硫化铁系光电材料的绿色合成工艺及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硫化铁系化合物是一类重要的半导体材料,具有优异的光电性能,因而在电池领域备受关注。纯相硫化铁系半导体纳米晶缺乏简单、精确可控、易复制和绿色环保的合成工艺,限制了它的规模化生产和商业应用。本文基于溶剂热和水热法开发了一步合成工艺,实现了高质量硫化铁系纳米材料的快速合成。首先以黄铁矿FeS2为研究对象,基于溶剂热法考察了反应原料、溶剂、温度、时间及添加剂等动力学参数对纳米晶的纯度和形貌的影响,将此工艺扩展到FeSe2、NiSx和NiSex的可控合成。进一步开发了纯相FeS2纳米晶(粒径5nm)的水热合成工艺路线,并进行表面改性,提高了纳米晶在大气环境下的稳定性。实现了FeS2的多形貌可控合成。最后,基于三正辛基氧膦(TOPO)修饰的FeS2纳米晶进行薄膜制备及电池组装。论文主要获得以下主要研究成果:
     (1)黄铁矿FeS2的绿色合成工艺
     开发了油酸-油胺双配体反应体系,以十六烷基三甲基溴化铵为表面活性剂,成功制备了纯相FeS2黄铁矿;通过拉曼光谱测试,进一步证明了所得样品的相结构;基于吸收光谱的测试,计算得到禁带宽度约为1.05eV(与硅禁带宽度接近,Eg=1.1eV)。通过优化溶剂和添加剂,获得了更小尺寸的类球形FeS2纳米晶(30nm),将反应时间缩短15min,同时降低了合成成本。
     (2)花状和片状FeSe2的形貌可控合成
     为了进一步拓宽FeS2的工艺应用范围,进行了花状和片状FeSe2晶体的合成工艺考察,在较宽的温度区间(200℃-300℃)实现了花状FeSe2样品的可控合成。伴随着温度的升高,形貌从花状向枝状结构转变。将铁源换为硝酸铁时,可在较宽的温度范围(180℃-300℃)获得FeSe2晶体,得到了类球状、絮状、片状及米状四种形貌的产物。基于反应过程的考察,推断其合成机理为:自由的三价铁离子与油胺(OLA)先结合形成相对稳定的"Fe-OLA"前驱体,当系统能量大于能量势垒时,硒源直接与铁前驱体反应形成FeSe2核,随后继续生长。OLA在形核过程起主要作用,而反应温度主要决定生长过程。
     (3)多组分镍硫(硒)化合物的可控合成工艺
     基于FeS2的合成工艺研究了镍硫(硒)化合物的工艺路线,采用一步法成功制备了四种镍硫(硒)化合物,并分别考察了反应温度和摩尔比对晶体相结构和形貌的影响。研究发现,镍硫化合物的合成温度范围较窄(在260℃左右),而镍硒化合物的合成范围,可从180℃-280℃变化。增加硫含量,产物依次出现Ni7S6正交相、Ni3S2三方相、NiS六方相和NiS2立方相,同时形貌从类球状向四方状变化。通过考察反应动力学参数,得到镍硫化合物形成机理为:Ni离子和S离子与OLA先结合形成相对稳定的“Ni-S-OLA"前驱体,紧接着随着反应能量的增加进而分解形成镍硫化合物核。当Ni/Se摩尔比为2:1时,延长反应时间,NiSe六方相逐渐向Ni3Se2菱形相转变;保持Ni/Se摩尔比为1:1时,通过改变反应温度(180℃-260℃),Ni1-xSe中的x值从0.15到0变化;当保持Ni/Se摩尔比为1:2时,随着反应温度升高,由NiSe2正交相向立方相转变,同时,样品形貌从星状向四方状改变。
     (4)黄铁矿FeS2水热合成工艺路线
     为了能获得更小尺寸的纳米晶,开发了一步合成FeS2纳米晶的水热合成路线,在140℃-220℃的温度范围内均可获得纯相FeS2,所得样品纯度高、结晶性好、颗粒小合成温度低且污染小。考察了反应时间、摩尔比及浓度对纳米晶的影响;采用TOPO表面处理后提高了FeS2产物的大气稳定性,6个月未出现氧化现象。另外,为了进一步实现FeS2晶体的形貌可控合成,以硝酸铁和半胱氨酸为原料,当溶剂为纯水时,可得到中空球状的白铁矿;且随着反应时间的增加,逐渐发生向黄铁矿相的转变,形貌转变为许多颗粒堆积而成的短棒状结构。当加入乙醇胺为溶剂时,获得立方体、片状、两种十四面体等形貌结构。
     (5)FeS2薄膜制备及太阳能电池组装
     基于TOPO表面修饰的FeS2纳米晶采用旋涂工艺进行薄膜制备。通过将FeS2分散在聚苯乙烯-甲苯胶体中,获得了均匀性较好的薄膜,但较大的厚度和较高的孔隙率阻碍薄膜的吸光率和造成层间的相互渗透,降低电池的光电响应并易引起短路现象;以氯仿为分散剂可提高薄膜的平整性和透明度,适宜的厚度也有利于光信号的传输。组装成Schottky电池和纳米晶/聚合物复合两类太阳能电池,产生了明显的光电响应信号。
Iron sulfide series have been extensively studied for their potential applications in solar cells. However, the lack of controllable and simple synthetic process of pure iron sulfide series limited their large-scale production and wide application. Based on solvothermal and hydrothermal method, one-step and facile synthetic route was developed to prepare high-quality iron sulfide series materials. In atmosphere, the synthetic process of sulfur group semiconductor, such as pyrite FeS2, FeSe2, NiSx, and NiSex were investigated. Meantime, the synthetic route of FeS2nanocrystals (NCs) was developed via hydrothermal method, and it was modified by trioctylphosphine oxide (TOPO), which could improve stability. Pyrite FeS2with various nanostructures had been prepared in an ethanolamine (ETA)/water binary solution. Finally, the film and solar cell were fabricated based on the FeS2NCs modified by TOPO. The achieved results are stated as follows:
     (1) Process optimization of the synthesis of pyrite FeS2via solvothermal method
     The coligand (oleic acid (OA)-oleylamine (OLA)) system was developed to prepare pure pyrite FeS2. The phase structure was proved by Raman measurement. The absorption peaks of FeS2samples were at1185nm corresponding to a band gap of1.05eV, which was close to that of silicon (Eg=1.1eV). Meantime, the FeS2sample with smaller particle size was obtained through the optimization of solvents and additives, besides the reaction time was decreased to15min and the cost was greatly reduced.
