热电热泵贮能技术的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于热能贮存的热泵技术不仅能提高能源利用效率,而且能缓解能量供求双方在时间、强度和地点上的不匹配性,是合理利用能源及减轻环境污染的有效途径,在低温余热回收利用、电力的“移峰填谷”等领域具有显著的意义。
     传统的相变储能装置是利用余热热源与储能材料间的温差被动蓄热,因此不能根据余热排放情况调节蓄热速率,且在热能释放的过程中,难以根据能源使用端的要求实现热能的主动释放。本文在热电热泵热力学分析的基础上,利用热电热泵具有系统简单、无机械传动、无工质运行不污染环境等优点,创造性的提出了一种主动式的相变蓄热/放热新方法,设计制作了热电热泵相变蓄热/放热装置,并进行了实验研究表明,在蓄热时可根据余热排放时间长短和强度,通过改变输入电压大小调节蓄热速率实现主动蓄热;放热时,改变输入热电热泵的电流方向,通过调节输入电压,实现热能的主动释放。可利用的余热热源温度越高,蓄热时制热系数越大,在电压8V、余热热源温度在18℃~32℃之间时,蓄热时制热系数在1.14~2.23之间变化。放热时制热系数随取热流体温度的减小而增大,在电压4V、取热流体温度25℃左右,热电热泵在整个放热过程中制热系数在5.6~3.2之间变化。热电热泵相变蓄热/放热技术为余热回收、电力的“移峰填谷”、将间断能源如太阳能、风能等转化为连续能源方面等领域提供了新方法。
     本文还探讨了利用热电热泵回收气体余热制取卫生热水的可行性,并进行了实验研究。实验结果表明,在工作电压20V,余热热源温度大于26℃,热水温度小于46℃时热电热泵制热系数总是大于1。在此基础上,针对公共餐馆有大量热量需要排除而可供利用,同时又需要大量生活卫生热水的特点,结合热电热泵与热能贮存的原理,提出了一种利用热电热泵回收厨房排气余热制取卫生热水的方法并进行了实验研究。实验结果表明,把热水从28℃加热到46℃,在烟气温度33℃左右、工作电压20V时,系统能效系数为1.3以上,相比直接利用电制取热水计算,可节省电耗30%以上,且烟气温度越高,系统能效系数越高,节省电耗越多。利用热电热泵回收气体余热制取热水丰富了卫生热水的制取途径。
The supply of thermal energy can not fulfil such a demand, in terms of the mismatch between energy supply and energy demands in quantity, location and time. In view of the efficiency of the energy utilization and energy-saving, a potential way is to use the heat pump with thermal energy storage, and it is of great practical interest in waste heat recovery, o? peak electricity storage and other fields.
     Traditional energy storage is passive process that cannot adjust the rate of heat charging and discharging. Thermoelectric systems do not require any compressor, expansion valves, absorbers, condensers or solution pumps, and moreover, they do not require working fluids employed in vapor-compression systems that are damaging to the environment. Based on the thermodynamic analysis on a thermoelectric heat pump system,a new active thermal storage system is introduced by means of integrating thermoelectric heat pump with latent heat storage in this paper. The work involved design and constrction of an active thermoelectric heat pump latent heat storage. The performance of the active latent heat storage was investigated under different work conditions. The experiment results show that the rate of the heat charging and discharging can be adjusted by changing the operating voltage of thermoelectric heat pump based on the time and the quantity of the waste heat when charging and the need of energy use when discharing. The higher the temperature of waste heat source is, the larger the coefficient of performance becomes. Under an operating voltage of 8V, the coefficient of performance decreases from 2.23 to 1.14 when the temperature of waste heat source decreases from 32℃to 18℃; The smaller the temperature of air is, the larger the coefficient of performance becomes when discharging process. Under an operating voltage of 4V and the temperature of air temperature is about 25℃, the coefficient of performance decreases from 5.6 to 3.2. Thermoelectric heat pump latent heat storage brings new ideas on waste recovery and off peak electricity storage, utilization of solar and other renewable energies.
     This paper also investigated the feasibility of heat recovery from exhaust by thermoelectric heat pump for water heating. Experiment verified that a thermoelectric heat pump system is more efficient than an electic heating decice, for its heating coefficient was always more than 1 when the temperature exhaust was higher than 26℃and the temperature of water was not higher than 46℃. On the base of the experiment data, a new kind of thermoelectric heat pump water heater for kitchens exhaust heat recovery was development by means of integrating thermoelectric heat pump with heat pipe heat sink. The higer the temperature of exhaust is, the larger the coefficient of performance becomes. Under an exhaust temperature of 33℃and operating voltage of 20V, performance tests illustrated that the new water heater can save more than 30% of the power consumption compared with that of conventional electric water heaters when the temperature of water increases from 28℃to 46℃. It is of great practical interest in building saving.
