Silicides - Property Improvements Through Defect Engineering[A], In Srivatsan T. S., Varin R. A., Processing and Fabrication of Advanced Materials XII[C], Pittsburgh, PA, 2003: 479-489.
    [22]. Gottlieb U., Affronte M., Nava F., etc., Some physical properties of ReSi1.75 single crystals[J]. Applied Surface Science, 1995, 91 (1-4): 82-86.
    [23]. Schwarz K., Blaha P., Solid state calculations using WIEN2k[J]. Computational Materials Science, 2003, 28 (2): 259-273.
    [24]. Madsen G. K. H., Singh D. J., BoltzTraP. A code for calculating band-structure dependent quantities[J]. Computer Physics Communications, 2006, 175 (1): 67-71.
    [25]. Tanaka K., Inui H., Ohba T., etc. Crystallographic features of rhenium disilicide[A], In Nolas, G. S., Yang, J., Hogan, T. P., etc., Materials Research Society Symposium - Proceedings[C], Boston, MA., 2003: 305-310.
    [26]. Murnaghan F. D., Proc. Natl. Acad. Sci. U. S. A., 1944, 30: 244.
    [27]. Gunnarsson O., Schonhammer K., Physical Review Letters, 1986, 56: 1968.
    [28]. Becker J. P., Mahan J. E., Long R. G., ReSi2 thin-film infrared detectors[J]. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1995, 13 (3 pt 1): 1133-1135.
    [29]. Reiche R., Oswald S.,Wetzig K., XPS and factor analysis for investigation of sputter-cleaned surfaces of metal (Re, Ir, Cr)-silicon thin films[J]. Applied Surface Science, 2001, 179 (1-4): 316-323.
    [30]. Ivanenko L., Shaposhnikov V. L., Filonov A. B., etc., Transport properties of semiconducting rhenium silicide[J]. Microelectronic Engineering, 2002, 64 (1-4): 225-232.
    [31]. Kurganskii S. I., Pereslavtseva N. S., Levitskaya E. V., etc., Electronic structure of rheniumdisilicides[J]. Journal of Physics Condensed Matter, 2002, 14 (27): 6833-6839.
    [32].方俊鑫,陆栋,固体物理学[M].上海:上海科学技术出版社: 1981.
    [33].刘恩科,朱秉升,罗晋生,半导体物理学[M].北京:国防工业出版社: 1994; p 286-298.
    [34]. Jonson M., Mahan G. D., Mott's formula for the thermopower and the Wiedemann-Franz Law[J]. Physical Review B, 1980, 21: 4223.
    [35]. Ziman J. M., Principles of the Theory of Solids[M]. Cambridge: Cambridge University Press: 1972.
    [36]. Sharp J. W., Poon S. J.,Goldsmid H. J., Boundary Scattering and the Thermoelectric Figure of Merit[J]. phys. stat. sol, 2001, 187: 507-516.
    [37]. Lykke L., Iversen B. B.,Madsen G. K., Electronic structure and transport in the low-temperature thermoelectric CsBi4Te6: Semiclassical transport equations[J]. Physical Review B, 2006, 73: 195121.
    [38]. Oh M. W., Wee D. M., Park S. D., etc., Electronic structure and thermoelectric transport properties of AgTlTe: First-principles calculations[J]. Physical Review B, 2008, 77 (16).
    [39]. Madsen G. K. H., Automated search for new thermoelectric materials: The case of LiZnSb[J]. Journal of the American Chemical Society 2006, 128 (37): 12140--12146.
    [40]. Oh M. W., Gu J. J., Inui H., etc., Evaluation of anisotropic thermoelectric power of ReSi1.75[J]. Physica B: Condensed Matter, 2007, 389 (2): 367-371.
    [41]. Ito M., Tanaka T., Hara S., Thermoelectric properties ofβ?FeSi2 with electrically insulating SiO2 and conductive TiO dispersion by mechanical alloying[J]. Journal of Applied Physics, 2004, 95: 6209.
    [42].钱佑华,徐至中,半导体物理[M].北京:高等教育出版社: 1999.
    [1]. DiSalvo F. J., Thermoelectric cooling and power generation[J]. Science, 1999, 285 (5428): 703-706.
    [2]. Zhao X. B., Cao G. S., A study of Zn4Sb3 as a negative electrode for secondary lithium cells[J]. Electrochimica Acta, 2001, 46 (6): 891-896.
    [3]. Service R. F., Semiconductor advance may help reclaim energy from 'lost' heat[J]. Science, 2006, 311: 1860-1860.