     (2) Controllable synthesis of flower-like and flake-like FeSe2via solvothermal method
     In order to extend the process route of FeS2, the synthesis of flower-like and flake-like FeSe2crystals were investigated. The flower-like FeSe2crystals could be got from200℃to300℃with the morphologies changed from flower-like to stick-like structure. When the iron source was replaced by ferric nitrate, four morphologies of the FeSe2samples, including globular, flocculent, flake-like, and rice-like, were obtained in a wide temperature range (180℃-300℃). Based on the reaction dynamics, the mechanism was considered that OLA reacted with free Fe3+to form relatively stable Fe-OLA complex, and then combined with selenium powder to form the FeSe2nuclei. Moreover, the OLA dominated the nucleation process and reaction temperature dominated the growth process.
     (3) Controllable synthesis of nickel sulfide (selenide) series via solvothermal method
     Based on the process route of the FeS2crystal, the nickel sulfide (selenide) compounds were oriented to synthesize through one-step approach, and the influence of phase structures and morphologies by the reaction temperature and molar ratio were investigated. With increasing of the sulfur content, the products with four kinds of morphologies were obtained in sequence, which were trigonal Ni3S2, rthorhombic Ni7S6, hexagonal NiS and cubic NiS2-Based on the kinetic parameters, the mechanism was found as Ni2+and S powder combined with OLA to form to Ni-S-OLA precursor, and then decomposed to nickel sulfide series. When the molar ratio of Ni/Se was2:1, hexagonal NiSe gradually transformed into rhombohedral Ni3Se2with the extension of the reaction time. The x value of Ni1-xSe could be adjusted from0to0.15with the reaction temperatures from180℃to260℃, and the star-like orthorhombic NiSe2converted to square cubic NiSe2with the increase of temperature at a certain Ni/Se ratio of1:2.
     (4) Controllable synthesis of pyrite FeS2via hydrothermal method
     To obtian the smaller size of FeS2NCs, the hydrothermal method was developed to prepare FeS2NCs. The obtianed FeS2NCs were of pure phase, high crystallization, stable surface, and small size. The FeS2NCs modified by TOPO showed excellent air stability over six months. Meantime, pyrite FeS2with various novel nanostructures had been prepared on a large scale in an ETA/water binary solution. When only pure water was used as solvents, hollow sphere of marcasite FeS2sample were achieved, and it would transform into rod-like structure been piled up with nanoparticles. When ETA was added into the solvent, cubic, flake-like, and two kinds of tetrakaidecahedron shape of pyrite pure FeS2crystals were obtained by adjsuting the volume ratio of ETA and H2O.
     (5) Film preparation and solar cell assembly of FeS2NCs
     The film was prepared by spin-coating method with the FeS2NCs modified by TOPO. The FeS2NCs dispersed in the colloid of polystyrene and toluene showed uniform and smooth property of the prepared film, while its large thickness and high porosity hindered the absorbance of light and led to the permeation of the film, decreasing photoeclectric response and causing the short circuit. After dispersing the FeS2NCs into chloroform, the obtained film displayed good smoothness and transparency with suitable transmission of optical signals. Finally, the Schottky and nanocrystalline/polymer composite solar cell were assembled, and produced a clear signal of photoelectric response.
引文
[1]周健伟,覃东欢,罗潺等.无机纳米晶-共轭聚合物异质结光电池研究进展[J].化学通报,2006,5:323-330
    [2]Afzaal M, O'Brien P. Recent developments in Ⅱ-Ⅵ and Ⅲ-Ⅵ semiconductors and their applications in solar cells [J]. Journal of Materials Chemistry,2006,16(22):1597-1602
    [3]Bi H, Jiang X Q,Yang C Z, et al. Synthesis of cobalt disulfide nanoparticles in polymer matrix [J]. Materials Letters,2003,57:2606-2611
    [4]Qian X F, Xie Y, Qian Y T. Solventothermal synthesis and morphological control of nano-crystalline FeS2 [J]. Materials Letters,2001,48:109-111
    [5]Radziemska E. Thermal performance of Si and GaAs based solar cells and modules:a review [J]. Progress in Energy and Combustion Science,2003,29(5):407-424
    [6]Shabeen S E, Ginley D S, Jabboor G E. Organic-based photovoltaics toward low-cost power generation [J]. MRS Bulletin,2005,30(1):10-19
    [7]Gur I, Fromer N A, Chen C P. Hybrid Solar Cells with Prescribed Nanoscale Morphologies Based on Hyperbranched Semiconductor Nanocrystals [J]. Nano Letters,2007, 7:409-414
    [8]Wan Z, Luan W L, Tu S T. A size controlled synthesis of blue emitting core/shell nanocrystals via microreaction [J]. Journal of Physical Chemistry C,2011,115(5):1569-1575
    [9]Wan Z, Luan W L, Tu S T. Continuous synthesis of CdSexTe1-x nanocrystals:chemical composition gradient and single-step capping [J]. Journal of Colloid and Interface Science, 2011,356(1):78-85
    [10]关柏欧,张桂兰,汤国庆.半导体纳米材料的光学性能及研究进展[J].光电子激光,1998,9(3):260-263.
    [11]Efros A L L, Efros A L. Interband absorption of light in a semiconductor sphere [J]. Soviet physics:Semiconductors,1982.16:112-115.