引文
[1]何金祥. 2007年世界不同发达程度国家能源利用效率的比较.国土资源情报,2008,(10):10-12
    [2]国家统计局能源统计司,国家能源局综合司.《中国能源统计年鉴-2008》.北京:中国统计出版社,2008
    [3]中华人民共和国国务院.国家中长期科学和技术发展规划纲要(2006-2020). http://www.gov.cn, 2006-02-09
    [4]朱亚杰,孙兴文.能源世界之窗.北京:清华大学出版社,2001,166-167
    [5]钟广学.半导体制冷器极其应用.北京:科学出版社,1989,1-32
    [6]徐德胜.半导体制冷与应用技术(第二版).上海:上海交通大学出版社, 1998,1-18
    [7] Ding Z F. A new solution chemical method to make low dimensional thermoelectric materials. J Alloys Comp, 2003, 350(2):13
    [8] Slack G A. New materials and performance limits for themoelectric cooling. Boca Raton:CRC Press,1994, 407
    [9] Shi X, Zhang W. Filling fraction limit for intrinsic voids in crystals: doping in skutterudites. Phys Rev B,2005,95:185503
    [10] Berardan D, Codart C. Chemical properties and thermopowerof the new series of Skutterudite Ce1-pUbpF e4FSb12. J AlloysComp,2003,351:18
    [11] Goldsid H J,Nolas G S. A review of the new thermoelectricmaterials. In: Proc 20th inte conf thermoelectrics. Beijing,2002,342-350
    [12] Nolas G S. Transport properties of tin clathrates. In: Proc 18 th int conf therm- oelectrics. Boston,1999,494
    [13] Nolas G S, Yang J. Transport properties of CoGel.5Sel.5. Phys RevB,2003,68:56
    [14] Yoshiyuki, Kawaharada, Ken Kurosnki. High temperature thermoelectric properties of CoTiSb half-heusler compounds. J Alloys Co mp,2004,384:308
    [15] Yoshiyuki, Kawaharada, Ken Kurosnki. High temperature thermoelectric properties of CoNb1-xHfxSn1-ySby half-heusler compouds. J Alloys Comp,2004, 377:312
    [16] Xia Y, Bhatacharya S. The transport properties of ZrNiSn. Appl Phys, 2003, 88(4): 1997
    [17] Caillat T, Fleurial J P. Development of high efficiency egmented thermoelectricunicoples. In: Proc of Int 20~th Conf on Ther-moelectrics,2003,282
    [18] Dresselhaus M S, Koga T. Low dimensional therm oelectricsin proceedings 16th international confrence on thermoelectrics. In: Proc of ICT 97 Piscataway, USA, 1997,12
    [19] Hicks L D, Dresselhaus M S. Use of quantum-well superlattices to obtain a high figure of merit from nonconventional thermoelectric materials. Appl Phys, 2003,63(23):3230
    [20]夏建白,朱邦芬,黄昆.半导体超晶格物理.上海:上海科学技术出版社,1995
    [21] Broido D A, Reinecke. Use of quantum-well superlattices to obtain high figure of merit from nonconventional thermoelectric materials. Comment Appl Phys Lett,2004,67(8):1170
    [22] Balandin A,Wang K L. Effect of phonon confinement on the thermoelectric figure of merit of quantum wells. J AppPhys,2003,84:6149
    [23] Koga T, Sun X. Carrier pocket engineering to design superior thermoelectric materials using GaAs/A1As superlattices. Appl Phys Lett,2002,73(20):2950
    [24] Ji X H, Zhao X B Thermoelectric Bi2Te3 nanotubes and nanocapsules prepared by hydrothermal synthesis. In: Proc of Int 23th International conference on thermoelectrics. Adelaide, 2004, 494
    [25] Tritt T M. Strategies for the investigation of new bulk materials for therm- oelectric applications. Science,1999,283:804
    [26] Vining C B. A model for the high-temperature transporproperties of heavily doped n-type silicon-germ anuium al-loys.Phys Rev,1996,147:636
    [27] S1ack G A, Hussain M. The next generation of thermoelectric materials. J Appl Phys,1991,70:2694
    [28] Vining C B. Vibration properties of tin clathrate materials. Mater Soc Symp proc,1991,234:95
    [29] Klemens P G. Grystals structure of hafnium pentatelluride. Acta Chem Scand,1973,27(7):2367
