热电制冷系统热力学优化分析及节能应用和开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以节能紧迫性和环保的迫切性为背景,由于电子、生物、医药等领域对温度精确控制的需求推动,以及新材料和其它相关技术的渗透和促进,为热电制冷应用提供了新的发展机遇和动力,应用领域不断向广度和深度拓展。但热电制冷技术的研究目前主要集中于高性能热电制冷材料、制冷模块结构优化的研究上,而系统优化研究相对而言显得很欠缺,制约着热电制冷技术的应用发展。
    论文通过深入系统的文献研究,考察了近40年来,特别是近10年来热电制冷应用技术的应用与发展现状。
    论文对理想热电制冷循环进行了热力分析,理想热电制冷循环是指不考虑外部传热热阻的外可逆内不可逆循环。论文对热电制冷与机械压缩制冷进行了循环机理比较,二者能流载体(电子和制冷剂)在循环的基本物理过程和相应的能级变化规律上表现出可类比性。
    论文对热电制冷、磁制冷、吸附制冷等环境友好制冷技术作了工作原理、热力学特性、技术适用性以及发展现状等方面的深入比较,热电制冷比磁制冷、吸附制冷技术更成熟,适用更广泛,更具有竞争力。
    论文对实际热电制冷系统进行了热力学优化分析计算,建立了无量纲稳态系统热力学模型。并用该模型分析了优值系数、热媒温度、电流、传热热阻等参数变化对系统性能影响,以及各性能参数之间的相互制约关系。对系统能量转化、热量传递各环节的不可逆性进行了分析。论文分析了实际热电制冷系统与压缩式制冷系统在热力学特性上的定性规律一致性,热电制冷系统中有限速率热交换、焦耳热和傅立叶热分别可与机械压缩制冷系统中的不可逆传热、摩擦损失和热漏损失相类比。理论分析得出的一系列结论对于指导实际热电制冷系统的优化设计,提高性能具有重要的准则意义。
    建立了以水为热媒的热电制冷/热泵实验系统。探索了强化各环节传热,提高系统性能的实践途径,计算分析了冷、热侧传热面积的匹配对系统性能的影响。实验内容包括:(1)改变热媒流量; (2)改变电流大小和方向; (3)改变热媒温差; (4)改变热媒相对流向。
    对一种新型分体式平板型热虹吸装置进行了实验研究:包括热虹吸装置的结构形式的选择、热虹吸工质的选择、最佳充液率的确定、热传递特性等,为热电制冷系统的传热强化提供了新的技术途径。
    分析建筑热水能耗,探讨热水器的未来发展方向,开发了水泵循环热回收和分体热虹吸热回收两种新型热电热泵快热式热水器的样机,并作了节能性分析。开发了一种新型热电热泵烘干装置,并进行了实验研究。
The development of thermoelectric (TE) refrigeration meets many new opportunities, such as pressing environment pollution and energy conservation, accurately controlling temperatures in the following fields: electronics, biology, medicine and so on, and integration of new material and other correlating technology, An increasing number and variety of promising TE products have been reported for specific applications in military, instrument, medicine and other fields. Former investigations are mostly in the development of high quality TE materials and modules, while works on the optimization of TE refrigerating systems were scarce.
    In this dissertation, the progresses of TE refrigerators in the past 40 years were firstly reviewed, and the recent advance in the past 10 years were especially stressed.
    The thermodynamic characteristics were analyzed for an ideal TE refrigerator, which is externally reversible and internally irreversible. The physical mechanisms were compared between TE refrigerators and mechanical refrigerators. Their circulation of energy carriers (electrons or refrigerants) and corresponding energy levels present comparability although their circulating patterns differ considerably.
    Three eco-friendly refrigeration systems: TE refrigeration, magnetic refrigeration and adsorption refrigeration were compared in the aspects of principles, thermodynamics, practicability and developments. It is found that TE refrigeration is the most well-developed, applicable and competitive technology.
    In this dissertation, a dimensionless thermodynamic model of TE refrigerating system was founded for steady running conditions, and its performances were analyzed by numerical calculations for different varying parameters including merit figure, temperatures of heat mediums, electrical currents and heat resistances. The correlations between above parameters were also discussed. The various irreversibility, such as Joule heat, Fourier loss and finite heat transfer, were analyzed for real TE thermodynamic cycles and energy conversion. The consistency of thermodynamic characteristics was analyzed between TE refrigerators and mechanical refrigerators. The irreversible losses of a TE refrigerating system represent the typical losses of general two-source refrigerating system. Its finite heat transfer, Joule heat and Fourier heat are respectively corresponding to the irreversible heat transfer, friction loss and heat leak of compressing refrigerating system. The conclusions are of great significance for optimizing real TE refrigerating systems.