    [12]Brus L E. A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites [J]. Chemical Physics,1983,79: 5566-5571
    [13]Kayanuma Y. Transient nonlinear optical-response of strongly coupled localized electron-phonon systems [J]. Solid State Communications,1986,59(2):405-418
    [14]Pokutnyi S U, Kurdyumov I P E. Exciton states in semiconductor quantum dots in the modified effective mass approximation [J]. Semiconductors,2007,41 (11):1323-1328
    [15]Borrelli N F. Hall D W, Holland H J, et al. Quantum confinement effects of semiconducting microcrystallites in glass [J]. Journal of Applied Physics,1987,61: 5399-5409
    [16]Wang Y, Herron N. Nanometer-sized semiconductor clusters:materials synthesis, quantum size effects, and photo physical properties [J]. The Journal of Chemical Physics, 1991,95:525-532
    [17]Sholin V, Breeze A J, Anderson I E, et al. All-inorganic CdSe/PbSe nanoparticle solar cells [J]. Solar Energy Materials and Solar Cells,2008,92:1706-1711
    [18]Yun D, Feng W, Wu H C, et al. Efficient conjugated polymer-ZnSe and -PbSe nanocrystals hybrid photovoltaic cells through full solar spectrum utilization [J]. Solar Energy Materials and Solar Cells,2009,93:1208-1213
    [19]Chen D, Zhao F, Qi H. Bright and stable puple/blue emitting CdS/ZnS core/shell nanocrystals grown by thermal cycling using a single-source precursor [J]. Chemistry of Materials,2010,22(4):1437-1444
    [20]Yu W W, Peng X G. Formation of high quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents:tunable reactivity of monomers [J]. Angewandte Chemie-International Edition,2002,41(13):2368-2371
    [21]Yang Y, Chen O, Angerhofer A, et al. Radial-position-controlled doping in CdS/ZnS core/shell nanocrystals [J]. Journal of the American Chemical Society,2006,128(38): 12428-12429
    [22]Li L S, Hu J, Yang W. Band gap variation of size-and shape-controlled colloidal CdSe quantum rods [J]. Nano Letters,2001,7(7):349-351
    [23]Yang H W, Luan W L, Wan Z, et al. Continuous synthesis of full-color emitting core/shell quantum dots via microreaction [J]. Crystal Growth & Design,2009,9:4807-4813
    [24]Puthussery J, Seefeld S, Berry N, et al. Colloidal iron pyrite (FeS2) nanocrystal inks for thin-film photovoltaics [J]. Journal of the American Chemical Society,2011,133:716-719
    [25]Bruchez M, Moronne M, Gin P, et al. Semiconductor nanocrystals as fluorescent biological labels [J]. Science,1998,281(5385):2013-2016
    [26]Chan CW, Nie S M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection [J]. Science,1998,281(5385):2016-2019
    [27]Michalet X, Pinaud F F, Bentolila L A, et al. Quantum dots for live cells in vivo imaging, and diagnostics [J]. Science,2005,307:538-544
    [28]Stroh M, Zimmer J P, Duda D G, et al. Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo [J]. Nature Medicine,2005,11(6):678-682
    [29]Arya H, Kaul Z, Wadhwa R, et al. Quantum dots in bio-imaging:revolution by the small biochemical and biophysical research [J]. Communications.2005,329:1173-1177
    [30]Gao X, Cui Y, Levenson R M. et.al. In vivo cancer targeting and imaging with semiconductor quantum dots [J]. Nature Biotechnology,2004.22:969-976
    [31]Coe S, Woo W, Bawendi M G, et al. Electroluminescence from single-monolayers of nanocrystals in molecular organic devices [J]. Nature,2002,420:800-803
    [32]Shockley W, Queisser H J. Detailed balance limit of efficiency of p-n junction solar cells [J]. Journal of Applied Physics,1961,32:510-519
    [33]Henglein A. Small-particle research:physicochemical properties of extremely small colloidal metal and semiconductor particles [J]. Chemical Reviews,1989,89:1861-73.
    [34]Steigerwald M L, Brus L E. Semiconductor crystallites:a class of large molecules [J]. Accounts of Chemical Research,1990,23:183-8.
    [35]Brus L. Electronic wave functions in semiconductor clusters:experiment and theory [J]. Journal of Physical Chemistry,1986,90:2555-60.
    [36]Weller H. Quantized semiconductor particles:a novel state of matter for materials science [J]. Advanced Materials,1993,5:88-95
    [37]Banyai L, Koch S W. Semiconductor quantum dots [M]. World Scientific Publishing Company, River Edge, NJ,1993
    [38]Alivisatos A P. Perspectives on the physical chemistry of semiconductor nanocrystals [J]. Journal of Physical Chemistry,1996,100:13226-13239.
