低温地热发电循环理论优化与有机工质朗肯循环性能实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国地热资源丰富,但以100oC以下的低温热水型资源为主;传统的地热发电技术下,对这些资源作发电利用的经济性不足,大量资源因而未能得以开发利用。近年来,有机朗肯循环(Organic Rankine Cycle, ORC)技术、有机工质跨临界循环(Organic Trans-critical Cycle, OTC)技术、Kalina循环技术等新型中低温动力循环技术的发展,连同各国政府对可再生能源发电的鼓励政策,使得资源的经济发电温度得以降低,低温地热资源的发电潜力和经济性前景开始受到关注。开展基于ORC、OTC、Kalina循环、着眼于改善系统技术经济性的低温地热发电技术优化研究,具有促进低温地热资源发电利用,从而节约化石能源、减小与化石燃料燃烧相应的温室气体CO2和大气污染物排放的重要意义。
     本课题以改善80-100oC热水型地热资源发电利用的技术经济性为研究目标,开展了系统技术经济性优化目标函数研究,系统技术经济性影响因素和影响规律研究,ORC、OTC、Kalina循环技术优化和对比评价研究,系统关键部件性能和系统性能实验优化研究。
     以整个地热电站发电成本最低为根本的技术经济性优化目标,通过计算与分析,揭示了系统比净功最大化与整个地热电站发电成本最低之间的一致性,由此确立了以系统比净功最大化为低温地热发电系统的技术经济性目标函数。
     以系统比净功最大化为优化目标函数,建立了基于窄点分析的系统性能分析方法和系统仿真优化方法等理论研究手段,开展了理论优化研究。结果表明,指定冷热源条件下,影响ORC、OTC与Kalina循环系统比净功的主要因素为工质、循环参数、系统部件效率等;指定部件效率下,3类循环系统均存在最优工质和最优循环参数分别使得各个循环系统的比净功最大。得到了本文冷热源条件和指定部件效率下3类循环系统各自的最优工质和相应的最优循环参数、最大比净功;其中ORC系统、OTC系统的最优工质分别为非共沸混合工质MA6、MB8和MM、MH,Kalina循环系统工质NH3/H2O的最优浓度为98/2mol%。基于3类循环系统各自的最大比净功,综合考虑实际系统的部件效率范围以及OTC和Kalina循环系统分别存在压力高和系统与过程复杂、工质有毒可燃等不利于技术经济性的因素,得出在本课题冷热源条件下,非共沸混合工质ORC系统的技术经济性为最优的对比评价结论。
     对课题组原有的基于涡旋式膨胀机的ORC系统性能实验装置,进行了着眼于膨胀机性能研究和拓展实验工况适用范围、提高测量可靠性的相关改进。基于改进后的实验装置,开展了系统关键部件—膨胀机的性能影响规律实验研究,结果表明,膨胀机转速、工质膨胀比-膨胀机内容积比间的匹配关系、工质在高低压膨胀腔间的泄漏,是影响涡旋式膨胀机定熵效率的主要因素;存在最优的膨胀比与膨胀机转速,使得膨胀机定熵效率最高;对于特定的膨胀机,最优转速、最优膨胀比值基本不随工质、工况而变,其中最优膨胀比与膨胀机的内容积比基本一致。以R245fa为工质,实验确定了本实验台所用膨胀机的定熵效率随工质膨胀比和转速变化的曲线,膨胀机定熵效率最大值约为82%,所对应的膨胀机转速和工质膨胀比分别为800rpm和2左右(该膨胀机的内容积比为1.99)。
     注意到以同一实验装置开展不同工质的系统性能对比实验研究时,存在两种不公平因素:(1)工质与实验系统的匹配度因工质而异;(2)系统部件效率对不同工质系统性能的影响存在差异。如果直接以实验结果评价不同工质的系统性能将有失客观性,并影响工质实验优选质量。对此,本文开展了工质实验性能客观对比评价方法的研究,提出了对换热器热流密度和工质泵效率进行校正的改进型对比评价方法。以该方法为指导,对理论ORC系统性能较优的纯工质R245fa、R123、R227ea和R134a,非共沸混合工质MA6、MA3、MD1、MC1和MB8,进行了ORC系统性能实验对比评价研究。结果表明:在ORC系统性能影响规律方面,比净功值受冷、热源条件的影响较大;指定的冷、热源条件下,存在一个最优蒸发温度,使得系统比净功最大;随着冷凝温度的降低,循环的最优蒸发温度值下降,反之亦然。在工质性能对比方面,在热源水进口温度为90oC条件下,当冷凝温度为30oC时,非共沸混合工质MB8、MA3给出的系统比净功最大,分别为10.58kJ/kg、10.79kJ/kg,相应的最优蒸发温度分别为59.2oC、62oC;当冷凝温度为45oC时,非共沸混合工质MC1、MB8给出的系统比净功最大,分别为5.96kJ/kg、5.82kJ/kg,相应的最优蒸发温度分别为71.2oC、71oC。
There are abundant geothermal resources in China, most of which are low-temperature (<100°C) water-dominated heat source. Because of the low-gradecharacteristics and the lack of economic with conventional power generationtechnologies, these sources are mainly used for direct heating. However, the heatdemand near the heat source is usually less than the source can provide. A lot ofresources are not developed. In recent years, the governments put out many renewableenergy encouragement policies, which promote the development of the renewableenergy power generation technology. With the improvement of some novellow-temperature power generation technology, such as Organic Rankine Cycle(ORC),Organic Trans-critical Cycle(OTC) and Kalina Cycle etc., the profitable temperaturefor power generation is gradually reduced. So the potential and economic prospects oflow-temperature geothermal power generation become more and more attracting. Ifthe low-temperature geothermal is developed with ORC, OTC or Kalina cycle, thecost of fossil fuel will be saved and the corresponding pollutant will be decreased.
