小型热电制冷器及温差发电初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热电效应的发现已有150年的历史,然而,在其后近100年的过程中由于效率低下,一直没能得到实际性的应用。直到本世纪50年代随着性能较好的半导体材料的发现,温差热电技术得到了突飞猛进的发展,在较多领域得到了广泛应用。温差热电技术根据所利用的热电效应不同,又可分为温差发电和温差热电制冷(热)两大分支。由于温差热电制冷具有许多独特的优越性,如系统简单、无机械传动、无工质运行、调控简单精确等等,随着科学技术的发展,温差热电制冷(热)日益受到重视,应用领域不断拓展;温差发电技术相对来说发展较慢,主要集中在军事、航天等领域,而且其核心技术主要被美、日、欧等发达国家所掌握,国内处于刚起步阶段。本文在分析温差热电技术的现实应用瓶颈的基础上,就温差发电和温差热电制冷两个方面进行了研究。
     首先,通过理论推导给出了温差发电器件的性能参数及其计算公式,并建立热电转换火用效率的分析方法,进一步完善了对温差发电器件的性能评价。在此基础上,结合今后的实际应用情况,设计了温差发电模块的性能测试平台,通过实验对一种新型的微型温差发电模块进行测试,并对实验结果进行了分析,得出了冷热面温度、循环水流量、循环水温以及温差发电模块的性能(电动势特性、输出功率特性、内阻特性、伏安特性、串并联特性)的变化规律。
     其次,通过理论分析得出了温差热电制冷产冷量、制冷效率等的计算公式,并对热电制冷的最佳特性进行了分析。在此基础上,通过自行设计实验对一种热电芯片的制冷性能进行了研究,得出了制冷量随芯片工作电压、热端散热方式的变化规律,并通过改变模拟热源的功率研究了制冷芯片对不同发热功率的热源的适应性,对今后的实际应用具有一定的指导意义。
     最后,在温差热电材料、温差热电器件以及温差热电制冷和温差发电联合应用方面对温差热电技术进行了展望。
The thermoelectric effect, discovered more than 150 years ago, had been less applied in practical fields during more than 100 years because of its inefficiency. Until 1950’s with the discovery of high performance materials, thermoelectric technology was developed rapidly and began to be applied in engineering fields. According to different thermoelectric effects, thermoelectric technology had two branches which were thermoelectric generation and thermoelectric cooling or heating. Because of many unique advantages, such as compact structure, no moving parts, no pollution, precise control, thermoelectric cooling or heating systems had been paid more and more attations with the developments of technology and the application fields had been persistently developed, while the thermoelectric generation technology developed more slowly and was just applied in spaceflight and military affairs. And the key technology of thermoelectric generation was grasped by developed countries, such as American, Japan and some European countries, while it was still at an initial stage in domestic. Based on analyzing the bottlenecks of thermoelectric technology in application, studies was made about two aspects, the thermoelectric generation and thermoelectric cooling or heating.
     Firstly, the performance parameters and their calculation formulas were given based on the theoretical derivation,and the exergy of thermoelectric was put forward for evaluating the performance of thermoelectric device furtherly. And then an experiment platform, based on the application in future was built for testing thermoelectric chip performance. Tests for a novel kind of micro thermoelectric generation module were carried out. The variation regularity for temperature of hot side and cool side of the module, recirculating water flow rate and temperature and performance of the module (electromotive force, output power, intermal resistence and Volt-ampere Characteristic) were deduced by analyzing results of tests.
     Secondly, the calculation formulas of thermoelectric regfregerating capacity and efficiency were given based on the theoretical derivation. At the same time, the optimum characteristics were analyzed. Experiments were carried out for measuring the regfregerating capacity. The variation regularity of cooling capacity, which could guide the application and design, was detrived based on experimental results when changing the voltage of the chip and heat emission intensity on hot side.
     Finally, prospects, which were based on study about thermoelectric material, the device and the coupling application of thermoelectric generation and cooling, were performed.