    [39]Nozik A J. Quantum dot solar cells [J]. Physica E,2002,14:115-120
    [40]Kongkanand A, Tvrdy K, Takechi K, et al. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture [J]. Journal of the American Chemistry Society,2008,130: 4007-4015
    [41]Ross R T, Nozik A J. Efficiency of hot-carrier solar energy converters [J]. Journal of Applied Physics,1982,53:3813-8
    [42]Schaller R D, Klimov V I. High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion [J]. Physical Review Letters,2004,92:186601
    [43]Schaller R D, Agranovich V M, Klimov V C. High-efficiency carrier multiplication through direct photogeneration of multi-excitons via virtual single-exciton states [J]. Nature Physics,2005,1:189-195
    [44]Ellingson R J, Beard M C, Johnson J C, et al. Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots [J]. Nano Letters,2005,5:865-871
    [45]Califano M, Zunger A, Franceschetti A. Efficient inverse Auger recombination at threshold in CdSe nanocrystals [J]. Nano Letters,2004,4:525-531
    [46]Kamat P V. Quantum dot solar cells:semiconductor nanocrystals as light harvesters [J]. Journal of Physical Chemistry C,2008,112(48):18737-18753
    [47]Johnston K W, Pattantyus-Abraham A G, Clifford J P, et al. Schottky quantum dot photovoltaics for efficient infrared power conversion [J]. Applied Physics Letters,2008,92: 151115-4
    [48]Klem E J D, Shukla H, Hinds S, et al. Impact of dithiol treatment and air annealing on the conductivity, mobility, and hole density in PbS colloidal quantum dot solids [J]. Applied Physics Letters,2008,92(21):212105-3
    [49]Koleilat G I, Levina L, Shukla H, et al. Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots [J]. ACS Nano,2008,2,833-840
    [50]Luther J M, Law M, Beard M C. Schottky solar cells based on colloidal nanocrystal films [J]. Nano Letters,2008,8(10):3488-3492
    [51]Ma W, Luther J M, Zhang H, et al. Photovoltaic devices employing ternary PbSxSel-x nanocrystals [J]. Nano letters,2009,9(4):2072-2077
    [52]Debnath R, Tang J, Barkhouse D A, et al. Ambient-processed colloidal quantum dot solar cells via individual pre-encapsulation of nanparticles [J]. Journal of the American chemistry society,2010,132(17):5952-5953
    [53]Kramer I J, Zhitomirsky D, Bass J D, et al. Ordered nanopillar structured electrodes for depleted bulk heterojunction colloidal quantum dot solar cells [J]. Advanced Materials,2012, 24(17):2315-2319
    [54]Gunes S, Neugebauer H, Sariciftci N S. Conjugated polymerbased organic solar cells [J]. Chemical Reviews,2007,107:1324-1338
    [55]Nelson J. Polymer:fullerene bulk heteroj unction solar cells [J]. Materials Today,2011, 14(10):462-470
    [56]Shaheen S E, Brabec C J, Sariciftci N S, et al.2.5% efficient organic plastic solar cells [J]. Applied Physics Letters,2001,78:841-843
    [57]Halls J J M, Walsh C A, Greenham N C, et al. Efficient photodiodes from interpenetrating polymer networks [J]. Nature,1995,376:498-500
    [58]Saunders B R, Turner M L. Nanoparticle-polymer photovoltaic cells [J]. Advances in Colloid and Interface Science,2008,138:1-23.
    [59]Greenham N C, Peng X, Alivisatos A P. Charge separation and transport in conjugated-polymer/semiconductor nanocrystal composites studied by photoluminescence quenching and photoconductivity [J]. Physical Review B,1996,54:17628-17637
    [60]Sun B, Greenham N C. Improved efficiency of photovoltaics based on CdSe nanorods and poly(3-hexylthiophene) nanofibers [J]. Physical Chemistry Chemical Physics,2006,8: 3557-3560
    [61]Dayal S, Kopidakis N, Olson D C, et al. Photovoltaic devices with a low band gap polymer and CdSe nanostructures exceeding 3% efficiency [J]. Nano Letters,2010,10(1): 239-242
    [62]Lee Y I, Youn J H. Ryu M S, et al. Highly efficient inverted poly(3-hexylthiophene): Methano-fullerene [6.6]-phenyl C71-butyric acid methyl ester bulk heterojunction solar cell with Cs2CO3 and MoO3 [J]. Organic Electronics,2011,12:353-357
    [63]Liao H H, Chen L M, Xu Z, et al. Highly efficient inverted polymer solar cell by low temperature annealing of Cs(2)CO(3) interlayer [J]. Applied Physics Letters,2008,92(17): 173303
    [64]Lee Y I, Youn J H, Ryu M S, et al. CdSe quantum dot cathode buffer for inverted organic bulk hetero-junction solar cells [J]. Organic Electronics,2012,13:1302-1307
    [65]Vogel R, Hoyer P, Weller H. Quantum-sized PbS, CdS, Ag2S, Sb2S3 and Bi2S3 particles as sensitizers for various nanoporous wide-band gap semiconductors [J]. Journal of physical chemical,1994,98(12):3183-3188
    [66]Chang C H, Lee Y H. Chemical bath deposition of CdS quantum dots onto mesoscopic TiO2 films for application in quantum dot sensitized solar cells [J]. Applied Physics Letters, 2007,91(5):053503-3
    [67]Lee Y H, Lo Y S. Highly efficient quantum dot sensitized solar cell based on co-sensitization of CdS/CdSe [J]. Advanced Functional Materials,2009,19(4):604-609
    [68]Zhang H, Quan X, Chen S, et al. "Mulberry-like" cdse nanoclusters anchored on TiO2 nanotube arrays:a novel architecture with remarkable photoelectrochemical performance [J]. Chemistry of Materials,2009,21(14):3090-3095
    [69]Kurtis S L, Ramachandran D, Basu J, et al. Photosensitizaiton of ZnO nanowires with CdSe quantum dots for photovoltaic devices [J]. Nano Letters,2007,6(7):1793-1798
    [70]Sun W T, Yuan Y, Pan H Y, et al. CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes [J]. Journal of the American Chemistry Society,2008,130(4):1124-1125
    [71]Pan Z X, Zhang H, Cheng K, et al. Highly efficient inverted type-I CdS/CdSe core/shell structure QD-sensitized solar cells [J]. ACS Nano,6(5):3982-3991
    [72]Nazeeruddin M K, Kay A, Rodicio L et al. Journal of the American Chemical Society, 1993,115(14):6382-6390.
