中温固体氧化物燃料电池新型阳极及阴极材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以中温固体氧化物燃料电池(IT-SOFC)为背景,紧密追踪当前研究热点,探索替代Ni基金属陶瓷的新型阳极材料,系统研究了新型阳极材料与La_(0.8)Sr_(0.2)Ga_(0.8)Mg_(0.2)O_(3-δ)(LSGM)的热相容性,阳极材料在氢气中的电化学性能以及在甲烷中的电化学性能;同时,为解决阴极材料热膨胀系数与电解质不匹配的问题,本文也在探索新型阴极材料方面做了一些工作;最后,采用性能较好的新型阳极材料和阴极材料制备成单电池进行发电试验。本课题对于解决SOFC获得实际应用并推向市场面临的关键问题具有非常重要的意义,研究结果为SOFC新型电极材料的研究提供有价值的参考信息。
     本文以CeO_2为基体,利用柠檬酸-硝酸盐燃烧法合成过渡金属元素(Mn、Co、Fe、Cu、Ni)掺杂氧化铈固溶体,系统研究了固溶体的固溶度范围,在氧化气氛和还原气氛中的高温稳定性。研究表明,过渡金属元素在CeO_2中的固溶度一般为0.1~0.2,固溶体在不同气氛中具有良好的稳定性。Ce_(1-x)Tm_xO_(2-δ)固溶体的作为阳极材料,在热膨胀系数、化学相容性方面与电解质LSGM的匹配性良好,Ce_(1-x_Tm_xO_(2-δ)固溶体具有氧化氢气能力,随着掺杂量的增加,催化能力增强;对于不同的气体成分,在H2+3%H_2O的催化能力强于在干氢气中。Ce_(0.9)Fe_(0.1)O_(2-δ)和Ce_(0.8)Fe_(0.2)O_(2-δ)在湿氢中700℃的极化电阻分别是0.975(Ωcm~2)和0.577(Ωcm~2),作为IT-SOFC的阳极材料,具有一定的可行性,有望成为适合LSGM电解质的阳极材料。同时,Ce_(1-x)Fe_xO_(2-δ)阳极有直接氧化甲烷的能力,Fe掺杂量越高,对甲烷的氧化能力越强;在加湿甲烷气氛中,在700℃下,Ce_(0.9)Fe_(0.1)O_(2-δ)的极化电阻为2.25Ωcm~2,Ce_(0.8)Fe_(0.2)O_(2-δ)的极化电阻为1.27Ωcm~2,有希望成为新型直接氧化甲烷固体氧化物燃料电池的阳极材料。
     本文对Fe,Mn分别掺杂Sm_(0.5)Sr_(0.5)CoO_3新型阴极材料的晶体结构,热膨胀系数,电导率及电化学性能进行了系统研究。Sm_(0.5)Sr_(0.5)Mn_xCo_(1-x)O_(3-δ)体系化合物都是正交晶系钙钛矿结构;随着Mn取代量的增加,SSC的热膨胀系数被显著降低,电导率减小,极化电阻增加。在高Mn含量时可以获得良好的热膨胀系数匹配,但是只有在低Mn含量才可以获得较高的电导率和较低的极化电阻。因此,作为中温固体氧化物的阴极材料, SSMC体系并不十分适合。Sm_(0.5)Sr_(0.5)Co_(1-x)Fe_xO_(3-δ)随着Fe取代量的不同,SSCF的晶体结构发生变化,在0≤x≤0.4时,SSCF为正交晶系钙钛矿结构,在0.5≤x≤0.9时,SSCF为立方晶系钙钛矿结构。Fe掺杂可以降低Sm_(0.5)Sr_(0.5)CoO_3的热膨胀系数,随着Fe含量的增加,热膨胀系数减小。在800℃下,SSCF导电率均大于100 S /cm。随着Fe含量的增加,极化电阻增大;当Fe的含量达到0.4时,极化电阻达到最大值;之后,随Fe含量的增加,极化电阻减小,在700~800℃时,Sm_(0.5)Sr_(0.5)Co_(0.2)Fe_(0.8)O_(3-δ)表现出了良好的氧催化活性,因此,有可能发展成为中温固体氧化物燃料电池的阴极材料。
     本文最后对电解质支撑型Ce_(0.8)Fe_(0.2)O_(2-δ)/LSGM/Sm_(0.5)Sr_(0.5)Fe_(0.8)Co_(0.2)O_(3-δ)单电池发电性能进行了研究。在采用H_2+3%H_2O作为燃料时,单电池在700~800℃的开路电压(OCV)为1.198~1.185V,800℃时的最大功率密度为98mw/cm2,高于较采用相同结构的Ni基金属陶瓷阳极材料的单电池功率密度。因此,Ce_(0.8)Fe_(0.2)O_(2-δ)和Sm_(0.5)Sr_(0.5)Fe_(0.8)Co_(0.2)O_(3-δ)可以作为具有应用前景的中温固体氧化物燃料电池的新型电极材料。在采用CH4+3%H2O作为燃料时,单电池在800℃时,电池的开路电压为1.189V,最大功率密度为52.2mw/cm~2,在高温下长期运行过程中,电池的开路电压略有下降,同时,阳极极化电阻变化不大,电池运行后,阳极表面碳元素量较少,说明Ce_(0.8)Fe_(0.2)O_(2-δ)具有抗积炭的能力。因此,Ce_(0.8)Fe_(0.2)O_(2-δ)作为中温直接甲烷氧化物燃料电池的新型阳极材料具有一定的应用价值。
The core materials of SOFC are electrolyte, anode and cathode. La_(0.8)Sr_(0.2)Ga_(0.8)Mg_(0.2)O_(3-δ)(LSGM) is the promising electrolyte for IT-SOFC, however, the electrolyte is restricted to apply because of the reaction with Ni cermet. Ce_(1-x)Tm_xO(2-δ)(Tm= Mn, Co, Fe, Cu, Ni) have been investigated in order to searching the novel anode, which could be suited with the LSGM electrolyte. We also research the electrochemical behavior of Ce_(1-x)Fe_xO_(2-δ) as a possible SOFC anode materials for the direct oxidation of methane. At same time, a novel cathode material have been investigated. At last, a single solid oxide fuel cell is prepared with the novel anode and cathode running on hydrogen or methane in this thesis.