     The investigations on power generation systems were conducted to improve theeconomic performances of low-temperature geothermal (80-100oC) power plant. Theeconomic objective function was determined by parameter analysis. The parameteroptimization and performance comparison of ORC, OTC and Kalina cycle wereperformed and the optimal cycle and parameters were put up. Based on the optimizedresults, the experimental apparatus was retrofitted and the performance of theexpander was tested. The experimental performances were studied for parameteroptimization and fluid screening.
     The ultimate goal was to decreasing the cost of geothermal power plant. Bycomparing the parameters optimized by the specific net work and the cost, the specificnet work was established as the objective function.
     Numerical simulation models of the ORC, OTC and Kalina Cycle weredeveloped based on methodology of pinch point analysis with the specific net work asthe objective function. The theoretical optimization was conducted by varying themany influencing factors. The results were shown as follows: With the specified cooling and heating resource conditions, the main influencing factors on specific network were fluids, parameters and component efficiencies. There existed the optimalparameters that could maximize the specific net work. The optimized working fluidswere MA6and MB8for ORC, MM and MH for OTC, and NH3/H2O (98/2mol%) forKalina. Due to the disadvantages of OTC and Kalina Cycle, such as the highBPR(back to power ratio) value, high pressure, complicated system, and the problemof toxic flammable working fluids, the technical economic aspect of non-azeotropicmixtures ORC was better than OTC and Kalina Cycle.
     The scroll expander was derived by retrofitting an automotive air-conditioningscroll compressor. In order to optimizing the performance of the expander, expandingthe temperature range of the heat source and the pressure range of working fluids,improving the indicator of the ORC system, the ORC experimental apparatus wasimproved by changing several devices. The performance of the expander and the ORCsystem were investigated with R245fa on the improved experimental system. Theresults were shown as follows. The rotation speed of the expander, the match of fluidsexpansion ratio and the build-in expansion ratio of expander, the leakage of the fluidsbetween the expansion chambers were main factors which affected the isentropicefficiency of the expander. The variation of isentropic efficiency with expansion ratioand rotation speed were obtained experimentally and optimal rotation speed was800rpm and optimal expand ratio was about2.
     There were two unfair factors when the performances of different working fluidswere compared in the same test device.(1)The optimize match of different workingfluids in the same test device was not identical.(2)The efficiencies of the componentsaffected the performance of different ORC systems. The evaluation methods wereinvestigated to rectify the unfair factors of the comparison results. The unfair factorswere analyzed and a novel experimental fair comparative method was put up. Theheat flux differences of heat exchangers and the low net power output due to the overlow efficiencies of working fluid pump were rectified. The experimental performancecomparative investigations were conducted on ORC system with the pure fluids(R245fa, R123, R227ea, R134a) and the mixtures (MA6, MA3, MD1, MC1, MB8).The results of corrected experimental results showed that the specific net power wasgreatly affected by the cooling and heating conditions. There existed the optimalparameters that could maximize the specific net work. The optimal evaporatingtemperature decreased with the decreasing of condensing temperature. When the inlet temperature of the heat source was90°C and the condensing temperature was30°C,MB8and MA3provided the the highest specific net work, which were10.58kJ/kg and10.79kJ/kg respectively. While the optimum evaporation temperature was59.2°C、62°C, respectively. When the condensation temperature was45°C, MC1and MB8exhibited the highest specific net work of5.96kJ/kg and5.82kJ/kg. The optimumevaporating temperature was71.2°C and71°C,respectively.
