热电技术在除湿和蓄热方面的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文正是在当今能源匮乏,环境污染严重的背景下,提出利用热电技术对建筑余能进行回收利用,并且结合了除湿技术和相变蓄热技术探索研究了热电技术的应用途径。
     首先设计了一种室内机械排风余能回收装置。考虑到大多数建筑在采用机械通风的同时也会产生无组织进风现象,没经过任何处理的无组织进风会在冬夏两季,给室内带来额外的冷热负荷。笔者尝试在机械通风装置上加装热电热泵系统对新风进行处理。对样机的实验表明,冬夏两季该装置都同时具有增加室内新风和降低空调能耗的双重功效。输入电压和风量对冬季的制热效率、夏季制冷效率和除湿效率都有影响,冬季的制热效率、夏季制冷效率和除湿效率对应输入电压的函数图形都是二次曲线,值得注意的是夏季制冷效率和除湿效率对应的二次曲线并不耦合。制冷系数和除湿效率的优化就是输入电压取值和风量选择的合理化问题。该装置的特色是在改善室内的空气品质的同时回收利用了室内排风余能,降低了空调的负荷,一举两得。
     其次本文还讨论了利用热电热泵对相变材料进行储热和放热的可行性,并对样机的性能进行了测试。实验结果表明,该装置实现了主动蓄热和主动放热,其蓄/放热能力得到了验证。在不同工作电压和不同热源温度时,该装置的蓄/放热时间以及蓄/放热效率有很大差异。在工作电压较高,余热热源温度较高的情况下,该装置蓄热所需时间较短;加大工作电压会导致半导体芯片冷热端温差变大从而降低该装置的制热系数。该装置对比被动式相变蓄热装置最大的优越性在于工作电压的可调性,因此在合理的范围内调整工作电压的大小,可以保证其较高的蓄/放热性能,同时克服了被动式相变蓄热装置在低温余热回收过程中无法改善热能供需双方在时间、地点和强度上不匹配性的缺点。
It is under the circumstance of energy shortages and serious environmental pollution that this paper proposed to recycle and use exhaust energy by utilizing thermoelectric technology, and explored the application way of thermoelectric technology combined with the technology of dehumidification and phase-change heat storage.
     First of all an interior mechanical exhaust air waste energy recovery device was designed. Considered that most of buildings generate unorganized air supply when mechanical ventilation are used, and that the unorganized air supply without any treatment would bring in additional cooling and heating load in summer and winter, the device was tried to dispose the fresh air with the thermoelectric heat pump system installed on it. The experiment on model machine shows that, the device has the dual function of increasing the indoor fresh air and reducing air conditioner energy consumption at the same time in summer and winter. The input voltage and air flow have effects on the heating efficiency of winter, the cooling efficiency of summer and the dehumidification efficiency, and the function graphs of the corresponding input voltage are quadratic curves. It should be noted that the corresponding quadratic curves of summer’s cooling efficiency and dehumidification efficiency have not coincidence. COP and optimization of dehumidification efficiency are the problem of rationalization of selecting input voltage and air flow. The unique feature of the device is that it can improve the indoor air quality while recycling and using the indoor exhaust energy, and reduce the air conditioner load.
     In addition, this paper discussed the heat-storing and exothermal feasibility of hase- change materials by utilizing thermoelectric heat pump, and tested the performance of model machine. The experiment results show that, the device achieved active thermal storage and release. When the working voltage and the temperature of heat source are different, the time and efficiency of accumulating and releasing heat have many differences. With high working voltage and heat source temperature, the needed time of the device to accumulate heat is much shorter. The increased working voltage can enlarge the temperature difference between the hot and cold side of semiconductor chip, and then reduce the heat coefficient. Compared with the passive phase change heat storage device, the biggest advantage is the adjustability of working voltage. Therefore, the adjustment of working voltage in a reasonable range can guarantee much higher heat-storing and releasing performance. At the same time, the device over come the disadvantages of passive phase change heat storage device which can not improve the contradictions of time, places and intensity between supply and demand.