    A TE refrigerating experimental system was founded in TE laboratory of Hunan University; it utilized water as heat mediums. The optimum allocation of heat transfer surface and measures intensifying heat transfer were discussed and quested for high performances. Experiments were performed with varying parameters as following: (1) flow-rates of heat mediums; (2) electrical currents; (3) temperatures of heat mediums; (4) directions of heat mediums. A panel-type separating thermo-siphon was originally developed. It offers a new approach for heat transfer intensification of TE refrigerating systems. Experiments were performed on structure type, working medium, optimum filling-rate and characteristics of heat transferring. The situations of energy consumption were analyzed for hot water in different buildings. Two novel TE heat-pump instantaneous waters and a novel TE heat-pump clothing dryer were originally developed and investigated in the TE laboratory. The originalities of the dissertation are mainly in the following: (1) Two new concepts, the permissive temperature ratio and the favorable working region, were presented as optimizing rules for TE refrigerating systems. It was pointed out that temperature ratio may better include the effect of temperatures on the performances of a TE refrigerating system than temperature difference. The optimum working point should be (εq)max, it is different from the conventional maximum points of refrigerating coefficient and capacity. (2) Another new concept, the performance pinnacle, was presented as a theoretic evidence for development of efficient TE refrigerating or heat-pump systems. (3) A panel-type separating thermo-siphon was originally developed. It offers a new approach for heat transfer intensification of TE systems. (4) Experiments offered datum reference for development of efficient TE refrigerating or heat-pump systems under near room-temperatures. The two novel water heater prototypes, compared to electrical water heaters, can reduce more than 40% or 38% of the power consumption. (5) A TE heat-pump clothing dryer was originally developed. In comparison with conventional electrical clothing dryers, it can reduce about 35% of the power consumption. As for application prospects, new materials and synthesis techniques have reawakened interest in the use of TE technology for CFCs will be prohibited as refrigerants in the whole world before long. It offers a constructive technological approach for developing distributed refrigerating or air-conditioning system in
    buildings. It also offers new ideas for dispersed waste energy recovering and low-grade energy utilization. It was expected that TE cooling would be one of leading approaches of cooling electronic components. Since the merit figure of TE materials is unsatisfactory, the efforts of optimizing TE refrigerating systems should centralized on heat transfer intensification, and optimizing allocation between cold and hot sides. The system should run in the favorable working region, and the optimum working point should be (εq)max. In addition, energy recovering is of great significance to improve performance of a TE refrigerating systems.
引文
[1] Stockholm G.J., Buffet J.P. Large gas-to-gas thermoelectric heat pumps. In: The 3rd international conference on thermoelectric energy conversion, Arlington Texas, 12-14 March 1980: 120-125.
    [2] Buffet J.P., Stockholm G.J. Thermoelectric air conditioning with water heat rejection. In: The 5th international conference on thermoelectric energy conversion, Arlington Texas, 14-16 March 1980: 95-101.
    [3] Buffet J.P., Stockholm G.J. Industrial thermoelectric water-cooling. In: The 18th intersociety energy conversion engineering conference. Oriando Florida, 21-26 August 1983:253-258.
    [4] Stockholm G.J. Large-scale cooling: integrated thermoelectric element technology. In: CRC handbook of thermoelectric. CRC Press, Inc. 1995: 657-666.
    [5] Purcupile J.C., Stillwagon R.E., FranSeen R.E. Development of a two-ton thermoelectric environmental control unit for the U.S. army. ASHRAE Transactions, 1968, 74(2):53-69.
    [6] Mole C.J., Meenan D.F. Direct transfer thermoelectric cooling. ASHRAE Transactions, 1964, 70(1): 130-138.
    [7] Andersen J.R. Wright P.E. Performance estimation of a thermoelectric air-conditioner. ASHRAE Transactions, 1964, 70(1): 149-155.
    [8] Hudelson G.D., Gable G.K., Beck A.A. Development of a thermoelectric air conditioner for submarine application. ASHRAE Transactions, 1964, 70(1):156-162.
    [9] Stockholm G.J., Schlicklin P.M. Naval thermoelectrics. In: The13rd international conference on thermoelectric energy conversion. Nancy, France, July 1989: 235-246.
    [10] 洪启丰. 加压仓热电空调器的设计和应用. 制冷学报,1985(2):25-30.
    [11] Crouthamel M.S., Pans J.F., Shelpuk B. Nine-ton thermoelectric air-conditioning system. ASHRAE Transactions, 1964, 70(1):139-147.
    [12] Mole C.J., Purcuple J.C. Recent development on direct transfer thermoelectric cooling for shipboard use. ASHRAE Transactions, 1968, 74(2):78-90.
    [13] Nield A.B., Scheider W.E., Henneke E.G. Application study of submarine thermoelectric refrigeration systems. ASHRAE Transactions, 1965, 71(1): 183-191.
    [14] Stockholm G.J., Pujol-Soulet L. Sternat P. Prototype thermoelectric air conditioning of a passenger railway coach. In: The 4th international conference on thermoelectric energy conversion. Arlington Texas, 10-12 March 1982: 136-141.
    [15] Bojic M., Savanovic G., Trifunovic N., et al. Thermoelectric cooling of a train carriage by using a coldness-recovery device. Energy, 1997,22(5):493-500.
    [16] Mei V.C., Chen F.C., Mathiprakasam B., et al. Study of solar-assisted thermoelectric technology for automobile air conditioning. J. of Solar Energy Engineering, 1993,115(11):200-205.
    [17] Ruth. D.W. Simulation modeling of automobile comfort cooling requirements. ASHRAE Journal, 1975(5): 53-55.
    [18] Mei V.C., Chen F.C., Mathiprakasam B. Comparison of thermoelectric and vapor cycle technologies for groundwater heat pump application. J. of Solar Energy Engineering, 1989,111(11):353-357.
    [19] 罗清海,汤广发,龚光彩, 等. 建筑热水节能分析. 煤气与热力, 2004,24(6): 353-357.
    [20] 罗 清 海 , 汤 广 发 , 龚 光 彩 , 等 . 建 筑 热 水 节 能 中 的 热 泵 技 术 . 给 水 排 水 , 2004,(5):63-66.
    [21] 汤广发,罗清海,任承钦,等. 热管式热电热水器. 中国专利 ZL 02224369.0,2003-07-04.
    [22] 罗清海,汤广发,龚光彩,等. 热电热泵热水器的研制及节能性分析. 制冷空调与电力机械,2004, 25(1):26-29.
    [23] 罗清海,汤广发,龚光彩, 等. 热电热泵与热虹吸组合的热水器的研究. 湖南大学学报(2006,33,待发表)
    [24] 汤广发,罗清海,张郁林,等. 热电汽车空调装置. 中国专利 ZL02224371.2,2003-07-04.
    [25] 罗清海,汤广发. 热电制冷货车驾驶室空调器的研究. 制冷空调与电力机械; 2005,26(2): 6-10.