引文
[1] Demirba A, Global Renewable Energy Resources, Energy Sources,2006,28(8):779-792
    [2] Aldrich M.J., Laughlin A.W., Gambill D.T., Geothermal Resource Base of theWorld: A Revision of the Electrical Power Research Institute’s Estimate. LosAlamos Scientific Laboratory Report LA-8801-MS, University of California,Los Alamos, New Mexico, April,1981
    [3] Johansson T.B., Goldenberg J., World Energy Assessment Overview:2004Update. UNDP,2005
    [4] National Renewable Energy Laboratory,2008geothermal technologies marketreport, http://www1.eere.energy.gov/geothermal/pdfs/2008_market_report.pdf
    [5] U.S.Department of Energy, Geothermal energy overview2010,http://www.our-energy.com/news/geothermal_energy_overview_2010.html
    [6] Sanyal S. K., Future of Geothermal Energy, Thirty-Fifth Workshop onGeothermal Resrvoir Engineering,2010
    [7] Bertani, R, World Geothermal Generation2001-2005: State of the Art,Proceedings World Geothermal Congress, Antalya, Turkey,2005
    [8] Subbiah S, Natarajen R, Thermodynamic analysis of binary-fluid Rankinecycles for geothermal power plants, Energy Conversion and Management,1988,28(1):47-52
    [9] Yamamoto T, Furuhara T, Arai N, Mori K, Design and testing of the OrganicRankine cycle, Energy,2001,26:239-51
    [10] Badr O, O’Callaghan P.W., Probert S.D., Rankine-cycle systems forharnessing power from low-grade energy sources, Applied Energy,1990,36(4):263-92
    [11] Database of State Incentives for Renewable and Efficiency,http://www.dsireusa.org/incentives/incentive.cfm?Incentive_Code=AL44F&re=1&ee=1
    [12] U.S.Department of Energy, Energy Efficiency and Renewable Energy,http://www.eere.energy.gov/topics/geothermal.html
    [13]李英,李成仁,段燕群,我国电价水平的国际比较,中国电力企业管理,2010,27:14-15
    [14]张颖,何茂刚,贾真,刘逊,Kalina循环的热力学第一定律分析,动力工程,2007,27,2:218-222
    [15]吕灿仁,严晋跃,马一太,Kalina循环的研究和开发及其提高效率的分析,热能动力工程,1991,6(1):1-6
    [16]高林,金红光,郑丹星,刘泽龙,林汝谋,蔡睿贤,混合工质中低温热力循环特性研究,工程热物理学报,2001,22(6):677-679
    [17]胡承玫. Kalina循环最佳参数选择的初步经济性分析,能源研究与信息,1988,4(4),6-12
    [18]陈亚平,简化型卡列纳循环的热力分析,热力发电,2007,4
    [19]路岭,严晋跃,马一太,吕灿仁,Kalina循环放热过程的热力学分析,工程热物理学报,1989,10(3):249-251
    [20] Murugan R. S., Subbarao P. M. V., Efficiency enhancement in a Rankinecycle power plant: combined cycle approach. Proceedings of the Institution ofMechanical Engineers, Part A: Journal of Power and Energy,2008,222(8):753-760
    [21] Murugan R. S., Subbarao P. M. V., Thermodynamic Analysis ofRankine-Kalina Combined Cycle, International Journal of Thermodynamics,11(3):133-141
    [22] Nasruddin, Usvika R, Rifaldi M, Noor A, Energy and exergy analysis of kalinacycle system (KCS)34with mass fraction ammonia-water mixture variation,Journal of Mechanical Science and Technology,2009,23(7):1871-1876
    [23] Lolos P.A., Rogdakis E.D., A Kalina power cycle driven by renewable energysources, Energy,2009,34:457–464
    [24] Wang J.F., Dai Y.P., Gao L, Exergy analyses and parametric optimizations fordifferent cogeneration power plants in cement industry, Applied Energy,2009,86:941–948
    [25] Valdimarsson P, Factors influencing the economics of the Kalina power cycleand situations of superior performance, International Geothermal Conference,Reykjav k,2003
    [26] Páll Valdimarsson, ORC and Kalina Analysis and experience,2003,http://121.193.130.225/download/4567457/4679642/1/pdf/58/140/1329879468602_140/ORC_and_Kalina_Analysis_and_experience.pdf
    [27] Geothermal Project—Kalina of Mannvit, http://www.mannvit.com/GeothermalEnergy/GeothermalPowerPlants/GeothermalProject-Kalina/
    [28] Madhawa Hettiarachchi H.D., Golubovic M, William M. W., Ikegami Y,Optimum design criteria for an Organic Rankine cycle using low-temperaturegeothermal heat sources, Energy,2007,32:1698-1706
    [29] Heberle F, Brüggemann D, Exergy based fluid selection for a geothermalOrganic Rankine Cycle for combined heat and power generation, AppliedThermal Engineering,2010,30:1326-1332
    [30] Borsukiewicz-Gozdur A, Dual-fluid-hybrid power plant co-powered bylow-temperature geothermal water, Geothermics,2010,39(2):170-176
    [31] Gu W, Weng Y, Wang Y, and Zheng B. Theoretical and experimentalinvestigation of an organic Rankine cycle for a waste heat recovery system.Proceedings of the Institution of Mechanical Engineerings, Part A: Journal ofPower and Energy,2009,223:523-533
    [32] Papadopoulos A. I., Stijepovic M, Linke P, On the systematic design andselection of optimal working fluids for Organic Rankine Cycles, AppliedThermal Engineering,2010,30:760–769
    [33] Khennich M, Galanis N, Thermodynamic analysis and optimization of powercycles using a finite low-temperature heat source, International Journal ofEnergy Research,2011, DOI:10.1002/er.1839
    [34] Dai Y.P., Wang J.F., Gao L, Parametric optimization and comparative study oforganic Rankine cycle (ORC) for low grade waste heat recovery, EnergyConversion and Management,2009,50:576–582
    [35] Mago P.J., Chamra L.M., Somayaji C, Performance analysis of differentworking fluids for use in organic Rankin cylces. Proceedings of the Institutionof Mechanical Engineers,2007,221:255-354.