    [73]Nazeeruddin M K, Comte P, Gratzel M. Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells [J]. Journal of the American Chemical Society,2001,123(8):1613-1624
    [74]Yasuo C, Ashrafui I, Yuki W, et al. Dye-sensitized solar cells with conversion efficiency of 11.1%[J]. Japanese Journal of Applied Physics,2006,45(60):638-640
    [75]Linden D, et al. Handbook of Batteries (3rd edition). USA:McGnaw-Hill,2002
    [76]Wells J, Brill S. Thermal battery performance demonstration for advanced tactical and strategic application [C], Proceedings of the 34th International Power Sources Symposium, Cherry Hill, N.J., U.S.A., June 25-28,1990, IEEE, New York,1990,156-9
    [77]安德宇.弹上电源系统测试技术研究[J].航空兵器,2006,10(5):30-33
    [78]Kaun T D. LiAl/FeS2 cell with LiCl/LiBr/KBr electrolyte [J]. Journal of the Electrochemical Society,1985,132:3063
    [79]何德军,刘鸿雁.导弹主电源技术的发展[J].兵器材料科学与工程,2009,32(1):93-96
    [80]Ming A. Nanostructured thermal batteries with high power density [J]. Journal of Power Sources,2003,115(2):360-366
    [81]Awano A, Haraguchi K, Yamasaki H. Li/Fe1-xCoxS2 system thermal battery performance [C],1992 IEEE 35th International Power Sources Symposium, Cherry Hill, N.J., U.S.A., June 22-25,1992, IEEE, New York,1992,219-222
    [82]种晋,曹军记,赵晋峰等.热电池正极材料[J].电源技术,2004,7(7):419-422
    [83]Briscoe J D. An improved thermal battery for military applications [J]. Proceedings of the Power Sources Conference,1998,38:235-239
    [84]Dallek S, Murphy T C, Nguyen T. Evaluation of transition-metal-sulfide cathode materials for thermal battery []. Proc.36th Power Sources Conf.,1994,36:329-332
    [85]孙淑洋,刘延东,曹军记等.二硫化钴作高功率热电池正极材料的研究[J].电源技术,2003,27(1):28-30
    [86]Qian X F, Zhang X M, Qian Y T, et al. Solvent-thermal preparation of nanocrystalline pyrite cobalt disulfide [J]. Journal of Alloys and Compounds,1998,278:110-112
    [87]张玲,郑毓峰,孙言飞等.晶种诱导水热合成二硫化钻CoS2粉体[J].四川大学学报,2005,42(2):197-199
    [88]王明旭,岳光辉,耿中荣等.溶剂热法合成CoS2纳米粉体[J].人工晶体学报,2007,36(3):650-652
    [89]Li Y, Xu D S, Zhang Q M, et al. Preparation of cadmium sulfide nanowire arrays in anodic aluminum oxide templates [J]. Chemistry of Materials,1999,11:3433-3435
    [90]Herrn N J. Nanometer-sized semiconductor clusters:materials synthesis, quantum size effects, and photophysical properties [J]. Physical Chemistry,1991,95:525-532.
    [91]Zhan J H, Yang X G, Wang D W, et al. Polymer-controlled growth of CdS nanowire [J]. Advanced Materials,2000,12:1348-1351
    [92]Yuan J Y, Walther S, Muller A H E. Template-directed synthesis of hybrid nanowires and nanorods [J]. Physics Status Solidi B,2010,247:2436-2450
    [93]Zhang X D, Jin J, Wang G, et al. Preparation of CdS nanoparticles on Langmuir monolayers of oligomeric DNA [J]. Materials Chemistry and Physics,2003,77(3):899-902
    [94]Yao Y, Song Y H, Wang L. Synthesis of CdS nanoparticles based on DNA network templates [J]. Nanotechnology,2008,19(40):405601
    [95]Stsiapura V, Sukhanova A. Baranov A. DNA-assisted formation of quasi-nanowires from fluorescent CdSe/ZnS nanocrystals [J]. Nanotechnology,2006,17(2):581-587
    [96]Lu Q Y, Gao F, Zhao D Y. One-step synthesis and assembly of copper sulfide nanoparticles to nanowires, nanotubes, and nanovesicles by a simple organic amine-assisted hydrothermal process [J]. Nano Letters,2002,2(7):725-728.
    [97]Chu H B, Li X M, Chen G D, et al. Shape-controlled synthesis of CdS nanocrystals inmixed solvents [J]. Crystal Growth & Design,2005,5(5):1801-1806
    [98]Xiong S L, Xi B J, Qian Y T. CdS Hierarchical nanostructures with tunable morphologies:preparation and photocatalytic properties [J]. Journal of Physical Chemistry C, 2010,114:14029-14035
    [99]Wadia C, Wu Y, Gul S, et al. Surfactant assisted hydrothermal synthesis of single phase pyrite FeS2 nanocrystals [J]. Chemistry of Materials,2009,21:2568-2570
    [100]Wang D W, Wang Q H, Wang T M. Controlled growth of pyrite FeS2 crystallites by a facile surfactant-assisted solvothermal method [J]. CrystEngComm,2010,12:755-761.
    [101]Murray C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE (E=sulfur, selenium, tellurium) semiconductor nanocrystallites [J]. Journal of the American Chemical Society,1993,115(19):8706-8715
    [102]Wang W Z, Geng Y, Qian Y T, et al. Synthesis and characterization of nanocrystalline Bi2Se3 by solvothermal method [J]. Materials Research Bulletin,1999,34(1):131-134
    [103]Yu S H, Yang J, Han Z H, et al. Controllable synthesis of nanocrystalline CdS with different morphologies and particle sizes by a novel solvothermal process [J]. Journal of Materials Chemistry,1999,(6):1283-1287
    [104]Xu L Q, Zhang W Q, Ding Y W, et al. Shape-controlled synthesis of PbS microcrystals in large yields via a solvothermal process [J]. Journal of Crystal Growth,2004,273:213-219
    [105]Xu D, Liu Z P, Liang J B. Solvothermal synthesis of CdS nanowires in a mixed solvent of ethylenediamine and dodecanethiol [J]. Journal of Physical Chemistry B,2005,109(30): 14344-14349
    [106]Mori S, Sunahara K, Fukai Y, et al. Electron transport and recombination in sye-sensitized TiO2 solar cells fabricated without sintering process [J]. Journal of Physical Chemistry C,2008,112(51):20505-20509
    [107]Nakade S, Saito Y, Kubo W, et al. Influence of TiO2 nanoparticle size on electron diffusion and recombination in dye-sensitized TiO2 solar cells [J]. Journal of Physical Chemistry B,2003,107(33):8607-8611