    [26] Khedari J., Maneewan S., Pratinthong N., et al. Domestic hot water system combining solar and waste heat from thermoelectric air-conditioner. Int. J. of Ambient Energy, 2001,22(1):19-28.
    [27] Lertsatitthanakorn C., Hirunlabh J., Khedari J., et al. Experimental performance of a ceiling-type free convected thermoelectric air conditioner. Int. J. of Ambient Energy, 2002,23(2):59-68.
    [28] Jones D., Mathiprakasam B., Heenan P., et al. Development of a 1000 W thermoelectric air-conditioner. In: The 13rd international conference on thermoelectric energy conversion, Nancy, France, July 1989: 232-234.
    [29] Heenan P., Mathiprakasam B. Development of a two-man thermoelectric microclimate conditioner for use in army ground vehicles. In: The 11th international conference on thermoelectrics. Arlington, Oct.7-9 1992: 181-184.
    [30] Vincenc T., Heenan P., Mathiprakasam B. Development of a liquid thermoelectric microclimate conditioner intended for use in operation desert storm. In: The 10th international conference on thermoelectrics. Cardiff, U.K., Sept. 10-12 1991: 245-279.
    [31] Elfving T.M. Study of design problems and mode of operation for thermoelectric refrigerators. ASHRAE Transactions, 1963, 69(1): 198-206.
    [32] Stoecker W.F., Chaddock J.B. Transient performance of a thermoelectric refrigerator under step-current control. ASHRAE Transactions, 1963, 69(1):380-387.
    [33] Fostor A.R. Two-stage thermoelectric refrigeration. ASHRAE Transactions, 1964, 70(1): 312-328.
    [34] Feldman C.L. Optimization of cascade Peltier cooler. ASHRAE Transactions; 1965, 71(1): 176-182.
    [35] Foster A.R., Yamamura, A. Thermoelectric generator-refrigerator. ASHRAE Transactions, 1970, 76(1): 157-163.
    [36] Dai Y.J., Wang R.Z., Ni L. Experimental investigation on a thermoelectric refrigerator driven by solar cells. Renewable Energy, 2003,28(9): 949-959.
    [37] Lee J.S., Rhi S.H., Kim C.N, et al. Use of two-phase loop thermosyphons for thermoelectric refrigeration: experiment and analysis. Applied thermal Engineering, 2003,23(9): 1167-1176.
    [38] Omer S.A., Riffat., Ma Xiaoli. Experimental investigation of a thermoelectric refrigeration system employing a phase change material integrated with thermal diode (thermosyphons). Applied thermal Engineering, 2001, 21(12): 1265-1271.
    [39] Sofrata H. Heat rejection alternatives for thermoelectric refrigerators. Energy Conversion & Management, 1996,37(3): 269-280.
    [40] 汤广发,罗清海,王静伟,等. 热电热泵家用烘干机. 中国专利 ZL 02224372.0,2003-07-04.
    [41] 罗清海,汤广发,王静伟,等. 热电热泵干衣机的研制及实验研究. 节能技术, 2004,22(4):30-32.
    [42] 迟泽涛,贾立业,马兴成. 半导体制冷去湿. 制冷学报,1997(3):43-46.
    [43] Vian J.G., Astrain D., Dominguez M. Numerical modeling and a design of a thermoelectric dehumidifier. Applied thermal Engineering, 2002, 22(4): 407-422.
    [44] Highgate D.J., Probert S.D. Higher energy-efficiency, readily transportable incubators. Applied Energy, 1990,35(1): 135-149.
    [45] Nihal Fatma Guler, Rasit Ahiska. Design and testing of a microprocessor-controlled protable thermoelectric medical cooling kit. Applied Thermal Engineering; 2002,22(11): 1271-1276.
    [46] Haynes D.H., Monaghan W.P. Blood Storage and transport in the field using a portable thermoelectric refrigerator: assessment of potential use. Military medicine,1984,149(2): 184-188.
    [47] Juan P. Trelles, John J. Dufly. Numerical simulation of porous latent heat thermal energy storge for thermoelectric cooling. Applied thermal Engineering, 2003,23(15): 1647-1664.
    [48] Hoehn A., Freeman J.B., Jacobson M., et al. Incubator designs for space flight application optimization and automation. In: The 29th International Conference on Environmental Systems; Denver, Colorado, July 12-15,1999.
    [49] 陈 旭,李元山,毕人良. 电子设备冷却中热电制冷的设计与应用. 制冷学报; 2001(3):69-72.
    [50] The International Technology Roadmap for Semiconductors: Overall Roadmap Technology Characteristics-2000 Updated. Semiconductor Industry Association, 2000.7:18-22
    [51] George F. Boesen, Pholip M. Fox. Thermoelectric heat Exchanger for the C-5A aircraft navigation systems intertial measurement unit [J], ASHRAE Transactions; 1968, 74(2):70-77.
    [52] Christian Belady. Cooling and power considerations for semiconductors into the next century. In: ISLPED’01, Huntington Beach, California, USA, August 6-7, 2001:100-105.
    [53] Riffat S.B., Ma Xiaoli. Thermoelectrics: a review of present and potential applications. Applied thermal Engineering, 2003,23(8): 913-935.
    [54] Gao Min, Rowe D.M. Cooling performance of integrated thermoelectric microcooler. Solid-State Electrics; 1999,43(8): 923-929.
    [55] Wijngaards D.D.L., Kong S.H., Bartek M., et al. Design and fabrication of on-chip integrated poly-SiGe and poly-Si Peltier devices. Sensors and Actuators, 2000,85(3): 316-323.
    [56] Nakagiri Y., Gyoten H., Yamamoto Y. Development of film-shaped thermoelectric materials for thermoelectric modules. Applied Energy, 1998,59(2-3): 147-162.
    [57] 龚定农,关鹏来,邓昭锦,等. 半导体制冷冷敷仪的研制及应用. 制冷,1998(3):73-75.