    [36] Tchanche B.F., Papadakis G, Lambrinos G, Frangoudakis A, Fluid selectionfor a low-temperature solar organic Rankine cycle, Applied ThermalEngineering,2009,29:2468–2476
    [37] Quoilin S, Orosz M, Hemond H, Lemort V, Performance and designoptimization of a low-cost solar organic Rankine cycle for remote powergeneration, Solar energy,2011,85(5):955-966
    [38] Hung T.C., Wang S.K., Kuo C.H., Pei B.S., Tsai K.F., A study of organicworking fluids on system efficiency of an ORC using low-grade energysources, Energy,2010,35:1403–1411
    [39] Wang J.L., Zhao L., Wang X.D., A comparative study of pure and zeotropicmixtures in low-temperature solar Rankine cycle. Applied Energy,2010,87:3366–3373
    [40] Rayegan R, Tao Y.X., A procedure to select working fluids for Solar OrganicRankine Cycles (ORCs), Renewable Energy,2011,36(2):659-670
    [41] Nafey A.S., Sharaf M.A., Combined solar organic Rankine cycle with reverseosmosis desalination process:Energy, exergy, and cost evaluations,RenewableEnergy,2010,35(11):2571-2580
    [42] Schuster A, Karellas S, Kakaras E., Spliethoff H,Energetic and economicinvestigation of Organic Rankine Cycle applications, Applied ThermalEngineering,2009,29:1809–1817
    [43] Wei D.H., Lu X.S., Lu Z., Gu J.M., Performance analysis and optimization oforganic Rankine cycle (ORC) for waste heat recovery, Energy Conversion andManagement,2007,4:1113-1119
    [44] Nowak W, Borsukiewicz-Gozdur A, Stachel A.A., Using the low-temperatureClausius–Rankine cycle to cool technical equipment, Applied Energy,2008,85:582–588
    [45] Hung T.C., Waste heat recovery of organic Rankine cycle using dry fluids,Energy Conversion and Management,2001,42:539-553
    [46] Liu B.T., Chien K.H., Wang C.C., Effect of working fluids on organic Rankinecycle for waste heat recovery, Energy2004,29:1207–1217
    [47] Declaye S, Quoilin S, Lemort V, Design and experimental investigation of asmall-scale organic rankine cycle using a scroll expander, Proceedings of the20th International Compressor Engineering Conference at Purdue,2010
    [48] Tchanche B.F., Quoilin S., Economic feasibility study of a small scale organicrankine cycle system in waste heat recovery application, Proceedings of TheASME,10th Biennial Conference on Engineering Systems Design andAnalysis,2010
    [49] Lai N.A., Wendland M., Fischer J., Working fluids for high-temperatureorganic Rankine cycles, Energy,2011;35(1):199-211
    [50] Rentizelas A, Karellas S, Kakaras E, Comparative techno-economic analysis ofORC and gasification for bioenergy applications, Energy Conversion andManagement,2009,50:674-681
    [51] Manolakos D., Papadakis G., Mohamed Essam S.h., Kyritsis S., Bouzianas K.,Design of an autonomous low-temperature solar Rankine cycle system forreverse osmosis desalination, Desalination,2005,183:73–80
    [52] Manolakos D, Papadakis G, Kyritsis S, Bouzianas K, Experimental evaluationof an autonomous low-temperature solar Rankine cycle system for reverseosmosis desalination, Desalination,2007,203:366–374
    [53] Schuster A, Karl J, Karellas S, Simulation of an innovative stand-alone solardesalination system using an organic rankine cycle, International Journal ofThermodynamics,2007,10:155–163
    [54] Bruno J.C., Lopez-Villada J., Letelier E., Romera, Corona S. A., Modellingand optimization of solar organic Rankine cycle engines for reverse osmosisdesalination, Applied Thermal Engineering,2008,28:2212–2226
    [55] Mago P.J., Hueffed A., Chamra L.M., Analysis and optimization of the use ofCHP-ORC systems for small commercial buildings, Energy and Buildings,2010,42:1491-1498
    [56] Chacartegui R., Sánchez D., Muňoz J.M., Alternative ORC bottoming cyclesFOR combined cycle power plants, Applied Energy,2009,86:2162-2170
    [57] Invernizzi C, Iora P, Silva P, Bottoming micro-Rankine cycles for micro-gasturbines, Applied Thermal Engineering,2007,27:100-110
    [58] Vaja I, Gambarotta A, Internal Combustion Engine (ICE) bottoming withOrganic Rankine Cycles (ORCs), Energy,2010,35:1084-1093
    [59] Badami M, Mura M, Exergetic analysis of an innovative small scalecombined cycle cogeneration system, Energy,2010,35:2535-2543
    [60] Badami M, Mura M, Campanile P, Design and performance evaluation of aninnovative small scale combined cycle cogeneration system, Energy,2008,33:1264-1276