    [108]Metzger W K, Albin D, Romero M J, et al. CdCl2 treatment, S diffusion, and recombination in polycrystalline CdTe [J]. Journal of Applied Physics,2006,99(10):103703
    [109]Halsall M P, Davies J J, Nicholls J E. Growth and assessment of CdS and CdSe layers produced on GaAs by metalorganic chemical vapour deposition [J]. Journal of Crystal Growth, 1988.91:135-140
    [110]Ju Z G, Lu Y M, Zhang J Y, et al. Structural phase control of CdSe thin films by metalorganic chemical vapor deposition [J]. Journal of Crystal Growth,2007,307(1):26-29
    [111]Ju Z G, Lu Y M, Zhang, J Y, et al. Metal organic chemical vapor deposition growth of Cd1-xFexSe thin films [J]. Applied Surface Science,2008,255(5):3332-3335
    [112]Ren H B, Zhang L, Wan X B. Preparation of CdS coatings on the inner surface of silica aerogels by single-source metal-organic chemical vapor deposition at atmospheric pressure [J]. Thin Solid Films,2010,518(14):3700-3704
    [113]Fainer N I, Rumyantsev Y M, Kosinova M L, et al. PECVD CdS and Cu2S thin films from sulphur containing single-source precursors,Chemical Vapor Deposition Proceedings of the Fourteenth International Conference and EUROCVD-11 Paris, France, Sept.5-9,1997, 1437-1442
    [114]Tummala R, Guduru R K, Mohanty P S. Solution precursor plasma deposition of nanostructured CdS thin films [J]. Materials Research Bulletin,2012,47(3):700-707
    [115]Murali K R, Srinivasan K, Trivedi D C. Vacuum evaporated CdSe thin films and their characteristics [J]. Materials Letters,2005,59:15-18
    [116]Shyju T S, Anandhi S, Indirajith R, et al. Solvothermal synthesis, deposition and characterization of cadmium selenide (CdSe) thin films by thermalevaporation technique [J]. Journal of Crystal Growth,2011,337(1):38-45
    [117]Bacaksiz E, Basol B M, Altunbas M, et al. Effects of substrate temperature and post-deposition anneal on properties of evaporated cadmium telluride films [J]. Thin Solid Films,2007,515:3079-3084
    [118]Tomakin M, Altunbas M, Bacaksiz E, et al. Current transport mechanism in CdS thin films prepared by vacuum evaporation method at substrate temperatures below room temperature [J]. Thin Solid Films,2012,520(7):2532-2536
    [119]Ohtsuka T, Kawamata J J, Zhu Z Q, et al. p-type CdSe grown by molecular beam epitaxy using a nitrogen plasma source [J]. Applied Physics Letters,1994,65:466-468
    [120]Bronold M, Kubala S, Pettenkofer C, et al. Thin pyrite (FeS2) films by molecular beam deposition [J]. Thin Solid Films,1997,304:178-182
    [121]Feng P X, Leckey R C G, Riley J D, et al. Photoemission studies of ZnSe epilayers grown on GaAs(111)B surface [J]. Journal of Applied Physics,2001,89:710-717
    [122]Feng P X, Riley J D, Leckey R C G, et al. MBE growth of MgSe thin films on ZnSe/GaAs(001) substrates [J]. Journal of Physics D-Applied Physics,2001, 34(9):1293-1300
    [123]Rzaev M M, Kazakov I P, Kozlovski V I, et al. Growth, structural and optical studies of CdSe/ZnSe nanostructures grown by MBE on GaAs and Si substrates [J]. Physica Status Solidi (c).2006,3(3):536-539
    [124]Lehmann H W, Widmer R. Radio frequency sputtering of CdSe films [J]. Thin Solid Films,1976,33(3):301-308
    [125]Punnoose A, Marafi A, Prabu G, et al. CdS thin films prepared by RF magnetron sputtering in Ar atmosphere [J]. Physica Status Solidi (a),2000,177(2):453-458
    [126]Gupta A, Compaan A D. All-sputtered 14% CdS/CdTe thin-film solar cell with ZnO:Al transparent conducting oxide [J]. Applied Physics Letters,2004,85:684-3
    [127]Takahashi M, Hasegawa S, Watanabe M T, et al. Preparation of CdS thin films by electrodeposition:effect of colloidal sulfur particle stability on film composition [J]. Journal of Applied Electrochemistry,2002,32:359-367
    [128]Chen R Z, Xu D S, Guo G L, et al. Preparation of Ag2Se and Ag2Se1-xTex nanowires by electrodeposition from DMSO baths [J]. Electrochemistry Communications,2003,5(7): 579-583
    [129]Gopakumar N, Anjana P S, Vidyadharan-Pillai P K. Chemical bath deposition and characterization of CdSe thin films for optoelectronic applications [J]. Journal of Materials Science,2010,45:6653-6656
    [130]Hu Y, Zheng Z, Jia H M, et al. Selective synthesis of FeS and FeS2 nanosheet films on iron substrates as novel photocathodes for tandem dye-sensitized solar cells [J]. Journal of Physical Chemistry C,2008,112:13037-13042.
    [131]Deka S, Miszta K, Dorfs D, et al. Octapod-shaped colloidal nanocrystals of cadmium chalcogenides via "one-pot" cation exchange and seeded growth [J]. Nano Letters,2010, 10(9):3770-3776
    [132]Zhang Y, Miszta K, Kudera S, et al. Spatially resolved photoconductivity of thin films formed by colloidal octapod-shaped CdSe/CdS nanocrystals [J]. Nanoscale,2011,3: 2964-2970
    [133]Puthussery J, Seefeld S, Berry N, et al. Colloidal iron pyrite (FeS2) nanocrystals inks for thin-film photovoltaics [J]. Journal of the American Chemical Society,2011,133:716-719
    [134]Bi Y, Yuan Y B, Exstrom C L, et al. Air stable, photosensitive, phase pure iron pyrite nanocrystal thin films for photovoltaic application [J]. Nano Letters,2011,11:4953-4957
    [135]Walson J H P. Magnetic filtration [J]. Journal of Applied Physics,1973,44:4209.
    [136]Wold A, Dwight K. Solid State Chemistry [M]. New York:Chapman & Hall Inc,1993.