    [58] Keith W. Lindler. Use of multi-stage cascades to improve performance of thermoelectric heat pumps. Energy Conversion & Management; 1998.39(10): 1009-1014.
    [59] Popov A.A., Sherstnev V.V., Yakovlev Yu.P. μm cw single-mode diode lasers with thermoelectric cooling. Tech. Phys. Lett., 1997,23(8): 591-593.
    [60] Callsen-Cencic P., Mense S. Control of the unstable urinary bladder by graded thermoelectric cooling of the spinal cord. BJU International; 1999,84(10): 1084-1092.
    [61] Hara T., Azuma H., Shimizu H, et al. Cooling performance of solar cell driven, thermoelectric cooling prototype headgear. Applied thermal Engineering; 1998,18(12): 1159-1169.
    [62] 昝育德,李瑞云. 半导体制冷恒温浴槽. 半导体学报, 1999,20(8): 733-736.
    [63] 傅明星,蒋大宗. 热电制冷摄像机密封腔真空阀的研制. 流体机械, 2001; 29(2): 40-41.
    [64] Foucaran A., Sorli B., Garcia M., et al. Porous silicon layer coupled with thermoelectric cooler: a humidity sensor. Sensors and Actuators; 2000,79(2): 189-193.
    [65] Redstall R.M., Studd R. Reliability of Peltier coolers in fiber-optic laser packages. In: CRC handbook of thermoelectric. CRC Press, Inc. 1995: 641-645.
    [66] Uemura K.I. Laboratory equipment. In: CRC handbook of thermoelectric, CRC Press, Inc. 1995: 647-655.
    [67] 罗清海,汤广发,王静伟,等. 小型、微型热电热电制冷的应用与前景. 制冷空调与电力机械, 2005,26(1): 16-20.
    [68] Metzger T., Huebener R.P. Modelling and cooling behaviour of Peltier cascades. Cryogenics, 1999,39(2): 235-239.
    [69] Jeong S., Smith J.L. Optimum temperature staging of cryogenic refrigeration system. Cryogenics, 1994,34(9): 929-933.
    [70]Xuan X.C. Optimum staging of multistage exo-reversible refrigeration systems. Cryogenics, 2003,43(2): 117-124.
    [71] Shigenao Maruyama, Enrico Nino, Gianpaolo Ruocco. Analysis of a thermoelectrical device for active heat transfers control. Int. J. Thermal Science, 2001, 40: 911-916.
    [72] Gregory N.L., Claridge T.D.W., Leonard M. Thermoelectric cooling for NMR sample temperature control. J. of Magnetic Resonance; 1997,124(3): 228-231.
    [73] Stockholm J.G. Future prospects in thermoelectric cooling systems. In: The 12th International Conference on Thermoelectrics, Yokohama, Japan. 1994: 389-394.
    [74] Brian C, Sales. Smaller is cooler. Science, 2002, 295: 1248-1249.
    [75] Chen G., Shakouri A. Heat transfer in nanostructures for solid-state energy conversion. J. of Heat Transfer, 2002, 124(4): 242-252.
    [76] Rama Venkatasubramian, Edward Silvola, Thomas Colpitts, et al. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature, 2001, 413: 597-602.
    [77] Harman T.C., Taylor, P.J., Walsh M.P. Quantum dot super-lattice thermoelectric materials and devices. Science, 2002, 297: 2229-2232.
    [78] Chung D.Y., Hogan T., Brazis P., et al. CsBi4Te6: A high-performance thermoelectric material for low-temperature applications. Science, 2000, 287: 1024-1027.
    [79] Francis J. Disalvo Thermoelectric cooling and power generation. Science, 1999, 285: 703-706.
    [80] Uemura K.I. Commercial Peltier modules. In: CRC handbook of thermoelectric. CRC Press, Inc. 1995: 621-631.
    [81] Semenyuk V. thermoelectric micro modules for spot cooling of high density heat sources. In: The 20th international conference on thermoelectrics. Beijing, June 8-11 2001:391-396.
    [82] 宣向春,王微扬. 半导体制冷器“无限级联”温差电对工作参数的理论分析. 制冷学报, 1998(2):34-38.
    [83] Chung M., Miskovsky N.M., Cutler P.H., et al. Theoretical analysis of a field emission enhanced semiconductor thermoelectric cooler. Solid-state Electronics, 2003,47(11): 1745-1751.
    [84] Kambe M., Shikata H. Intensive energy density thermoelectric energy conversion system by using FGM compliant pads. Acta Astronautica, 2002, 51(2): 161-171.
    [85] Ghoshal U., Ghoshal S., McDowell C., et al. Enhanced thermoelectric cooling at cold junction interfaces. Applied Physics Letters, 2002,80(16): 3006-3008.
    [86] Miner A., Majumdar A., Ghoshal U. Thermoelectromechanical refrigeration based on transient thermoelectric effects. Applied Physics Letters, 1999,75(8): 1176-1178.
    [87] John G Stockholm. Medium-scale cooling: Thermoelectric module technology. In: CRC handbook of thermoelectric. CRC Press, Inc. 1995: 667-676.
    [88] Bansal P.K., Martin A. Comparative study of vapor compression, thermoelectric and absorption refrigerators. Int. J. of Energy Research; 2000, 24(1): 93-107.
    [89] Riffat S.B., Guoquan Qiu. Comparative investigation of thermoelectric air-conditioners versus vapor compression and absorption air-conditioners. Applied Thermal Engineering, 2004,24(12-13) : 1979–1993.
    [90] Available from .2004.4.5
    [91] Available from .2004.4.5
    [92] Available from .2004.4.5
    [93] Available from .2004.4.5
    [94] D. Michelle Addington. The History and Future of Ventilation. In: John D. Spengler, Jonathan M. Samet, John F. McCarthy. Indoor Air Quality Handbook, New York: McGraw-Hill Companies, 2000.
    [95] Bryzek, J., K. Peterson, and W. McCulley. Micromachines on the March. IEEE Spectrum. 1994.6:314-317.