    [61] Srinivasan K.K., Mago P.J., Krishnan S.R., Analysis of exhaust waste heatrecovery from a dual fuel low temperature combustion engine using anOrganic Rankine Cycle, Energy,2010,35:2387-2399
    [62] Mago P.J., Chamra L.M., Srinivasan K., Somayaji C., An examination ofregenerative organic rankine cycles using dry fluids, Applied ThermalEngineering,2008,28:998–1007
    [63] Borsukiewicz-Gozdur A, Nowak W, Maximising the working fluid flow as away of increasing power output of geothermal power plant, Applied ThermalEngineering,2007,27:2074–2078
    [64] Tchanche B.F., Papadakis G., Lambrinos G., Frangoudakis A., Effects ofregeneration on low-temperature solar organic Rankine cycles, Proceeding onEurosun Conference,2008
    [65] Quoilin S, Orosz M, Lemort V, Modeling and experimental investigation of anorganic rankine cycle using scroll expander for small solar applications,Proceeding on Eurosun Conference,2008
    [66] Nguyen V.M., Doherty P.S., Riffat S.B., Development of a prototypelow-temperature Rankine cycle electricity generation system, Applied ThermalEngineering,2001,21:169–181
    [67] Saitoh T, Yamada N, Wakashima, Solar rankine cycle system using scrollexpander, Journal of Energy and Engineering,2007,2:708–718
    [68] Kane M, Larrain D, Favrat D, Allani Y, Small hybrid solar power system,Energy,200328:1427–1443
    [69] Yagoub W., Doherty P., Riffat S.B., Solar energy-gas driven micro-CHPsystem for an office, Applied Thermal Engineering,2006,26:1604–1610
    [70] Guo T, Wang H.X., Zhang S.J., Selection of working fluids for a novellow-temperature geothermally-powered ORC based cogeneration system,Energy Conversion and Management,2011,52(6):2384-2391
    [71] Guo T, Wang H.X., Zhang S.J., Fluids and parameters optimization for a novelcogeneration system driven by low-temperature geothermal sources, Energy,2011,36(5):2639-2649
    [72] Zhang S.J., Wang H.X., Guo T,Theoretical investigation on the working fluidsof transcritical power cycle using low-temperature heat sources, ICECE,2010
    [73] Guo T, Wang H.X., Zhang S.J., Working fluids of a low-temperaturegeothermally-powered Rankine cycle for combined power and heat generationsystem, Science China Technological Sciences,2010,53(11):3072-3078
    [74] Guo T, Wang H.X., Zhang S.J., Fluid selection for a low-temperaturegeothermal organic Rankine cycle by energy and exergy, Asia-Pacific Powerand Energy Engineering Conference,2010
    [75] Guo T, Wang H.X., Zhang S.J., Selection of working fluids for a novellow-temperature geothermal powered ORC based cogeneration system.International Conference on Sustainable Energy Technologies,2010
    [76] Wang X.D., Zhao L., Analysis of zeotropic mixtures used in low-temperaturesolar Rankine cycles for power generation, Solar Energy,2009,83(5):605-613
    [77] Wang X.D., Zhao L., Wang J.L., Experimental investigation on thelow-temperature solar Rankine cycle system using R245fa, Energy Conversionand Management,2011,52(2):946-952
    [78] Wang X.D., Zhao L., Wang J.L., et al, Performance evaluation of alow-temperature solar Rankine cycle system utilizing R245fa, Solar Energy,2010,84(3):353-364
    [79] Gu Z.L., Sato H., Optimization of cyclic parameters of a supercritical cycle forgeothermal power generation, Energy Conversion and Management,2001,42:1409-1416
    [80] Gu Z.L., Sato H., Performance of supercritical cycles for geothermal binarydesign, Energy Conversion and Management,2002,43:961-971
    [81] Wei D.H., Lu X.S., Lu Z., Dynamic modeling and simulation of an OrganicRankine Cycle(ORC) system for waste heat recovery, Applied ThermalEngineering,2008,28:1216-1224
    [82]顾伟,低品位热能有机物朗肯动力循环机理研究和实验验证:[博士学位论文,上海;上海交通大学,2009
    [83] Pei G., Li J., Ji J., Analysis of low temperature solar thermal electricgeneration using regenerative Organic Rankine Cycle, Applied ThermalEngineering,2010,30:998-1004
    [84] Pei G., Li J., Li Y.Z., et al, Construction and dynamic test of a small-scaleorganic rankine cycle, Energy,2011,36(5):3215-3223
    [85]龚宇烈,邓帅,马伟斌,中低温低热双循环发电技术的发展和应用,地热能,2008,2:14-18
    [86]刘继芬,王景甫,马重芳,王伟,张勇,中低温地热发电循环参数的优化,化工学报,2011,S1(62):190-196
    [87]刘广林,鹿院卫,马重芳,吴玉庭,超临界地热有机朗肯循环工质参数优化,工程热物理学报,11(31):1886-1888
    [88] He C., Liu C., Gao H., Xie H., Li Y.R, Wu S.Y., Xu J.L., The optimalevaporation temperature and working fluids for subcritical organic Rankinecycle, Energy,2012,38(1):136–143