     The solid solubility limit, crystal structure, thermal expansion rate, and electrochemical performance of Ce_(1-x)Tm_xO(2-δ)(Tm= Mn, Co, Fe, Cu, Ni) have been investigated. Ce_(1-x)Tm_xO(2-δ) have been synthesized by the citrate method. The solid solubility limit of the Ce_(1-x)Tm_xO(2-δ) is about 0.1~0.2. The solid solution has a cubic symmetry. The electrochemical behavior of anode has been analyzed by electrochemical impedance spectroscopy. Ce_(1-x)Tm_xO(2-δ) have a significant effect on the electrochemical oxidation of hydrogen at these temperatures(550~700℃), the polarization resistance decreases with increasing doping element content while the lower polarization resistances appear in humidified H2 than in dry H2. The polarization resistances of Ce_(0.9)Fe_(0.1)O_(2-δ)and Ce0.8Fe0.2O2-δrespectively show 0.975 ?cm2 and 0.577?cm2 in humidified H2 at 700℃. Therefore, Ce_(1-x)Fe_xO_(2-δ) (x=0.1, 0.2) will be a promising candidate for IT-SOFC anode material. Second, the catalytic activity for direct oxidation of dry methane and long-term performance stability of Ce_(1-x)Fe_xO_(2-δ) (FDC, x=0.1, 0.2) have been investigated. Ce_(1-x)Fe_xO_(2-δ) (x=0.1, 0.2) has shown the properties of rapid direct electrochemical oxidation of methane at these temperatures(550~700℃), the polarization resistance decreases with increasing Fe content. The polarization resistances of Ce_(0.9)Fe_(0.1)O_(2-δ)and Ce0.8Fe0.2O2-δrespectively show 2.25Ωcm~2 and 1.27Ωcm~2 in humidified CH4 at 700℃.Therefore, Ce_(1-x)Fe_xO_(2-δ) (x=0.1, 0.2) will be a promising candidate for IT-SOFC anode material to direct oxidate dry methane.
     The crystal structure, thermal expansion rate, electrical conductivity and electrochemical performance of Sm0.5Sr0.5MxCo1-xO3 -δ(M=Fe, Mn) have been investigated. Two crystal structures have been observed in the specimens of Sm0.5Sr0.5FexCo1-xO3-δ(SSFC) at room temperature, the perovskite structure of SSFC has an Orthorhombic symmetry for 0≤x≤0.4 and a cubic symmetry for 0.5≤x≤0.9. The specimens of Sm0.5Sr0.5MnxCo1-xO3-δ(SSMC) crystallize in an Orthorhombic structure. The adjustment of thermal expansion rate to electrolyte, which is one of the main problems of SSC, can be achieved to lower TEC values with more Fe and Mn substitution. Especially, Sm0.5Sr0.5Mn0.8Co0.2O3-δexhibits good thermal compatibility with La0.8Sr0.2Ga0.8Mg0.2O3. The polarization resistance increases with increasing Mn content, Nevertheless, the polarization resistance of SSFC increases with increasing Fe content, but when the amount of Fe reaches to 0.4, the maximum is obtained while the resistance will decrease when the amount of Fe reaches above 0.4. Sm0.5Sr0.5Fe0.8Co0.2O3-δelectrode exhibits high catalytic activity for oxygen reduction operating at temperature from 700 to 800℃.