    [96] Ashley, S. Turbines on a Dime. Mechanical Engineering, 1997, 19(10): 69-76.
    [97] Warren, William L., Lawrence H. Dubois, et al. Mesoscale Machines and Electronics—“There’s Plenty of Room in the Middle.” In: Proceedings of the ASME Advanced Energy Systems Division, Salvador M. Aceves, Srinivas Garimella (Eds.). New York: The American Society of Mechanical Engineers. 1999: 95-99.
    [98] Joshi, Yogendra. Liquid Cooling of Electronic Devices by Single-Phase Convection. International Journal of Heat and Mass Transfer, 2001,44(8):1637-1638.
    [99] El Alami, M.; Najam, M.; Semma, E. Electronic components cooling by natural convection in horizontal channel with slots. Energy Conversion and Management, 2004,46(17): 2762-2772.
    [100] Tan, F.L.; Tso, C.P. Cooling of mobile electronic devices using phase change materials. Applied Thermal Engineering, 2004,24(2-3):159-169
    [101] Pastukhov, V.G.; Maidanik, Yu.F.; Vershinin, C.V. Miniature loop heat pipes for electronics cooling. Applied Thermal Engineering, 2003,23(9):1125-1135.
    [102]Young-Dawn, Bae; Dong-Yul, Nam. Electronic refrigerant compressor for a cooling system. Applied Thermal Engineering,1998,18(6):353-361
    [103]Chein, Reiyu; Huang, Guanming. Thermoelectric cooler application in electronic cooling; Applied Thermal Engineering, 2004,24(14-15): 2207-2217
    [104] Huebener, R.P.; Tsuei, C.C. Prospects for Peltier cooling of superconducting electronics. Cryogenics, 1998,38(3):325-328.
    [105] 钟广学. 半导体制冷及其应用. 北京:科学出版社,1989,7.96-99.
    [106] Min G.. Improved model for calculating the coefficient of performance of a Peltier module. Energy Conversion and Management, 2000,41: 163-171.
    [107] Huang B.J., Chin C.J., Duang C.L. A design method of thermoelectric cooler. Int. J. of Refrigeration; 2000,23(3): 208-218.
    [108]G?ktun, Selahattin. Design considerations for a thermoelectric refrigerator; Energy Conversion and Management; 1995,36(12): 1197-1200.
    [109]Chen K. Analysis of the heat transfer rate and efficiency of thermoelectric cooling systems. J. of Energy Research; 1996,20(5): 399-417.
    [110] Webb RL. Advanced Heat exchange technology for thermoelectric cooling. J. of Electric Packing; 1998,120(1):98-105.
    [111] 黄昆, 谢希德, 著. 半导体物理学. 北京:科学出版社:1958.8,351-355.
    [112] Lingen Chen, Chi Wu, Fengrui Sun. Heat transfer effect on the specific cooling load of refrigerators. Applied Thermal Engineering; 1996,16(12): 989-997.
    [113] Jincan Chen, Zijun yan, Liqing Wu. Nonequilibrium thermodynamic analysis of a thermoelectric device. Energy; 1997, 22(10): 979-985.
    [114] Altug Sisman Hasbi Yavuz. The effect of joule losses on the total efficiency of a thermoelectric power cycle. Energy, 1995,20(6): 573-576.
    [115] Mei-Jiau Huang, Ruey-Hor Yen, An-Bang Wang. The influence of the Thomson effect on the performance of a thermoelectric cooler. Int. J. of Heat and Mass Transfer, 2005,48 (2) 413–418.
    [116] Xuan, X.C.; Ng, K.C.; Yap, C.; Chua, H.T. A general model for studying effects of interface layers on thermoelectric devices performance; Int. J. of Heat and Mass Transfer, 2002,45(26). 5159-5170
    [117] Seifert W., Ueltzen, Muller E. One-dimensional modeling of thermoelectric cooling. Phys. Stat. Sol. (A), 2002,194(1): 277-290.
    [118] Xuan X.C. Investigation of thermal contact effect on thermoelectric coolers. Energy Conversion and Management, 2003, 44(3): 399-410.
    [119] Sungtaek Ju, Uttam Ghoshai. Study of interface effects in thermoelectric micro-refrigerators. J. of Applied Physics; 2000,88(7): 4135-4139.
    [120]刘恩科,朱秉升. 半导体物理学. 北京:国防工业出版社,1997, 299-311.
    [121] So Wisniewski, B. Staniszewski and R. Szymanik. Thermodynamcs of Nonequilibrium Processes, D. Reidel, Holland, 1976.361-367.
    [122] Jincan Chen, Zijun Yan, Liqing Wu. The influence of Thomson effect on the maximum power output and maximum efficiency of a thermoelectric generator. Journal of Applied Physics, 1996, 79 (11): 8823-8828
    [123] Mei-Jiau Huang, Ruey-Hor Yen, An-Bang Wang. The influence of the Thomson effect on the performance of a thermoelectric cooler. Int. J. of Heat and Mass Transfer 2005,48(2): 413–418.
    [124]许启明. 半导体制冷和泵热循环机理的研究. 低温工程,1996(1): 17-21.
    [125] R. A. Smith. Semiconductors. Cambridge University Press, 1959. Chapter 6. R. A. 史密斯,高鼎三,张月清, 等译. 半导体. 北京:科学出版社,1966,169~181.
    [126] 归宇斌,王如竹,童钧耕. 吸附制冷循环的热力计算及热力学评价方法探.低温工程,1998(4):18-24.
    [127] Wang Ruzhu. Study on a new solid adsorption refrigeration pair: active carbon fiber methanol. ASME Journal of Solar Energy, 1997, 119 (3):214-219.