    [89] Zhang X.R, Yamaguchi H, Fujima K, Enomoto M, Sawada N, Theoreticalanalysis of a thermodynamic cycle for power and heat production usingsupercritical carbon dioxide, Energy,2007,32:591–599
    [90] Zhang X. R., Yamaguchi H., Uneno D, Thermodynamic analysis of theCO2-based Rankine cycle powered by solar energy, International Journal ofEnergy Research,2007,31:1414–1424
    [91] Cayer E, Galanis N, Desilets M, Nesreddine H, Roy P, Analysis of a carbondioxide transcritical power cycle using a low temperature source, AppliedEnergy,2009,86:1055–1063
    [92] Yamaguchi H, Zhang X.R., Fujima K, Enomoto M, Sawada N, Solar energypowered Rankine cycle using supercritical CO2, Applied Thermal Engineering,2006,26:2345–2354
    [93] Zhang X.R., Yamaguchi H, Fujima K, Enomoto M, Sawada N, Study of solarenergy powered transcritical cycle using supercritical carbon dioxide,International Journal of Energy Research,2006,30:1117–1129
    [94] Schuster A, Karellas S, Aumann R, Efficiency optimization potential insupercritical Organic Rankine Cycles, Energy,2009,35(2):1033-1039
    [95] Cayer E, Galanis N, Nesreddine H, Parametric study and optimization of atranscritical power cycle using a low temperature source, Applied Energy,2010,87:1349–1357
    [96] Mikielewicz D, Mikielewicz J, A thermodynamic criterion for selection ofworking fluid for subcritical and supercritical domestic micro CHP, AppliedThermal Engineering,2010,30:2357-2362
    [97] Colonna P, Harinck J, Rebay S, Guardone A, Real-Gas Effects in OrganicRankine Cycle Turbine Nozzles, Journal of Propulsion and Power,2008,24(2):282-294
    [98] Baik Y.J. Kim M.S., Chang K.C., Kim S.J., Power-based performancecomparison between carbon dioxide and R125transcritical cycles for alow-grade heat source, Applied Energy,2011,88:892–898
    [99] Chen H.J., Goswami D.Y., Rahman M.M., Stefanakos E.K., Energetic andexergetic analysis of CO2-and R32-based transcritical Rankine cycles forlow-grade heat conversion. Applied Energy,2011,88(8):2802-2808
    [100] Saleh B, Koglbauer G, Wendland M, Fischer J, Working fluids forlow-temperature organic Rankine cycles, Energy,2007,32:1210–1221
    [101] Bliem C.J., Mines G.L., Supercritical Binary Geothermal Cycle ExperimentsWith Mixed-Hydrocarbon Working Fluids and A Near-Horizontal In-TubeCondenser, Technical Report, Report Number: EGG-EP-8800,1989
    [102] Bombarda P, Invernizzi C.M., Pietra C, Heat recovery from Diesel engines: Athermodynamic comparison between Kalina and ORC cycles. AppliedThermal Engineering,2010,30:212–219
    [103] Karellas S, Schuster A, Supercritical Fluid Parameters in Organic RankineCycle Applications, International Journal of Thermodynamics,2008,11(3):101-108
    [104] Chen H.J., Goswami D.Y., Stefanakos E.K., A review of thermodynamiccycles and working fluids for the conversion of low-grade heat. Renewable andSustainable Energy Reviews,2010,14(9):3059-3067
    [105] Chen Y., Lundqvist P., Johansson A., A comparative study of the carbondioxide transcritical power cycle compared with an organic Rankine cycle withR123as working fluid in waste heat recovery, Applied Thermal Engineering,2006,26(17):2142-2147
    [106] Iqbal K.Z., Fish L.W., Starling K.E., Isobutane geothermal binary cyclesensitivity analysis, Proceedings of the Oklahoma Academy Science,1977,57:131-137
    [107] Zhang S.J., Wang H.X., Guo T., Economic comparative study of Kalina cycle,sub-and trans-critical Organic Rankine Cycle (ORC) for low-temperaturegeothermal, First International Seminar on ORC Power Systems, TU Delft,Netherlands,2011
    [108] Zhang S.J., Wang H.X., Guo T., Performance comparison and parametricoptimization of subcritical Organic Rankine Cycle (ORC) and transcriticalpower cycle system for low-temperature geothermal power generation.Applied Energy,2011,88:2740–2754
    [109] Guo T., Wang H.X., Zhang S.J., Comparative analysis of CO2-basedtranscritical Rankine cycle and HFC245fa-based subcritical organic Rankinecycle (ORC) using low-temperature geothermal source, Science in ChinaSeries E: Technological Sciences,2010,53(6):1869-1900
    [110] Guo T, Wang H.X., Zhang S.J., Comparative analysis of natural andconventional working fluids for use in transcritical Rankine cycle usinglow-temperature geothermal source, International Journal of Energy Research,2011,35(6):530-544