    [4]. Caillat T., Fleurial J. P., Borshchevsky A., Preparation and thermoelectric properties of semiconducting Zn4Sb3[J]. Journal of Physics and Chemistry of Solids, Jul, 1997, 58 (7): 1119-1125.
    [5]. Chitroub M., Besse F., Scherrer H., Thermoelectric properties of semi-conducting compound Zn4Sb3[J]. Journal of Alloys and Compounds, 2008, 460 (1-2): 90-93.
    [6]. Ueno K., Yamamoto A., Noguchi T., etc., Optimization of hot-press conditions of Zn4Sb3 for high thermoelectric performance - I. Physical properties and thermoelectric performance[J]. Journal of Alloys and Compounds, Dec, 2004, 384 (1-2): 254-260.
    [7]. Zhu T. J., Zhao X. B., Hu S. H., etc., Transport properties of a new type of thermoelectric materialβ-Zn4Sb3[J]. Rare Metal Materials and Engineering, 2001, 30 (3): 187-189.
    [8]. Slack G. A., In CRC Handbook of Thermoelectrics, Rowe, D. M., Ed. CRC Press: Boca Raton, 1995; p 407.
    [9]. Ur S. C., Nash P., Kim I. H., Solid-state syntheses and properties of Zn4Sb3 thermoelectric materials[J]. Journal of Alloys and Compounds, Oct, 2003, 361 (1-2): 84-91.
    [10]. Zhu T. J., Zhao X. B., Yan M., etc., Transport properties ofβ-Zn4Sb3 prepared by vacuum melting[J]. Materials Letters, 2000, 46 (1): 44-48.
    [11]. Snyder G. J., Christensen M., Nishibori E., etc., Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties[J]. Nature Materials, Jul, 2004, 3 (7): 458-463.
    [12]. Mayer H. W., Mikhail I., Schubert K., J. Less-Common Met., 1978, 59.
    [13]. Snyder G. J., Stephens P. W., Haile S. M. Synchrotron X-ray structure refinement ofZn4Sb3[A], In International Conference on Thermoelectrics, ICT, Proceedings[C], Clemson, SC, 2005: 315-318.
    [14]. Cargnoni F., Nishibori E., Rabiller P., etc., Interstitial Zn atoms do the trick in thermoelectric zinc antimonide, Zn4Sb3: A combined maximum entropy method X-ray electron density and ab initio electronic structure study[J]. Chemistry-a European Journal, Aug, 2004, 10 (16): 3861-3870.
    [15]. Mikhaylushkin A. S., Nylen J., Haussermann U., Structure and bonding of zinc antimonides: Complex frameworks and narrow band gaps[J]. Chemistry-a European Journal, Aug, 2005, 11 (17): 4912-4920.
    [16]. Schweika W., Hermann R. P., Prager M., etc., Dumbbell rattling in thermoelectric zinc antimony[J]. Physical Review Letters, 2007, 99 (12).
    [17]. Bhattacharya S., Hermann R. P., Keppens V., etc., Effect of disorder on the thermal transport and elastic properties in thermoelectric Zn4Sb3[J]. Physical Review B, 2006, 74 (13): 134108.
    [18]. Nylen J., Andersson M., Lidin S., etc., The structure of alpha-Zn4Sb3: Ordering of the phonon-glass thermoelectric materialβ-Zn4Sb3[J]. Journal of the American Chemical Society, Dec, 2004, 126 (50): 16306-16307.
    [19]. Nylen J., Lidin S., Andersson M., etc., Low-temperature structural transitions in the phonon-glass thermoelectric materialβ-Zn4Sb3: Ordering of Zn interstitials and defects[J]. Chemistry of Materials, 2007, 19 (4): 834-838.
    [20]. Mozharivskyj Y., Janssen Y., Harringa J. L., etc., Zn13Sb10: A structural and landau theoretical analysis of its phase transitions[J]. Chemistry of Materials, 2006, 18 (3): 822-831.
    [21]. Souma T.,Ohtaki M., Synthesis and Rietveld analysis of Zn4-xCdxSb3 bulk crystals in the Zn-rich region[J]. Journal of Alloys and Compounds, 2006, 413 (1-2): 289-297.
    [22]. Pedersen B. L., Birkedal H., Nishibori E., etc., Hg0.04Zn3.96Sb3: Synthesis, crystal structure, phase transition, and thermoelectric properties[J]. Chemistry of Materials, Dec, 2007, 19 (25): 6304-6311.
    [23].Liu F., Qin X. Y., Xin H. X., Thermoelectric properties of (Zn0.98M0.02) 4Sb3 (M = Al, Ga and In) at low temperatures[J]. Journal of Physics D: Applied Physics, 2007, 40 (24): 7811-7816.