引文
[1]高敏,张景韶,[英]DMR.温差电转换及其应用.北京:兵器工业出版社,1996,26-49
    [2]耿莉萍.中国地热资源的地理分布和勘探.地质和勘探.1998,1:50-56
    [3]谢杰.浅谈再生能源利用与环境保护.社会科学家,2005,10:42-43
    [4]张宇辉.发展可再生能源是应对能源危机之道.北方经济,2005,11:5-6
    [5]徐德胜.半导体制冷与应用技术.上海:上海交通大学出版社,1992,2-46,75-99
    [6]赵玉文.21世纪我国太阳能利用发展趋势.中国电力.2000,33(9):73-77
    [7]张征,曾美琴,司广树,温差发电技术及其在汽车发动机排气余热利用中的应用.能源技术. 2004,25(3):120-123
    [8]章韶敬.温差电转换及其应用.北京:兵器工业出版社,1996,32-46
    [9] The International Technology Roadmap for Semiconductors: Overall Roadmap Technology Characteristics - 2000 Updated. Semiconductor Industry Association 2000,324-358
    [10] L.P.Bulat, E.V.Buzin, U.S.Whang. Physical Processes in Thermoelectric Coolers. In: Proceedings of 20th International Conference on Thermoelectric. 2001, London, 405-408
    [11] John G. Stockholm. Future Prospects in Thermoelectric Cooling Systems. In: Proceedings of XII International Conference on Thermoelectric. Tokyo, 1994, 389-394
    [12] D.M. Rowe, CRC Handbook of Thermoelectrics, CRC Press, London, 1995,595-687
    [13] N.L. Gregory, T.D.W. Clarideg, M. Leonard. Thermoelectric Cooling for NMR Sample Temperature Control. Journal of Magnetic Resonance, 1997, 124(56): 228-231
    [14] Thomachan A. Kattakayam, K. Srinivasan. Thermal Performance Characterization of A Photovoltaic Driven Domestic Refrigerator. International Journal of Refrigeraton, 2000, 23(5): 190-196
    [15] Y.J. Dai, R.Z. Wang, L. Ni. Experimental Investigation and Analysis on A Thermoelectric Refrigerator Driven by Solar Cells. Solar Enengy Materials & Solar Cells, 2003, 77(10): 377-391
    [16] S.B. Riffat, Xiaoli Ma. Thermoelectric: A Review of Present and PotentialApplicatons. Applied Thermal Energy, 2003, 23(5): 913-935
    [17]龚定农,关鹏来,邓昭锦等.半导体致冷冷敷仪的研制及应用.制冷,1998,64(3):73-75
    [18]马乔矢.半导体制冷技术的应用和发展.沈阳建筑工程学院院报,1999,15(5):82-86.
    [19] Paul H,Egli. Thermoelectricity. London Press, 1956, 12(2):34-41
    [20] HEIKES-URE. Thermoelectricity: Science and Engineering. London Press, 1960,16(3):22-31
    [21] Goldsmid HJ. Electronic Refrigeration. Pion, London, 1988,43-55,77-79
    [22] Borissova L,Plackkova S,Vulchev V. Thermoelectric Properties of Material Based on PbTe and GeTe. European Conference on thermoelectrics, London: Peter Peregrines Ltd,1987:95-106
    [23] Yam WM, Amith A. Bi-Te Alloys for Magneto-Thermoelectric and Thermomagnetic Cooling. Solid-state Electronics. 1972, 18(10):1141-1165
    [24] Bahandar CM, Rowe DM. Silicon-Germanium Alloys as High Temperature Thermoelectric Materials. Contemporary Physics. 1980, 21(3):219-24
    [25] Ettenberg MR, Maddux JR, Taylor PJ. Improving geld and Performance in Pseudo-Ternary Thermoelectric Alloys (Bi2Te3) (Sb2Te3) (Sb2Se3). Journal of Crystal Growth. 1997, 179(1):495-502
    [26]新野正立.一种新型半导体热电材料的制备方法研究.倾斜机能材料研究会会报.1994,9:15-19
    [27] Caillat T, Fleurial JP, Snyder GJ. Development of high efficiency segmented thermoelectric Unicouples. The 20th International Conference on thermoelectric, 2001:282-285
    [28]沈强,涂溶,张联盟.热电材料的研究进展.硅酸盐通报.1998,4:23-27
    [29]周颖慧.新型半导体温差发电器的优化设计.厦门大学学报(自然科学版). 2001,40(4):882-887