    [128] Sakoda A, Suzuki M. Simultaneous transport of heat and adsorbate in closed type adsorption cooling system utilizing solar heat. ASME Journal of Solar Energy Engineering, 1986, 108(2):239-245
    [129] Pons M, Guilleminot. Design of an experimental solar-powered, solid adsorption ice maker. ASME Journal of Solar Energy Engineering, 1986, 108(2): 332-337
    [130] Hajji A, Worek W.M. Dynamic analysis of a closed-cycle solar adsorption refrigerator using two adsorbent-adsorbate pairs. ASME Journal of Solar Energy Engineering, 1991, 113(1): 73-79
    [131] Zheng W. Effect of operating conditions on the performance of two-bed closed-cycle solid-sorption heat pump systems. ASME Journal of Solar Energy Engineering, 1995, 117(2): 181-186
    [132] Harkonen M. Analytic model for the thermal wave adsorption heat pump Heat Recovery Systems & CHP, 1993,12(1): 73-80
    [133] 梅宁. 发动机排气余热吸附式制冷机性能及其热力学机理的研究. 青岛海洋大学学报,1996,26(2):212—222
    [134] Zhang L Z, Wang L. Performance estimation of an adsorption cooling system for automobile waste heat recovery. Applied Thermal Engineering,1997,17(12): 1127-1139
    [135] 腾毅,王如竹. 固体吸附式制冷技术的概况及进展. 上海交通大学学报,1998,32(4):109-113
    [136] Poyelle F, Guiileminot J J, Meunier F. Experimental tests and predictive model of an adsorption air condition unit. Industry & Engineering Chemistry Research, 1999, 38(1): 298-309.
    [137] 王如竹,戴巍,周衡翔,等. 国产活性碳-甲醇吸附式制冷性能研究. 太阳能学报,1995,16(2):155-160.
    [138] Talmainot T Z. adsorption refrigeration using monolithic carbon-ammonia pair. International Journal of Refrigeration, 1997, 20(2): 146-155
    [139] Boelman E C, Saha B B. Experimental investigation of a silica gel-water adsorption cycle-the influence of operating conditions on cooling output and COP. ASHRAE Trans, 1995, 101(2): 358-366
    [140] Saha B B, Boelman E C, Kashiwaki T. Computional analysis of an advanced adsorption-refrigeration cycle. Energy-The International Journal, 1995, 20(10): 983-994
    [141] Erhard A, Spindler K, Hahne E. Test and simulation of a solar powered solid sorption cooling machine. International Journal of Refrigeration, 1998, 21(2): 133-141.
    [142] 陈砺,谭盈科. SrCl2-NH3 化学吸附式制冷工质对吸附特性的研究. 太阳能学报,2001,22(1):31-34
    [143] Willers E, Groll M. Evaluation of metal hydride machines for heat pumping and cooling applications. International Journal of Refrigeration,1999, 22(1):47-58
    [144] Meunier F. Performance of adsorption heat pumps: active carbon-methanol and zeolite-water pairs. ASHRAE trans,1990, 96(1): 267-274
    [145] Fuller T A, Wepfer W J, Shelton S V. A two-temperature model of the regenerative solid-vapor heat pump. Journal of Energy Resources Technology, Transactions of the ASME, 1994, 116(2): 297-304
    [146]Tchernev D I. High efficiency regenerative zeolite heat pump. ASHRAE Trans, 1988, 94(1): 2024-2032
    [147]Cacciola G, Cammarata G, Fichera A, et al. Advances on innovative heat exchangers in adsorption heat pumps. IN Proceedings of the Symposium:Solid Sorption Refrigeration, Paris, 1992, 221-226
    [148] 腾毅,王如竹,吴静怡. 螺旋板式吸附器的应用及连续回热型吸附式制冷循 环的实现. 太阳能学报,1997,18(3):243-251
    [149] Douss N. Experimental study of adsorption heat pump cycles. International Chemical Engineering, 1993, 33(2): 207-214
    [150] Vasiliev L L, Antux A A, Kulakov,et al. Heat pipe cooled and heated solid sorption refrigerator. In Proceedings of 19th International Congress of Refrigeration, 1995. IIIa: 200-208
    [151] Kim Jong-Nam, You Youn-Jong. Silica gel/water adsorption-cooling system In Proceedings of the Symposium:Solid Sorption Refrigeration, Paris, 1992: P312-316.
    [152] 方利国,冯毅,谭盈科. 环保型经济工质对法的实验与理论研究. 环境保护科学,1997,23(2):1-4.
    [153] 陈国邦,著. 最新低温制冷技术.北京:机械工业出版社, 2004.8:P57-63.
    [154] 陈远富,陈云贵,滕保华,等.磁制冷发展现状及趋势: Ⅱ磁制冷技术.低 温工程,2001(2):57-63.
    [155] Barclay J A. Wheel2type magnetic refrigerator. 1982 , U. S. Patent , 4408463
    [156] DeGregorial A J, et al. Test results of an active magnetic regenerative refrigerator. Adv Vry Eng , 1992 , 37 (B) : 875-879.
    [157] Zimm C B, et al. Materials for regenerative magnetic cooling spanning 20 K to 80 K. Adv Cry Eng , 1992 , 37 (B) : 883-887
    [158] Wang A A. Johoson J W, Niemi R W, et al . Experimental results of an efficient active magnetic regenerator refrigerator. Proceedings of the 8th International Crycoolers Conference, Plenum, New York , 1995 : 665-669.
    [159] Brown GV. Magnetic heat pumping near room temperature. J. Appl. Phys. , 1976, 47(8) : 3673-3680
    [160] Steyert W. A., Barclay J. A. Stiring2cycle rotating magnetic refrigerators and heat engines for use near room temperature. J Appl. Phys, 1978 , 49(3) : 1216 -1226
    [161] 高 强,俞炳丰,孟祥兆,等. 室温磁制冷研究进展.制冷学报,2003(1):33-38.