引文
[1]国家统计局能源统计司,国家能源局综合司.《中国能源统计年鉴-2008》.北京:中国统计出版社, 2008,18-22
    [2]何金祥.2007年世界不同发达程度国家能源利用效率的比较.国土资源情报,2008,(10):10-12
    [3]朱亚杰,孙兴文.能源世界之窗.北京:清华大学出版社,2001:166-167
    [4]钟广学.半导体制冷器极其应用.北京:科学出版社,1989:1-32
    [5]徐德胜.半导体制冷与应用技术.第二版.上海:上海交通大学出版社,1998:1-18
    [6]张征,曾美琴,司广树.温差发电技术及其在汽车发动机排气余热利用中的应用.能源技术,2004,25(3):120-123
    [7]章韶敬.温差电转换及其应用.北京:兵器工业出版社,1996:32-46
    [8] Ding ZF.A new solution chemical method to make low dimensional thermoelectric materials. J Alloys Comp, 2003, 350(2):13
    [9] Nield AB, Scheider WE, Henneke EG. Application study of submarine thermoelectric refrigeration systems. ASHRAE Transactions, 1965, 71(1): 183-191
    [10] A A Aivazov, YI Shtern, BG Budaguan, et al. Thermoelectric Cooling Container for Medical Applications. Thermoelectric Materials-New Directions and Approaches, 1997
    [11] Nihal Fatma Güler, Rasit Ahiska.Design and testing of a microprocessor controlled portable thermoelectric medical cooling kit. Applied Thermal Engineering, 2002,(22): 1271–1276
    [12] Qinghai Luo, Gangfa Tang, Zhiqiang Liu, et al. A novel water heater integrating thermoelectric heat pump with separating thermosiphon. Applied Thermal Engineering, 2005, (25), 2193-2203
    [13]汤广发,罗清海,张郁林等.热电汽车空调装置.中国发明专利ZL02224371.2, 2003-07-04
    [14]罗清海,汤广发.热电制冷货车驾驶室空调器的研究.制冷空调与电力机械, 2005,26(2):6-10
    [15]罗清海,汤广发,王静伟等.热电热泵干衣机的研制及实验研究.节能技术, 2004,22(4):30-32
    [16] Tao Li, Guangfa Tang, Guangcai Gong, et al. Investigation of prototypethermoelectric domestic-ventilator. Applied Thermal Engineering, 2009,(29): 2016-2021
    [17]谈欣柏,章毛连.半导体制冷技术及其应用.安徽农业技术师范学院学报. 1996.10(4):34-37
    [18] Mei VC, Chen FC, Mathiprakasam B. Comparison of thermoelectric and vapor cycle technologies for groundwater heat pump application. Solar Energy Engineering, 1989,111(11):353-357
    [19]张立志.除湿技术.北京:化工工业出版社,2005:1-29
    [20]张立志,江亿.膜法空气除湿的研究与进展.暖通空调.1999.29(6):28-32
    [21]赵伟杰,张立志.新型除湿技术的研究进展.化工进展.2008.27(11):1710-1711
    [22]朱东升.除湿器研究进展.暖通空调.2007.37(4):35-40
    [23] Iwahara H, Matsumoto H, Takeuchi K. Electrochemical dehumidification using proton conducting ceramic. Solid State Ionics, 2000, 136-137(2):133-138
    [24]田茹,赵勇.恒温恒湿箱的创新设计.机电产品开发与创新.2010.23(2):148-150
    [25]刘胜,唐勇.矿用半导体器件制冷除湿装置的研制.矿业安全与环保,2005, 26(2):6-10
    [26]谢玲,汤广发.半导体制冷技术的发展应用.洁净与空调技术.2007.29(6):28-32
    [27]崔海亭,杨锋.蓄热技术及其应用.北京:化学工业出版社,2005
    [28]郭茶秀,魏新利编著.热能存储技术与应用.北京:化学工业出版社,2005
    [29] Khudhair AM, Farid MM. A review on energy conservation in building applications with thermal storage by latent heat using Phase change materials. Energy Convers Mgmt.2004:45:263-75
    [30] Kurklu A. Energy storage aplications in greenhouses by means of Phase change materials(PCMs):a review.Renewable Energy, l998,13:89-103
    [31] Zalba B, Marin JM, Cabeza LE, etal. Review on thermal energy storage with Phase change:materials, heat transfer analysis and applications.APPI.Thermal Eng, 2003,23:253-83
    [32] Farid MM, Khudhaire AM, Razack SAK etal. A review on phase change energy storage: materials applications. Energy Convers. Mgmt.2004,45:1597-615
    [33]张寅平,胡汉平,孔祥冬等.相变贮能.合肥:中国科学技术大学出版社,1996
    [34] Hoogendoom C J, Bart G C J. Performance and modeling of latent heat stores. Solar Energy,1992,48(1):53-58
    [35] Khan M A, Rohatgi P K. Numerical solution to a moving boundary problem in a composite medium. Numerical Heat Transfer,1994,25:209-221
    [36]朱恂,廖强,李隆键等.添加物对石蜡相变螺旋盘管蓄热器蓄热和放热性能的影响.热科学与技术,2005,4(1):14-19
    [37] Sari A, Karalpekli A. Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material. Applied Thermal Engineering,2007,27:1271-1277
    [38] Ismail K A R, Alves C L F, Modesto, M S. Numerical and experimental study on the solidification of PCM around a vertical axially finned isothermal cylinder. Applied Thermal Engineering, 2001,21:53-77
    [39]吴双应,苏芬仙,李友荣等.肋片强化传热的热力学判据.重庆大学学报(自然科学版),2000,23(5):135-138