    [137]Qian X F, Zhang X M, Wang C, et al. Solvent thermal preparation of nanocrystalline pyrite cobalt disulfide [J]. Journal of Alloys and Compounds,1998,278(1-2):110-112.
    [138]Bonneau P R, Jarvis R F, Kaner R B. Rapid solid-state synthesis of materials from molybdenum disulphide to refractories [J]. Nature,1991,349:510-512.
    [139]Ferrer I J, Caballero F, Heras C D, et al. Preparation of n-type doped FeS2 thin films [J]. Solid State Communication,1994,89(4):349-352.
    [140]Tikhomirov V K. Photoinduced effects in undoped and rare-earth doped chalcogenide glasses:review.11th International Symposium on Non-oxide Glasses and New Optical Glasses [R]. Journal of Non-Crystalline Solids,1999,256-257:328-336
    [141]Wadia C, Alivisatos A P, Kammen D M. Materials availability expands the opportunity for large-scale photovoltaics deployment. Environmental Science & Technology,2009,43: 2072-2077
    [142]Yue G H, Yan P X, Liu J Z. Fabrication, structure, magnetic properties of highly ordered cobalt disulfide nanowire arrays [J]. Applied Physics Letters,2005,87(26):262505
    [143]Dhas N A, Suslick K S. Sonochemical preparation of hollow nanospheres and hollow nanocrystals [J]. Journal of the American Chemical Society,2005,127(8):2368-2369
    [144]Wang W, Wang S Y, Gao Y L. Nickel sulfide nano-tubes formed by a directional infiltration self-assembly route in AAO templates [J]. Materials Science & Engineering B, 2006,133(1-3):167-171.
    [145]Chin P P, Ding J, Yi J B, et al. Synthesis of FeS2 and FeS nanoparticles by high-energy mechanical milling and mechanochemical processing [J]. Jouranl of Alloys and Compounds, 2005,390:255-260.
    [146]Gudiotti R A, Reinhardt F W. Preparation and characterization of synthetic pyrite for thermal-battery cathodes. Proceedings of the 40 Power Sources Conference Symposia [C]. New Jersey:The Electrochemical Society,2002:339-342.
    [147]Dallek S, Mupphy T C, Nguyen T. Evaluation of transition metal sulfide cathode materials for thermal batteries. Proceedings of the 36 Power Sources Conference Symposia [C]. New Jersey:The Electrochemical Society,1994:329-332.
    [148]Wadia C, Wu Y, Gul S, et al. Surfactant-assisted hydrothermal synthesis of single phase pyrite FeS2 nanocrystals. Chemistry of Materials,2009,21:2568-2570.
    [149]Wang D W, Wang Q H, Wan T M. Controlled growth of pyrite FeS2 crystallites by a facile surfactant-assisted solvothermal method [J]. CrysEngComm,2010,12:755-761
    [150]Lutz H D, Willich P Z. Inoragnic Alloy Chemistry,1974,405:176
    [151]Blanchard M, Alfredsson M, Brodholt J, et al. Electronic structure study of the high-pressure vibrational spectrum of FeS2 pyrite [J]. Journal of Physical Chemistry B,2005, 109:22067-22073
    [152]Sourisseau C, Cavagnat R, Fouassier M. The vibrational properties and valence force fields of FeS2, RuS2 pyrites and FeS2 marcasite [J]. Journal of Physics and Chemistry of Solids,1991,52(3):537-544
    [153]Teo M Y C, Kulinich S A, Plaksin O A, et al. Photoinduced structural conversions of transition metal chalcogenide materials [J]. Journal of Physical Chemistry A,2010,114: 4173-4180
    [154]Blanchard M, Poitrassion F. Meheut M. et al. Iron isotope fractionation between pyrite (FeS2), hematite (Fe2O3) and siderite (FeCO3):a first-principles density functional theory study [J]. Geochimca et Cosmochimca Acta,2009,73:6565-6578
    [155]Buher W, Laougere E, Lutz H. Lattice dynamics of pyrite FeS2 by coherent neutron scattering [J]. Journal of Physics and Chemistry of Solids,1993,54(11):1557-1565
    [156]Wan D Y, Wang Y T, Wang B Y, et al. Effects of the crystal structure on electrical and optical properties of pyrite FeS2 films prepared by thermally sulfurizing iron films [J]. Journal of Crystal Growth,2003,253:230-238
    [157]Pardhan N, Reifsnyder D, Xie R G, et al. Radial-position-controlled doping in CdS/ZnS core/shell nanocrystals [J]. Journal of the American Chemical Society,2006,128(38): 12428-12429.