    [30]陈金灿,严子浚.半导体温差发电器性能的优化分析.半导体学报.1994, 15(2):123-129
    [31]屈健,李茂德,乐伟等.半导体温差发电器的工作性能优化.低温工程. 2005,(2):20-23
    [32] Callen HB. Thermodynamic and an Introduction to Thermostatistics. New York: John Wiley & Sons, 1985,38-42
    [33] Bajan A. Advanced Engineering Thermodynamics. New York: John Wiley & Sons, 1988,45-64
    [34]吴丽清,陈金灿,严子浚.半导体温差发电器的输出功率.厦门大学学报(自然科学版).1996, 35(2):210-213
    [35]张华俊,陈浩,王俊.冷、热端温度对半导体热电堆发电性能影响的初步研究.太阳能学报.2001, 22(2):148-152
    [36]张华俊,陈浩,王俊.半导体热电堆尺寸之研究.太阳能学报.2002, 23(2):154-159
    [37] Chen LG, Gong JZ, Sun FG. Effect of heat transfer on the performance of thermoelectric generators. International Journal of Therma1 Sciences. 2002,41: 95-98
    [38]栾伟玲,涂善东.温差电技术的研究进展.科学通报.2004,49(11):1011-1019
    [39]张华俊,陈浩,王俊.半导体热电堆串、并联发电性能及热电堆复现性研究.太阳能学报。2001,22(4):394-397
    [40] Weinberg FJ, Powe DM, Min G. Novel high performance small-scale thermoelectrics power generation emplouing regenerativecombustion systems. J Phys D. 2002, 35:61-63
    [41] Schmidt MA. Portable MEMS power sources. International Solid-State Circuits conference, San Francisco, USA, 2003: 385, 394-395
    [42] Kish M, Nemoto H, Hanao T, et al. Micro-thermoelectric modules and their application to wristwatches as an energy sources. Proceedings of 18th International Conference on Thermoelectrics, Baltimore, USA: Int Thermoelectric Sac, 1999: 301-307
    [43] Kyeo HK, khajetoorians AA, Shi L, et al. Profiling the thermoelectric power of semiconductor junctions with nanometer resolution. Science.2004, 303:816-818
    [44] Dick PJ. Testing of the improved SNAP-19 primary power for advanced space mission. Second International Symposium on Power from Radioisotopes, Madrid, 1972: 571-578
    [45] Hixon JD, Laurens P. Design criteria and two years clinical results of Pu-238 fuelled demand pacemaker. Proceeding of 7th IECER, San Diego, California, 1972: 765-770
    [46] Bass JC, Campana RJ, Elsner NB. Thermoelectric Generator for Diesel Trucks. Proceedings of The 10th International Conference on Thermoelectric, Cardiff, U.K.,1991: 127-131
    [47] Gvazzoni G. Millitary Thermoelectric Generator. The 1st European Conference on Thermoelectric, cardiff, U. K.1987: 302-311
    [48] Yama TH. Performance Peltier elements as a cryogenic heat flux sensor at temperature down on 60K. Cryogenics. 2001, 41:335-339
    [49] Gulian A, Wood K, Fritz G, et al. X-ray/UV single photon detectors with isotropic sensors. Nuclear Instruments and Methods in Physics Research Section in Seebeck 2000, 444:232-23
    [50] Matsumiya M, Shin W, Izu M et al. thermoelectric CO gas sensor using Au and Co 304 thin film. J Electrochem Sac. 2004, 151:H7-H10
    [51] Qiu F, Matsumiya M, Shin W, et al. Investigation of thermoelectric hydrogen sensor based in SiGe film. Sensorsand Actuators B. 2003, 94:152-160
    [52] Scheiferdecker J, Quad R, Holzenkampfer E, et al. Infrared thermopile sensors with high sensitivity and very low temperature coefficient. Sensors and Actuators A. 1995, 47:422-427