     A single solid oxide fuel cell is prepared with the novel anode (Ce0.8Fe0.2O2-δ) and cathode (Sm0.5Sr0.5Fe0.8Co0.2O3-δ) running on hydrogen or methane. The maximal power density is 98mw/cm2 running on humidity hydrogen at 800℃. The maximal power density is 52.2mw/cm2 running on humidity methane at 800℃. Moreover, very little carbon is detected on the anode, suggesting that carbon deposition was limited during cell operating.
引文
[1] 拉米尼, 詹姆斯, 迪克斯等, 燃料电池系统: 原理·设计·应用,科学出版社, 2006
    [2] 毛宗强, 燃料电池, 化学工业出版社 2005
    [3] 黄镇江, 刘凤君, 燃料电池及其应用, 电子工业出版社, 2005
    [4] 衣宝廉, 燃料电池: 原理·技术·应用, 化学工业出版社 2003
    [5] Heed B, Zhu B, Mellander B E, Lunden A. Solid State Ionics, 1991, 46: 121-125
    [6] 许世森, 程健, 燃料电池发电系统, 中国电力出版社, 2006
    [7] N.Q. Minh and T. Takahashi, Science and Technology of Ceramics Fuel Cells, Elsevier publishing, Amsterdam, The Netherlands, 1995, p. 283-296
    [8] N.Q. Minh and T. Takahashi, Science and Technology of Ceramics Fuel Cells, Elsevier publishing, Amsterdam, The Netherlands, 1995,p.235-255
    [9] N.Q. Minh and T. Takahashi, Science and Technology of Ceramics Fuel Cells, Elsevier publishing, Amsterdam, The Netherlands, 1995,p.255-267
    [10] N.Q. Minh and T. Takahashi, Science and Technology of Ceramics Fuel Cells, Elsevier publishing, Amsterdam, The Netherlands, 1995,p.268-282
    [11] André Weber, Ellen Ivers-Tiffée, Materials and concepts for solid oxide fuel cells (SOFCs) in stationary and mobile applications,Journal of Power Sources 127 (2004) 273–283
    [12] S. Adler, Solid oxide fuel cells, Course Notes, Department of Chemical Engineering, University of Washington, 2003.
    [13] S.P.S. Badwal, K. Foger, Materials for solid oxide fuel cells, Mater. Forum 21 (1997) 187–224.
    [14] E. Maguire, B. Gharbage, F.M.B. Marques, J.A. Labrincha, Cathode materials for intermediate temperature SOFCs, Solid State Ionics. 127 (2000) 329–335.
    [15] S.C. Singhal, Advances in solid oxide fuel cell technology, Solid State Ionics. 135 (2000) 305–313.
    [16] F. Tietz, Materials selection for solid oxide fuel cells, Mater. Sci. Forum 426–432 (2003) 4465–4470.
    [17] S.C. Singhal, Solid oxide fuel cells for clean and efficient power generation, Presentation to Boston University, May 30, 2003.
    [18] E. Ivers-Tiff′ee, A. Weber, D. Herbstritt, Materials and technologies for SOCF-components, J. Eur. Ceram. Soc. 21 (2001) 1805–1811.
    [19] J. Larminie, A. Dicks, Fuel Cell Systems Explained, Wiley, 2000.
    [20] S.C. Singhal, K. Kendall, High-temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications, Elsevier, 2004.
    [21] T. He, Z. Lu, L. Pei, X. Huang, Z. Liu, W. Su, Electrical properties and applications of (ZrO2)0.92 (Y2O3)0.08 electrolyte thin wall tubes prepared by improved slip casting method, J. Alloys Compd. 333 (2003) 231–236.
    [22] J.M. Ralph, J.A. Kilner, B.C.H. Steele, Improving Gd-doped ceria electrolytes for low temperature solid oxide fuel cells, Mater. Res. Soc. Symp. Proc. 575 (2001) 309.
    [23] T. Ishihara, T. Shibayama, M. Honda, H. Nishiguchi, Y. Takita, Transition metal doped LaGaO3 perovskite fast oxide ion conductor and intermediate temperature solid oxide fuel cell, Mater. Res. Soc. Symp. Proc. 575 (2000) 283.