    [111] Quoilin S, Experimental study and modeling of a low temperature Rankinecycle for small scale cogeneration., Master Thesis, University of Liege;2007
    [112] Drescher U, Bruggemann D, Fluid selection for the organic Rankine cycle(ORC) in biomass power and heat plants, Applied Thermal Engineering,2007,27:223–228
    [113] Angelino G, Paliano P.C.D, Multicomponent working fluids for organicRankine cycles (ORCs), Energy,1998,23:449–463
    [114] Radermacher R, Thermodynamic and heat transfer implications of workingfluid mixtures in Rankine cycles, International Journal of Heat and Fluid Flow,1989,10(6):90–102
    [115] Maizza V, Maizza A, Working fluids in non-steady flows for waste energyrecovery systems, Applied Thermal Engineering,1996,16:579–590
    [116] Gawlik K, Hassani V, Advanced binary cycles: optimum working fluids,Energy Conversion Engineering Conference,1997,1809–1814
    [117] Maizza V, Maizza A, Unconventional working fluids in organicRankine-cycles for waste energy recovery systems, Applied ThermalEngineering,2001,21:381–390
    [118] Borsukiewicz-Gozdur A, Nowak W, Comparative analysis of natural andsynthetic refrigerants in application to low temperature Clausius–Rankinecycle, Energy,2007,32(4):344–352
    [119] Bertrand F. Tchanche,Sylvain Quoilin, Economic feasibility study of a smallscale organic rankine cycle system in waste heat recovery application,Proceedings of the ASME201010th Biennial Conference on EngineeringSystems Design and Analysis
    [120] Bliem C, Zangrando F, Hassani V, Value analysis of advanced heat rejectionsystems for geothermal power plants. Energy Conversion EngineeringConference,1996
    [121] Smith I.K., Development of the Trilateral Flash Cycle System: FundamentalConsiderations. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy,1993,207(3):179-194
    [122] Pall V, Larus E Factors influencing the economics of the Kalina power cycleand situations of superior performance. International Geothermal Conference,Reykjavík,2003
    [123] Uehara H, Ikegami Y. Optimization of a closed-cycle OTEC plant system.Journal of Solar Energy Engineering,1990,112:247–256
    [124] Wang Z.Q., Zhou N.J., Guo J, Wang X.Y., Fluid selection and parametricoptimization of organic Rankine cycle using low temperature waste heat,doi:10.1016/j.energy.2012.02.022
    [125]史美中,王中铮,热交换器原理与设计(第二版),东南大学出版社,2009
    [126]董其伍,换热器,化工工业出版社,2009
    [127]朱聘冠,换热器原理及设计,清华大学出版社,1987
    [128] Wang H, Touber S, Distributed and non-steady-state modeling of an air cooler,International Joural of Refrigerant,1991,14(2):98-111
    [129] Dittus F.W, Boelter L.M.K, Heat transfer in automobile radiators of the tubulartype. Int. Comm. Heat Mass Transfer,1985,12:3-22
    [130] Petukhov B.S., Krasnoshchekov E.A., Protopopov V.S., An investigation ofheat transfer to fluids flowing in pipes under supercritical conditions. In:International developments in heat transfer, papers presented at the1961international heat transfer conference, January8–12, Part III, Paper67, ASME,University of Colorado, Boulder, CO, USA;1961,569–578
    [131] Gnielinski V, New equations for heat and mass transfer in turbulent pipe andchannel flow, International Chemical Engineering1976,16(2):359–368
    [132] Yoon S.H, Kim J. H., Hwang Y. W,. Kimb M. S., Minb K, Kim Y., Heattransfer and pressure drop characteristics during the in-tube cooling process ofcarbon dioxide in the supercritical region, International Journal ofRefrigeration,2003,26:857–864
    [133] Kang, K.H., Chang, S.H., Experimental study on the heat transfercharacteristics during the pressure transients under supercritical pressures.International Journal of Heat and Mass Transfer,2009,52:4946–4955
    [134] Yu J, Koyama S. Condensation heat transfer of pure refrigerants in micro-fintubes, Proc1998Int Refrig Conf at Purdue,1998,325-330
    [135] Miyara A, Nonaka K, Taniguchi M. Condensation heat transfer and flowpattern inside a herringbone-type micro-fin tube. Proc. Eurotherm Seminar no.62, Grenoble,1998,232-241
    [136] Cavallini D., Doretti L., Longo G.A., Rossetto L. Heat transfer and pressuredrop during condensation of refrigerants inside horizontal enhanced tubes.International Journal of Refrigeration,2000,23:4-25
    [137] Kedzierski A., Kim J.H., Didion D.A., Cause of the apparent heat transferdegradation for refrigerant mixtures, Two-Phase Flow and Heat TransferASME HTD-197,1992,149–158.