    [162] Zimm C B, Jastrab A., Sternberg A., et al. Description and performance of a near2room temperature magnetic refrigerator. Adv Cry Eng , 1998 , 43 (11) : 1759-1766
    [163] Q. Tegus, E.Bruck, K.H. J. Buschow, et al. Transition-metal-based magnetic refrigerants for room-temperature applications. Nature, 2002( 415):150~152.
    [164] 徐得胜 ,编著 . 半导体制冷与应用技术(第二版) .上海交通大学出版社,1998.10.142-146.
    [165] Andresen B, Salamon P,Berry R S. Thermodynamics in Finite Time: Extremals for Imperfact Heat Engines. Journal Chemical Physics,1977,66(4):1571~1577
    [166] 严子浚. 不可逆卡诺制冷机的最优性能. 制冷学报,1990(3):11~14.
    [167] 陈 金 灿 , 严 子 浚 . 不 可 逆 卡 诺 制 冷 机 的 最 小 传 热 面 积 . 低 温 与 超 导 , 1991,19(1):6~11.
    [168] 严子浚.制冷机的一个重要新参数(εR)max.低温与特气,1991(2):19-22.
    [169] Bejan A. Theory of Heat-Transfer-Irreversible Refrigeration Plants. Int. J. Heat Mass Transfer, 1989,32(9): 1631-1639
    [170] 孙丰瑞,陈文振,陈林根. 不可逆正反向循环的熵产率与最优性能; 工程热物理学报,1991,12(4):357-360.
    [171] Geazzini G. Irreversible Refrigerators with Isothermal Heat Exchanges; Int. J. Refrigeration, 1993,16(2): 101-106.
    [172] Gordon J. M., Ng K. C. Thermodynamic modeling of reciprocating chillers. J. Applied. Physics, 1994,75(6): 1769-1774.
    [173] Gordon J. M., Ng K. C. Predictive and diagnostic aspects of a universal the thermodynamic model for chillers. Int. J. Heat Mass Transfer, 1995,38(5): 807-818.
    [174] Chua H. T., Ng K. C, Gordon J. M. Experimental study of the fundamental properties of reciprocating chillers and their relation to thermodynamic modeling and chiller design. Int. J. Heat Mass Transfer, 1996,39(11): 2195-2204.
    [175] Ng K. C., Chua H. T., Ong W., et al. Diagnostics and optimization of reciprocating chillers: theory and experiment. Applied Thermal Engineering., 1997,17(3):263-276.
    [176] Gordon J. M., Ng K. C, Chua H. T. Centrifugal chillers: thermodynamic modeling and a diagnostic case study. Int. J. Refrigeration, 1995,18(4): 253-257.
    [177] Gordon J. M., Ng K. C., Chua H. T. Optimizing chiller operation based on finite-time thermodynamics: universal modeling and experimental confirmation. Int. J. Refrigeration, 1997,20(3): 191-200.
    [178] 陈林根,孙丰瑞. 一类较为完善的不可逆制冷机模型及其最优化; 海军工程学院学报,1995(3):19-28.
    [179] Chen L., Sun F., Wu C., et al. A generalized model of a real refrigerator and its performance. Applied Thermal Engineering, 1997,17(4):401-412.
    [180] 陈林根,孙丰瑞,陈文振,热漏对制冷机制冷率制冷系数特性的影响; 低温与超导,1992,20(4):7-12.
    [181] 严 子 浚 . 卡 诺 制 冷 机 的 最 佳 制 冷 系 数 与 制 冷 率 间 的 关 系 ; 物 理 ,1984,13(12):768-770.
    [182] Qing-hai Luo, Guang-fa Tang, Zhi-qiang Liu, et al. A novel water heater integrating thermoelectric heat pump with separating thermo-siphon. Applied Thermal Engineering, 2005,25(14-15): 2193-2203
    [183] Bejan A. Theory of heat transfer-irreversible refrigeration plants. Int. J. Heat Mass Transfer; 1989,32(9):1631-1639.
    [184] Bejan A. Power and refrigeration plants for minimum heat exchanger inventory. Trans ASME J. Energy Resource Technology; 1993,115(2): 148-150.
    [185] Semenyuk V. Thermoelectric Micro Modules for Spot Cooling of High Density Heat Sources. In: Proceedings of 20th International Conference on Thermoelectrics. Beijing, 2001.6:p391-396.
    [186] Raymond Marlow, Edward Burke. Module Design and Fabrication. In: D.M.Rowe, CRC Handbook of Thermoelectrics. New York, CRC Press, 1995: P597-608.
    [187] 陈小虎. 电工电子技术. 北京:高等教育出版社,2000.8.
    [188] 薛志锋. 商业建筑节能技术与市场分析. 清华同方技术通讯,2000(3):70-71.
    [189] K.T.Papakostas, N.E.Papageorgiou, et al. Residential hot water use patterns in Greece. Solar Energy, 1995,54(6):369-374.
    [190] 涂逢祥,主编. 建筑节能(36). 北京:中国建筑工业出版社, 2002 年 1 月: 32-46.
    [191] H.M.S.Hussein. Transient investigation of a two phase closed thermosyphon flat plate solar water heater. Energy Conversion & Management, 2002.43: 2479-2492.
    [192] D.E.Prapas, S.Psimmeros, B.A.Sotiropoulos. Beneficial interconnection of two thermosiphon DHW solar systems. Applied Energy, 1994,49(1): 47-60.
    [193] Nesreen Ghaddar, Yvonne Nasr. Experimental study of a refrigerant charged solar collector. Int. J. of Energy Research, 1998,22(4):625-638.
    [194] 罗振涛,霍志臣. 太阳热水器产业发展的若干问题. 太阳能,2003,(5): 7-9.
    [195] 戚学贵 , 陈则韶 . 强制循环式太阳热水系统动态特性分析 . 太阳能学报,2002,23(5):575-579.
    [196] W.A.Beckman, J.Thornton, et al. Control problems in solar domestic hot water systems. Solar Energy, 1994,53(3): 233-236.