    [40]吕其岗,吴丰,司秀丽.风力致热系统中的一种新型具有“弹性”的热管贮热装置.新能源,1992,14(1):11-13
    [41]王增义.热管式相变蓄热换热装置及其传热特性的研究:[北京工业大学硕士学位论文].北京:北京工业大学环境与能源工程学院,2004,8-20
    [42] Tanasawa1.Dropwise Condensation.In:The way to Practical Application. Proceedings of 6th International Heat Transfer Conference. London:1978,393
    [43] Ro Rohsenow W M,Hartnett J P,Ganic E M. Handbook of Heat Transfer New Yark:Mc Graw-Hill Company,1985,37-55
    [44]迟泽涛,贾立业,马兴成.半导体制冷去湿.制冷学报,1997(3):43-46
    [45] Slack G A. New materials and performance limits for themoelectric cooling. Boca Raton:CRC Press,1994,407
    [46] Shi X, Zhang W. Filling fraction limit for intrinsic voids in crystals: doping in skutterudites. Phys Rev B,2005,95:185503
    [47] Berardan D, Codart C. Chemical properties and thermopowerof the new series of Skutterudite Ce1-pUbpF e4FSb12. J AlloysComp,2003,351:18
    [48] Goldsid HJ,Nolas GS. A review of the new thermoelectricmaterials. In: Proc 20th inte conf thermoelectrics. Beijing: 2002,342-350
    [49] Nolas GS. Transport properties of tin clathrates. In: Proc 18 th int conf therm- oelectrics. Boston,1999,494
    [50]王剑峰,陈光明,陈国邦等.组合相变材料储热系统的储热速率研究.太阳能学报,2000,21(3):258-264
    [51] Nolas GS, Yang J. Transport properties of CoGel.5Sel.5. Phys RevB,2003,68:56
    [52] Yoshiyuki, Kawaharada, Ken Kurosnki. High temperature thermoelectric properties of CoTiSb half-heusler compounds. J Alloys Co mp,2004,384:308
    [53] Yoshiyuki, Kawaharada, Ken Kurosnki. High temperature thermoelectric properties of CoNb1-xHfxSn1-ySby half-heusler compouds. J Alloys Comp,2004,377:312
    [54] Fukai J, Kanou M, Kodama Y, eta1. Thermal conductivity enhancement of energy storage media using carbon fibers. Energy Conversion and Management,2000,41:1543-1556
    [55] Fukai J, Hamada Y,Morozumi Y, etal. Improvement of thermal characteristics of latent heat thermal energy storage units using carbon-fiber brusher: experiments and modeling. International Journal of Heat Mass Transfer, 2003, 46: 4513-4525
    [56]罗清海,汤广发,龚光彩等.建筑热水节能中的热泵技术.给水排水,2004, (5):63-66
    [57]陈观生,史保新,吴桂炎.厨房余热回收热泵的试验研究.广东工业大学学报,2006,3(23):52-54
    [58]张泠,徐敏,刘忠兵等.对一种新型热电热泵相变贮能装置的实验研究,全国暖通空调制冷2010年学术年会
    [59] HAN Tian-he, Tang Guang-fa, GONG Guang-cai et al. Experimental Study of Performance of themoelectric Refrigerator under Diffrent Intensity of Heat Emission. Journal of hunan university,2009,5(36):127-130
    [60] Zhongbing Liu, Ling Zhang, et al. An Experimental Study on Factors Affecting the Performance of the Thermoelectric Heat Pump System. Proc of Conf on EERB-BEPH.Guilin,2009,1828-1835
    [61] Ling Zhang, Zhongbing Liu, et al. An Experimental Study on Thermoelectric Heat Pump Water Heater. Proc of Conf on EERB-BEPH.Guilin,2009,2163-2170
    [62] LIU Zhong-bing, ZHANG Ling, Xu Min et al. Experimental Study of Thermoelectric Heat Pump Water Heater with Exhaust Heat Recovery from Kitchens.湖南大学学报,2009,5(36):131-135
    [63]王文胜,罗清海,汤广发.热水器未来发展的一个主题与两个方向.建筑热能通风空调,2004,6(23):35-38
    [64]刘忠兵,张泠,徐敏等.厨房余热回收热电热泵储水式热水器的研究.太阳能学报,2011,21(3):258-264
    [65]刘忠兵.热电热泵贮能技术的研究与应用:[湖南大学硕士学位论文].长沙:湖南大学土木工程学院,2009
    [66] Min Xu, Ling Zhang, Zhongbin Liu, Junli Zhou. Experimental study on a New-type Thermoelectric Heat Pump Phase Change Thermal Energy Storage Device.In:2011Internetional Conference on Computer Distributed control and Intelligent Environmental Monitoring, Changsha:2011,1220-1223
    [67] Min Xu, Ling Zhang, Zhongbin Liu, Junli Zhou. Experimental Study on the Heat Storage / Release Characteristics of a Thermoelectric Heat Pump Phase-change Thermal Storage Device.In:2011Internetional Conference on Computer Distributed control and Intelligent Environmental Monitoring, Changsha:2011,800-803
    [68]张泠,徐敏,刘忠兵等.主动式相变贮热装置的蓄/放热特性实验研究.科技导报,2011,29(11):17-20
    [69]张泠,徐敏,刘忠兵等.热电热泵相变蓄热装置原理及性能试验.煤气与热力,2010,30 (12):A07-A10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700