    [30] Purcupile J.C., Stillwagon R.E., FranSeen R.E. Development of a two-ton thermoelectric environmental control unit for the U.S. army. ASHRAE Transactions, 1968, 74(2):53-69
    [31] Nield A.B., Scheider W.E., Henneke E.G. Application study of submarine thermoelectric refrigeration systems. ASHRAE Transactions, 1965, 71(1): 183-191
    [32] Mei V.C., Chen F.C., Mathiprakasam B., et al. Study of solar-assistedthermoelectric technology for automobile air conditioning. J. of Solar Energy Engineering, 1993,115(11):200-205
    [33] Ruth. D.W. Simulation modeling of automobile comfort cooling requirements. ASHRAE Journal, 1975(5): 53-55
    [34] Mei V.C., Chen F.C., Mathiprakasam B. Comparison of thermoelectric and vapor cycle technologies for groundwater heat pump application. J. of Solar Energy Engineering, 1989,111(11):353-357
    [35] Qinghai Luo, Gangfa Tang, Zhiqiang Liu, et al. A novel water heater integrating thermoelectric heat pump with separating thermosiphon. Applied Thermal Engineering, 2005, (25), 2193-2203
    [36]汤广发,罗清海,张郁林等.热电汽车空调装置.中国专利.ZL02224371.2,2003-07-04
    [37]罗清海,汤广发.热电制冷货车驾驶室空调器的研究.制冷空调与电力机械, 2005,26(2):6-10
    [38] Hongxia Xi, Lingai Luo, Lingai Luob. Development and applications of solar-based thermoelectric technologies. Renewable and Sustainable Energy Reviews, 2007,(11): 923–936
    [39] Dai Y.J., Wang R.Z., Ni L. Experimental investigation on a thermoelectric refrigerator driven by solar cells. Renewable Energy, 2003,28(9): 949-959
    [40] Sofrata H. Heat rejection alternatives for thermoelectric refrigerators. Energy Conversion & Management, 1996,37(3): 269-280
    [41]迟泽涛,贾立业,马兴成.半导体制冷去湿.制冷学报,1997(3):43-46
    [42] Vian J.G., Astrain D. Dominguez M. Numerical modeling and a design of a thermoelectric dehumidifier. Applied thermal Engineering, 2002,22(4): 407-422
    [43]汤广发,罗清海,王静伟,等.热电热泵家用烘干机.中国专利.ZL 02224372.0,2003-07-04
    [44]罗清海,汤广发,王静伟,等.热电热泵干衣机的研制及实验研究.节能技术, 2004,22(4):30-32
    [45] Tao Li, Guangfa Tang, Guangcai Gong, et al. Investigation of prototype thermoelectric domestic-ventilator. Applied Thermal Engineering, 2009, (29): 2016-2021
    [46] Matthieu Cosnier, Gilles Fraisse, Lingai Luo. An experimental and numerical study of a thermoelectric air-cooling and air-heating system. International journal of refrigeration,2008,(31):1051-1062
    [47] Riffat S.B., Ma Xiaoli. Thermoelectrics: a review of present and potentialapplications. Applied thermal Engineering, 2003,23(8): 913-935
    [48] Gao Min, Rowe D.M. Cooling performance of integrated thermoelectric microcooler. Solid-State Electrics; 1999,43(8): 923-929
    [49] Wijngaards D.D.L., Kong S.H., Bartek M., et al. Design and fabrication of on-chip integrated poly-SiGe and poly-Si Peltier devices. Sensors and Actuators, 2000,85(3): 316-323
    [50]崔海亭,杨锋.蓄热技术及其应用.北京:化学工业出版社,2005
    [51]郭茶秀,魏新利编著.热能存储技术与应用.北京:化学工业出版社,2005
    [52]张寅平,胡汉平,孔祥冬等.相变贮能.合肥:中国科学技术大学出版社,1996
    [53] Kurklu A. Energy storage aplications in greenhouses by means of Phase change materials(PCMs):a review.RenewableEnergy, l998, 13:89-103
    [54] Zalba B, Marin JM, Cabeza LE, etal. Review on thermal energy storage with Phase change:materials, heat transfer analysis and applications.APPI.Thermal Eng.2003,23:253-83
    [55] Khudhair AM, Farid MM. A review on energy conservation in building applications with thermal storage by latent heat using Phase change materials. Energy Convers.Mgmt.2004:45:263-75