    [197] Adnan M.Shariah, A.Ecevit. Effect of hot water load temperature on the performance of a thermosyphon solar water heater with auxiliary electric heater. Energy Conversation & Management, 1995,36(5): 289-296.
    [198] E.hahne, Y.chen. Numerical study of flow and heat transfer characteristics in hot water stores. Solar Energy, 1998,64(1-3):9-18.
    [199] 王宏宇. 多层建筑太阳能热水系统的设计. 江苏理工大学学报(自然科学版),2001,22(6):6-9.
    [200] 杨金良,王鸿宽,等 . 某宾馆太阳能热水洗浴系统介绍 . 能源工程, 2001(6):54-56.
    [201] 国家经贸委. 真空管太阳能热水器的应用. 能源工程,2001(2):57-59.
    [202] D.E.Prapas, S.G.Tsiamouris. Storage tanks interconnection and operation modes in large DHW solar systems. Solar Energy, 1993,51(2): 83-91.
    [203] T.Y.Bong, K.C.Ng, H.Bao. Thermal performance of a flat-plate heat-pipe collector array. Solar Energy, 1993,50(6): 491-498.
    [204] J.Nagaraju, S.S.Garud, et al. 1 MWth industrial solar hot water system and its performance. Solar Energy, 1999,66(6); 491-497.
    [205] 何梓年,朱宁,等. 太阳能吸收式空调及供热系统的设计和性能. 太阳能学报,2001,22(1):6-11.
    [206] R.Z.Wang. Adsorption refrigeration research in Shanghai Jiao Tong University. Renewable & Sustainable Energy Reviews, 2001,5:1-37.
    [207] 陈立. 相变蓄热式太阳能热水系统及其应用. 能源技术, 2002,23(5):203-204.
    [208] 蒋能照,主编. 空调用热泵技术及应用. 机械工业出版社,1997.9.241-247.
    [209] P.G.Rousseau, G.P.Greyvenstein. Enhancing the impact of heat pump water heater in the South African commercial sector. Energy, 2000,25(1): 51-70.
    [210] 闫泽生,张丽,等. 热泵热水系统在我国东北地区应用的经济性分析. 哈尔滨工业大学学报(自然科学版),2002,18(6):675-677.
    [211] 叶瑞芳. 地源热泵供应生活热水的经济性. 给水排水,2001,27(2): 71-73.
    [212] Lorentzen G. Revival of carbon dioxide as a refrigerant. Int. J. of Refrigeration, 1994,17(4): 290-310.
    [213] Petter Neksa, Havard Rekstad, et al. CO2-heat pump water heater: characteristics, system design and experimental results. Int. J. of Refrigeration, 1998,21(3): 172-179.
    [214] Hiroml Hasegawa, Michiyuki Saikawa, et al. Development of two-stage compression and cascade heating heat pump system for hot water supply. ASHRAE Transactions, 1996,102(1):248-256.
    [215] K. Chaturvedi, J.Y. Shen. Thermal performance of a direct expansion solar assisted heat pump. Solar Energy, 1984, 33(2): 155-162.
    [216] G.Morgan. Solar assisted heat pump. Solar Energy, 1982,28(2):129-135.
    [217] M.N.A.Hawlader, S.K.Chou, et al. The performance of solar assisted heat pump water heating system. Applied thermal Engineering, 2001,21(8) 1049-1065.
    [218] G.L.Morrison. Simulation of packaged solar heat-pump water heaters. Solar Energy, 1994,53(3); 249-257.
    [219] B.J.Huang, J.P.Chyng. Integral-type solar-assisted heat pump water heater. Renewable Energy,1999,16(5); 731-734.
    [220] Y.Berbash, M.Chandrashekar, et al. Technology for sustainable development: a case study of solar domestic hot water heating in Ontario. Energy,1995,20(6):495-510.
    [221] 于国清. 建筑物太阳能供热与空调的技术经济分析.[博士后出站报告] 长沙:湖南大学,2003.2:28-33.
    [222] 罗清海,汤广发,龚光彩,等.一种新型热电热泵热水器的研究. 湖南大学学报, 2005,32(4):34-38.
    [223] 国家轻工业部.中华人民共和国行业标准——快热式电热水器,(QB1239-91). 北京:标准出版社, 1991.9.
    [224] 罗清海,汤广发,龚光彩,等. 热管技术在近室温工况条件下建筑节能应用. 建筑热能通风空调,2003(6): 27-31.
    [225] P.D.Dunn, D.A.Reay. Heat pipes, third ed., Pergamon Press,1994,262-269.
    [226] 庄骏,张红,著.热管技术及其工程应用.北京:化学工业出版社,2000.6
    [227] Riffat S.B., Afonso C.F., Oliveira A.C., et al. Natural refrigeration and air conditioning system. Applied Thermal Engineering, 1997,17(1): 33-42.
    [228] Wu Xiao Ping, Johnson Peter, Akbarzadeh Aliakbar. Application of heat pipe heat exchangers to humidity control in air-conditioning systems. Applied Thermal Engineering, 1997,17(6): 561-568.
    [229] Konev S.V., Wang J.L., Tu C.J. Characteristics of a heat exchanger based on a collector heat pipe. Heat Recovery Systems &CHP, 1995,15(5): 493-502.
    [230] 玉弓缘. “雨天太阳”干衣机. 大众用电,2001(3):37
    [231] 欧阳春光,胡胜军. 热泵型干衣机的开发应用. 家用电器,1999(6):17-18
    [232] 贾振国. DS1820 及其高精度温度测量的实现.电子技术应用,2000(1): 38-41.
    [233] 窦振中. PIC 系列单片机原理和程序设计. 北京航空航天大学出版社,1999.4
    [234] 国家质量技术监督局.家用或类似用途电器安全——滚筒式干衣机的特殊要求(GB4706.20-2000). 北京:标准出版社,2001.3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700