    [53] B.J.Huang, C.L.Duang. System dynamic model and temperature control of a thermoelectric cooler, International Journal of Refrigeration 2000,23:197-207
    [54]姚志彪.半导体制冷装置的试验研究.流体机械1996.12:48-54
    [55]迟泽涛,戚丽萍,贾立业,靳春颖.半导体制冷器工作电流和应用参数的特性分析.黑龙江大学自然科学学报,1996(2):13-16
    [56]任欣,张鹏.有限散热强度下半导体性能的实验研究.低温工程.2003,(4):57-62
    [57]王宏杰,杜家练,陈金灿.半导体制冷系统性能特性优化.制冷.1999,12:18-21
    [58]程花蕊.家用半导体空调器的优化设计.周口师范高等专科学校学报.2001,11:18-21
    [59] Gao Min, D.M. Rowe. Cooling performance of integrated thermoelectric microcooler, Solid-State Electronics 1999,(43):923-929
    [60] Gao Min, D.M. Rowe. Improved model for calculating the coefficient of performance of a Peltier module, Energy Conversion & Management. 2000(41) 163-171
    [61] G.S. Attey, Enhanced Thermoelectric Refrigeration System COP Through Low Thermal Impedance Liquid Heat Transfer System, 17th International Conference on Thermoelectrics,1998,589-594
    [62] S.B. Riffat, S.A. Omer, Xiaoli Ma. A novel thermoelectric refrigeration system employing heat pipes and a phase change material. An experimental investigation, Renewable Energy 2001,6(23):313–323
    [63] J.G. Vian, D. Astrian, J. Esarte, J.J. Aguas, M. Domiguez. Optimization of the Heat Dissipation in Thermoelectric Devices by Means of an Element with PhaseChange. 20th International Conference on Thermoelectrics, 2001,448-456
    [64]白晓亮.半导体制冷的散热与热管散热器的设计.制冷1998,4:46-49
    [65]张建成.半导体制冷的热管式散热器传热研究.东南大学学报.2000,9(5):36-41
    [66]谈欣柏,章毛连.半导体制冷技术及其应用.安徽农业技术师范学院学报.1996,10(4):34-37
    [67]姚继辰.半导体制冷及其应用.电子工程师. 1998,1:46-48
    [68] Thomachan A, Kattakayam, K.Srinivasan. Photovoltaic Panel -Generator Based autonomous power source for small Refrigeration Units. Solar Energy.1996, 6(56):543-552
    [69] A.A. Aivazov, Y.I. Shtern, B.G. Budaguan, et al. Thermoelectric Cooling Container for Medical Applications. Thermoelectric Materials-New Directions and Approaches, 1997,11(13):229-236
    [70] Nihal Fatma Güler, Rasit Ahiska. Design and testing of a microprocessor-controlled portable thermoelectric medical cooling kit. Applied Thermal Engineering, 2002(22): 1271–1276
    [71] F.K. Gehring, M.E. Hüttner, R.P. Huebener. Peltier cooling of superconducting current leads, Cryogenics 2001 (41): 521-528
    [72] Ken Sato, Haruhiko Okumura, Satarou Yamaguchi. Numerical calculations for Peltier current lead designing, Cryogenics 2001(41): 497-503
    [73] X.C. Xuan, K.C. Ng, C. Yap, H.T. Chua. Optimization and thermodynamic understanding of conduction-cooled Peltier current leads. Cryogenics 2002(42): 141–145
    [74] Ken Sao, Haruhiko, Okumura, Satarou, et al. Numerical calculation for Peltier current lead designing. Crygenics.2001 (41): 497-503
    [75]孟凡凯,陈林根,孙丰瑞.热电发电机驱动热电热泵联合循环热力学分析.热能动力工程.2008,23(1):32-36
    [76]罗清海,汤广发,王静伟,李涛.热电热泵干衣机的研制及实验研究.节能技术.2004,22(4):30-32
    [77]罗清海,汤广发,龚光彩,等.热电热泵热水器的研制及节能性分析.制冷空调与电力机械.2004,25(1):26-29
    [78]罗清海,汤广发,龚光彩等.热电热泵与热虹吸组合的热水器的研究.湖南大学学报.2006,33(5):35-40
    [79]罗清海,汤广发,龚光彩.一种新型热电热泵热水器的研究.湖南大学学报.2005,32(4):32-38
    [80]路宗利,张建中.温差电致冷组件计算机辅助设计.电源技术.2003,1(27):39-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700