    [158]Mahalingam T, Thanikaikarasan S, Chandramohan R, et al. Effects of bath temperature in electrodeposited FeSe2 thin films [J]. Materials Chemistry and Physics,2007,106: 369-374
    [159]Baban C, Rusu G I. On the structural and optical characteristics of CdSe thin films [J]. Applied Surface Science,2003,211:6-12
    [160]Kumaresan R, Ichimura M, Arai E. Photochemical deposition of ZnSe polycrystalline thin films and their characterization [J]. Thin Solid Films,2002,414:25-30
    [161]Campos C E M, Lima J C, Grandi T A, et al. Structural studies of iron selenides prepared by mechanical alloying [J]. Solid State Communication,2002,123:179-184
    [162]Feng Q J. Shen Z, Zhang J Y, et al. High oriented FeSe thin film on GaAs(100) substrate prepared by low-pressure metalorganic chemical vapor deposition [J]. Journal of Magnetism and Magnetic Materials,2004,279:435-439
    [163]Mitzi D B. Solution-processed inorganic semiconductors [J]. Journal of Materials Chemistry,2004,14:2355-2365
    [164]Liu A, Chen X Y, Zhang Z J, et al. Selective synthesis and magnetic properties of FeSe2 and FeTe2 nanocrystallites obtained through a hydrothermal co-reduction route [J]. Solid State Communication,2006,138:538-541
    [165]Mai L Q, Gao Y, Guan J G, et al. Formation and Lithiation of Ferroselite Nanoflowers as High-energy Li-ion Battery Electrodes [J]. International Journal of Electrochemical Science,2009,4:755-761
    [166]Yang J, Cheng G H, Zeng J H, et al. Shape control and characterization of transition metal siselenides MSe2 (M=Ni, Co, Fe) prepared by a solvothermal-reduction process [J].Chemistry of Materials,2001,13:848-853
    [167]Lutz H D, Himmirch J, Mueller B. et al. Lattice vibration spectra. LXIX. Lattice dynamics and bonding of pyrite-type chalcogenides and pnictides [J]. Journal of Physics and Chemistry of Solids,1992,53 (6):815-825
    [168]Burda C, Chen X B, Narayanan R, et al. Chemistry and properties of nanocrystals of different shapes [J]. Chemical Reviews,2005,105:1025-1102
    [169]Siegfried M J, Choi K S. Electrochemical crystallization of cuprous oxide with systematic shape evolution [J]. Advanced Materials,2004,16:1743
    [170]Jun Y W, Choi J S, Cheon J. Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes [J]. Angewandte Chemie-International Edition,2006,45:3414-3439
    [171]Tao A R, Habas S, Yang P D. Shape control of colloidal metal nanocrystals [J]. Small, 2008,4(3):310-325
    [172]Yin Y D, Alivisatos A P. Colloidal nanocrystal synthesis and the organic-inorganic interface [J]. Nature,2005,437:664-670
    [173]Lu Q Y, Hu J Q, Tang K B, et al. A simple method for the preparation of nanocrystalline transition metal sulfides [J]. Journal of Solid State Chemistry,1999,146:484-487
    [174]Jeong Y U, Manthiram A. Synthesis of nickel sulfides in aqueous solutions using sodium dithionite [J]. Inorganic Chemistry,2001,40:73-77
    [175]Ghezelbash A, Sigman M B, Korgel B A. Solventless synthesis of nickel sulfide nanorods and triangular nanoprisms [J]. Nano Letters,2004,4:537-542
    [176]Lai C H, Huang K W, Cheng J H, et al. Oriented growth of large-scale nickel sulfide nanowire arrays via a general solution route for lithium-ion battery cathode applications [J]. Journal of Materials Chemistry,2009,19:7277-7283
    [177]Wang J, Chew S Y, Wexler D, et al. Nanostructured nickel sulfide synthesized via a polyol route as a cathode material for the rechargeable lithium battery [J]. Electrochemistry Communications,2007,9:1877-1880
    [178]Manthiram A, Jeong Y U. Ambient temperature synthesis of spinel Ni3S4:An itinerant electron ferrimagnet [J]. Journal of Solid State Chemistry,1999,147:679-681
    [179]Chen J, Saeki F, Wiley B J, et al. Nano Letters,2005,5:473.
    [180]Zhang X M, Wang C, Xie Y, et al. Preparation and characterization of nanocrystalline nickel monosulfide(h) via the ethanol-thermal reducing process [J]. Materials Research Bulletin,1999,34:1967-1972
    [181]Chen N, Zhang W Q, Yu W C, et al. Synthesis of nanocrystalline NiS with different morphologies [J]. Materials Letters,2002 55:230-233
    [182]Wang L L, Zhu Y C, Li H B, et al. Hydrothermal synthesis of NiS nanobelts and NiS2 microspheres constructed of cuboids architectures [J]. Journal of Solid State Chemistry,2010, 183:223-227
    [183]Hu Y. Chen J F. Chen W M,et al. Synthesis of novel nickel sulfide submicrometer hollow spheres [J]. Advanced Materials,2003,15:726-729
    [184]Wang Y, Zhu Q S, Tao L, et al. Controlled-synthesis of NiS hierarchical hollow microspheres with different building blocks and their application in lithium batteries [J]. Journal of Materials Chemistry,2011,21:9248-9254
    [185]Yu S H, Yoshimura M. Fabrication of powders and thin films of various nickel sulfides by soft solution-processing routes [J]. Advanced Functional Materials,2002,12:277-285
    [186]Yang S L, Yao H B, Gao M R, et al. Monodisperse cubic pyrite NiS2 dodecahedrons and microspheres synthesized by a solvothermal process in a mixed solvent:thermal stability and magnetic properties [J]. CrystEngComm,2009,11:1383-1390
    [187]Luo R, Sun X, Yan L F, et al. Synthesis and optical properties of novel nickel disulfide dendritic nanostructures [J]. Chemistry Letters,2004,33:830-831
    [188]Du W M, Qian X F, Niu X S, et al. Symmetrical six-horn nickel diselenide nanostars growth from oriented attachment mechanism [J]. Crystal Growth & Design,2007,7: 2733-2737
    [189]Zhuang Z B, Peng Q, Li Y D. Controlled synthesis of semiconductor nanostructures in the liquid phase [J]. Chemical Society Reviews,2011,40:5492-5513
    [190]Sun S, Murray C B, Weller D, et al. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices [J]. Science,2000,287:1989-1992
    [191]Yang H W, Fan N N, Luan W L, et al. Synthesis of monodisperse nanocrystals via microreaction:open-to-air synthesis with oleylamine as a coligand [J]. Nanoscale Research Letters,2009,4:344-352
    [192]Wan Z, Luan W L, Tu S T. A size controlled synthesis of blue emitting core/shell nanocrystals via microreaction [J] The Journal of Physical Chemistry C,2011,115: 1569-1575
    [193]Yu L S, Lv Y Y, Chen G D, et al. A generally synthetic route to semiconducting metal sulfide nanocrystals by using corresponding metal powder and cysteine as metallic and sulfuric sources, respectively [J]. Inorganica Chimica Acta,2011,376:659-663
    [194]Steinhagen C, Harvey T B, Stolle C J, et al. Pyrite nanocrystal solar cells:promising, or fool's gold? [J]. Journal of Physical Chemistry Letters,2012,3:2352-2356
    [195]Yu L, Lany S, Kykyneshi R, et al. Iron chalcogenide photovoltaic absorbers [J]. Advanced Energy Materials,2011,1:748-753

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700