    [138] Demuth, O. J., Heat Cycle Research Program, Geothermal Resources Council.Transactions,1984,8:41-46
    [139] Vijayaraghavan S, Goswami D. Y., Organic Working Fluids for a CombinedPower and Cooling Cycle, Journal of Energy Resources Technology,2005,127:125-130
    [140] Thome J.R., Two-phase heat transfer to new refrigerants, in:10th Int. HeatTransfer Conference,1994,1:19–41
    [141] Celata G.P., Cumo M., Setaro T., Forced convective boiling in binary mixtures,International Journal of Heat Mass Transfer,1993,36(13):3299–3309.
    [142] Greco A., Vanoli G.P., Flow boiling heat transfer with HFC mixtures in asmooth horizontal tube. Part II Assessment of predictive methods.pdf.Experimental Thermal and Fluid Science,2005,29:199–208
    [143] Kandlikar S.G., A general correlation for saturated two-phase flow boilingheat-transfer inside horizontal and vertical tubes, Journal of Heat Transfer,1990,112:219–228
    [144] Chiou C.B., Lu D.C., Liao C.Y., Su Y.Y., Experimental study of forcedconvective boiling for non-azeotropic refrigerant mixtures R-22R-124inhorizontal smooth tube, Applied Thermal Engineering,2009,29:1864-1871
    [145] Guo T, Wang H.X., Zhang S.J., Yin S.H., Methodology of regeneratorcalculation for use in subcritical and transcritical organic Rankine cycle forlow-temperature heat recovery, ICECE,2010
    [146] Chen H.J., YogiGoswami D., Stefanakos E., A review of thermodynamiccycles and working fluids for the conversion of low-grade heat. Renewable andSustainable Energy Reviews,2010,14(9):3059-3067
    [147]郑臣明,王怀信,马利敏,PT状态方程临界虚拟压缩因子和斜率参数的确定,工程热物理学报,2005,26(3):373-375
    [148] Patel N.C., Teja A.S., A new cubic equation of state for fluids and fluidmixtures. Chemical Engineering Science,1982,37(3):463-473
    [149] Soave G, Rigorous and Simplified Procedures for Determining thePure-Component Parameters in the Redlich-Kwong-Soave Equation of State,Chemical Engineering Science,1980,35(8):1725-1729
    [150] Peng D.U., Robinson D.B., A New Two-Constant Equation of state, IndEngineering Chemical Fundamental,1976,15(1):59-64
    [151] Nicola D.G., Polonara F., Santori G., Saturated Pressure Measurements of2,3,3,3-Tetrafluoroprop-1ene (HFO-1234yf), Journal of Chemical EngineeringData,2010,55(1):201-204
    [152] Tanaka K, Higashi Y, Akasaka R, Measurements of the Isobaric Specific HeatCapacity and Density for HFO-1234yf in the Liquid State, Journal of ChemicalEngineering Data,2010,55(2):901-903
    [153] Akasaka R, Tanaka K, Higashi Y, Thermodynamic property modeling for2,3,3,3-tetrafluoropropane (HFO-1234yf), International Journal ofRefrigerant,2010,33(1):52-60
    [154] Spatz M, Minor B, HFO-1234yf low GWP refrigerant update. In: Proceedingsof the International Refrigeration and Air Conditioning Conference at Purdue,West Lafayette, Indiana, USA,2008
    [155] Thomas J.L., Evaluation of HFO-1234yf as a potential replacement for R-134ain refrigeration applications.3rd IIR conference on thermophysical propertiesand transfer processes of refrigerants, America,2009
    [156] Bruce E. P., John M. P., John P. O., The properties of gases and liquids.5th ed.New York: McGraw-Hill Book Company,2001
    [157] Hjartarson H., Maack R., Johannesson S., Húsavik energy multiple use ofgeothermal energy, GHC Bullettin,2005,7–13
    [158]郭涛,中低温地热热电耦合利用系统优化研究:[博士学位论文],天津;天津大学,2011
    [159]李连生,涡旋压缩机,北京:机械工业出版社,1998
    [160] Lemort V, Quoilin S, Cuevas C, Lebrun J, Testing and modeling a scrollexpander integrated into an Organic Rankine Cycle, Applied ThermalEngineering,2009,29:3094–3102
    [161]王怀信,郑臣明,马利敏,工质循环性能实验评价的客观性探讨,化工学报,2005,56(2):215-219
    [162]赵永胜,刘德平,胡长权,无资料地区湿球温度计算方法研究,电力勘探设计,2009,5:32-35
    [163]张磊,杨亚东,田文文,李静,湿球温度计算方法研究,中国高新技术企业,2011,4:42-43

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700