    [24]. Liu F., Qin X. Y., Li D., The effect of in doping on thermoelectric properties and phase transition of Zn4Sb3 at low temperatures[J]. Journal of Physics D: Applied Physics, 2007, 40 (16): 4974-4979.
    [25]. Zhang L. T., Tsutsui M., Ito K., etc., Effects of ZnSb and Zn inclusions on the thermoelectric properties ofβ-Zn4Sb3[J]. Journal of Alloys and Compounds, Aug, 2003, 358 (1-2): 252-256.
    [26]. Schwarz K., Blaha P., Solid state calculations using WIEN2k[J]. Computational Materials Science, 2003, 28 (2): 259-273.
    [27]. Lykke L., Iversen B. B., Madsen G. K. H., Electronic structure and transport in the low-temperature thermoelectric CsBi4Te6: Semiclassical transport equations[J]. Physical Review B, 2006, 73 (19).
    [28]. Mozharivskyj Y., Pecharsky A. O., Bud'ko S., etc., Promising thermoelectric material: Zn4Sb3 or Zn6-σSb5. Its composition, structure, stability, and polymorphs. Structure and stability of Zn1-delta Sb[J]. Chemistry of Materials, Apr, 2004, 16 (8): 1580-1589.
    [29]. Kim H. J., Bozin E. S., Haile S. M., etc., Nanoscale alpha-structural domains in the phonon-glass thermoelectric materialβ-Zn4Sb3[J]. Physical Review B, Apr, 2007, 75 (13): 4.
    [30].Nolas G. S., Poon J., Kanatzidis D. G., Recent developments in bulk thermoelectric materials[J]. MRS Bulletin, 2006, 31: 199-205.
    [31]. Kim S. G., Mazin I. I., Singh D. J., First-principles study of Zn-Sb thermoelectrics[J]. Physical Review B, Mar, 1998, 57 (11): 6199-6203.
    [32]. Gao X., Uehara K., Klug D. D., etc., Theoretical studies on the thermopower of semiconductors and low-band-gap crystalline polymers[J]. Physical Review B, 2005, 72 (12): 1-7.
    [33]. Nakamoto G., Kinoshita K.,Kurisu M., Correlation between structural and low-temperature thermoelectric properties of Zn13+xSb10 compounds[J]. Physical Review B, 2009, 105: 013713.
    [34]. Litvinchuk A. P., Lorenz B., Chen F., etc., Optical and electronic properties of thermoelectric Zn4Sb3 across the low-temperature phase transitions[J]. Applied Physics Letters, 2007, 90 (18): 181920.
    [1]. Gu J. J., Zhang D.,Guo Q. X., Giant Seebeck coefficient decrease in polycrystalline materials with highly anisotropic band structures: Implications in seeking high-quality thermoelectric materials[J]. Solid State Communications, 2008, 148: 10-13.
    [2]. Chabot B., Engel N., Parthe E., Trirhodium scandium heptasilicide and triiridium scandium heptasilicide with a new rhombohedral structure type[J]. Acta Crystallographica B 1981, 37: 671-673.
    [3].顾家俊. ReSi1.75基硅化物的微结构与热电性能[D].上海交通大学2004.
    [4].关玉龙,屠宝洪,许诚信,凝固过程[M].北京:冶金工业出版社: 1981.
    [5]. Nishida I. A., In CRC Handbook of Thermoelectrics, Rowe, D. M., CRC Press: 1995; p 157.
    [6]. Pauw V. D. Philips Research Reports[R]. 1958;
    [7].高敏,张景韶, Rowe D. M.,温差电转换及其应用[M].北京:兵器工业出版社: 1996.
    [8]. Cowles L. E., Dauncey L. A., Apparatus for the Rapid Scanning of the Seebeck Coefficient of Semiconductors[J]. Journal of Science Instruments, 1962, 39: 16.
    [9]. Laubitz M. J., Measurement of Thermal Conductivity of Solids at High Temperature by Using Steady State Linear and Qusi-linear Heat Flow, Thermal Conductivity[M]. London: Academic Press: 1969; p 111.
    [10]. Gu Y., Tang X., Xu Y., etc., Ingenious mthod for eliminating effect of heat loss in mearsurements of thermal diffusivity ba ac calorimetric method[J]. Japanese Journal of Applied Physics, 1993, 32: 1365-1367.
    [11]. Murnaghan F. D., Proceedings of the National Academy of Sciences of USA, 1944, 30: 244.
    [12]. Ito M., Tanaka T., Hara S., Thermoelectric properties ofβ?FeSi2 with electrically insulating SiO2 and conductive TiO dispersion by mechanical alloying[J]. Journal of Applied Physics, 2004, 95: 6209

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700