    [56] Farid MM, Khudhaire AM, Razack SAK etal. A review on phase change energy storage: materials applications. Energy Convers. Mgmt.2004,45:1597-615
    [57]李玉红,焦庆影,夏定国等.常低温相变储热材料的研究和应用.化学教育,2004,10:9-13
    [58] Hoogendoom C J, Bart G C J. Performance and modeling of latent heat stores. Solar Energy,1992,48(1):53-58
    [59] Khan M A, Rohatgi P K. Numerical solution to a moving boundary problem in a composite medium. Numerical Heat Transfer,1994,25:209-221
    [60] Ettouney H M, Alatiqi I, AI-Sahali M, eta1. Heat transfer enhancement by metal screens and metal spheres in phase change energy storage systems. Renewable Energy,2004,29:841-60
    [61]朱恂,廖强,李隆键等.添加物对石蜡相变螺旋盘管蓄热器蓄热和放热性能的影响.热科学与技术,2005,4(1):14-19
    [62] Sari A, Karalpekli A. Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material. Applied Thermal Engineering,2007,27:1271-1277
    [63] Cabeza L F, Mehling H, Hiebler S, eta1. Heat transfer enhancement in water when used as PCM in thermal energy storage. Applied Thermal Engineering,2002,22:l14l-1151
    [64]肖敏,龚克成.良导热、形状保持相变蓄热材料的制备及性能.太阳能学报,2001,22(4):427-430
    [65] Ismail K A R, Alves C L F, Modesto, M S. Numerical and experimental study on the solidification of PCM around a vertical axially finned isothermal cylinder. Applied Thermal Engineering, 2001,21:53-77
    [66] Liu Z L, Sun X, Ma C F. Experimental investigation on the characteristics of melting processes of sttearic acid in an annulus and its thermal conductivity enhancement by fins. Energy Conversion and Management,2005,46:959-969
    [67]吴双应,苏芬仙,李友荣等.肋片强化传热的热力学判据.重庆大学学报(自然科学版),2000,23(5):135-138
    [68] Fukai J, Kanou M, Kodama Y, eta1. Thermal conductivity enhancement of energy storage media using carbon fibers. Energy Conversion and Management,2000,41:1543-1556
    [69] Fukai J, Hamada Y,Morozumi Y, etal. Improvement of thermal characteristics of latent heat thermal energy storage units using carbon-fiber brusher: experiments and modeling. International Journal of Heat Mass Transfer, 2003, 46: 4513-4525
    [70]王剑峰,陈光明,陈国邦等.组合相变材料储热系统的储热速率研究.太阳能学报,2000,21(3):258-264
    [71] Shaikh S, Lafdi K. Effect of multiple change materials(PCMs) slab configurations on thermal energy storage. Energy Conversion and Management, 2006, 47: 2103-2117
    [72] Shamsundar N and Srinivasan R. Analysis of Energy Storage by Phase Change with an Array of Cylindrical Tubes. Proc. ASME Winter annual meet, San Francisco, CA. USA.1978:35-40
    [73] Banaszek J, Domafiski R, Rebow M and El-Sagier F. Experimental Study of Solid-liquid Phase Change in a Spiral Thermal Energy Storage Unit. Applied Thermal Engineering. 1999, 19:1253-1277
    [74] Horbaniuc Bogdan, Gheorghe Dumitrascu and Aristotel Popescu. Mathematical Models for the Study of Solidification with in a Longitudinally Finned Heat Pipe Latent Heat Thermal Storage System. Energy Conversion and Management. 1999, 40:1765-1774
    [75]吕其岗,吴丰,司秀丽.风力致热系统中的一种新型具有“弹性”的热管贮热装置.新能源. 1992,14 (1):11-13
    [76]王增义.热管式相变蓄热换热装置及其传热特性的研究:[北京工业大学硕士学位论文].北京:北京工业大学环境与能源工程学院,2004,8-20
    [77] Ahmet Sari, Kamil Kaygusuz. Thermal Performance of Palmitic Acid as a Phase Change Energy storage Material. Energy Conversion and Management, 2002,3:863-876
    [78]罗清海,汤广发,龚光彩等.建筑热水节能中的热泵技术.给水排水, 2004,(5):63-66
    [79]王文胜,罗清海,汤广发.热水器未来发展的一个主题与两个方向.建筑热能通风空调,2004, 6(23):35-38
    [80]陈观生,史保新,吴桂炎.厨房余热回收热泵的试验研究.广东工业大学学报,2006, 3(23):52-54

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700