    [24].T .Ishihara, H .Matsuda, and Y.Takita, Doped LaGaO3 perovskite type oxide as a new oxide ionic conductor, J. Am. Chem. Soc.,1994,116, 3801- 3803
    [25] S.P.S. Badwal, F.T. Ciacchi, D. Milosevic, Scandia–zirconia electrolytes for intermediate temperature solid oxide fuel cell operation, Solid State Ionics. 136–137 (2000) 91–99.
    [26] M. Hirano, O. Takayuki, K. Ukai, Y. Mizutani, Effect of Bi2O3 additives in Sc stabilized zirconia electrolyte on stability of crystal phase and electrolyte properties, Solid State Ionics. 158 (2003) 215–223.
    [27] G.B. Balazs, R.S. Glass, AC impedance studies of rare earth oxide doped ceria, Solid State Ion. 76 (1995) 155–162.
    [28] V.V. Kharton, F.M. Figueiredo, L. Navarro, E.N. Naumovich, A.V. Kovalevsky, A.A. Yaremchenko, A.P. Viskup, A. Carneiro, F.M.B. Marques, J.R. Frade, Ceria-based materials for solid oxide fuel cells, J. Mater. Sci. 36 (5) (2001) 1105–1117.
    [29] S.C. Sinhal, Solid oxide fuel cells for stationary, mobile, and military applications, Solid State Ionics. 152–153 (2002) 405–410.
    [30] B. Steele, A. Heinzel, Materials for fuel-cell technologies, Nature 414 (2001) 345–352.
    [31] B. Zhu, X. Liu, P. Zhou, Z. Zhu, W. Zhu, S. Zhou, Cost-effective yttrium doped ceria-based composite ceramic materials for intermediate temperature solid oxide fuel cell applications, J. Mater. Sci. Lett. 20 (2001) 591–594.
    [32] H. Fukunaga, C. Arai, C. Wen, K. Yamada, Thermal expansion and cathode behaviors of YSCF as SOFC cathode, SOFC VII 449 (2001).
    [33] C. Lu, W.L. Worrell, R.J. Gorte, J.M. Vohs, SOFCs for direct oxidation ofhydrocarbon fuels with samaria-doped ceria electrolyte, J. Electrochem. Soc. 150 (2003) A354–A358.
    [34] B. Zhu, X.T. Yang, J. Xu, Z.G. Zhu, S.J. Ji, M.T. Sun, J.C. Sun, Innovative low temperature SOFCs and advanced materials, J. Power Sources 118 (2003) 47–53.
    [35] R. Peng, C. Xia, X. Liu, D. Peng, G. Meng, Intermediatetemperature SOFCs with thin Ce0.8Y0.2O1.9 films prepared by screen printing, Solid State Ionics. 152–153 (2002) 561–565.
    [36] S. Haile, Materials for fuel cells, Mater. Today 6 (2003) 24–29.
    [37] X. Zhang, S. Ohara, R. Maric, K. Mukai, T. Fukui, H. Yoshida, M. Nishimura, T. Inagaki, K. Miura, Ni-SDC cermet anode for medium-temperature solid oxide fuel cell with lanthanum gallate electrode, J. Power Sources 83 (1999) 170–177.
    [38] J.W. Yan, Z.G. Lu, Y. Jiang, Y.L. Dong, C.Y. Yu, W.Z. Li, Fabrication and testing of a doped lanthanum gallate electrolyte thinfilm solid oxide fuel cell, J. Electrochem. Soc. 149 (9) (2002) A1132–A1135.
    [39] S.P.S. Badwal, Stability of solid oxide fuel cell components, Solid State Ionics. 143 (2001) 39–46.
    [40] K. Murata, H. Okawa, S. Ohara, T. Fukui, Preparation of La(Sr)Ga(Mg)O3 electrolyte film by tape casting method, SOFC VII 368 (2001).
    [41] J. Akikusa, T. Yamada, K. Adachi, K. Hoshino, Development of low-temperature operation SOFC, SOFC VII 159 (2001).
    [42] I. Yasuda, Y. Baba, T. Ogiwara, H. Yakabe, Y. Matsuzaki, Development of anode-supported SOFC for reduced-temperature operation, SOFC VII 131 (2001).
    [43] T. Hibino, A. Hashimoto, M. Suzuki, M. Sano, A solid oxide fuel cell using Y-doped BaCeO3 with Pd-loaded FeO anode and Ba0.5Pr0.5CoO3 cathode at low temperatures, J. Electrochem. Soc. 149 (2002) A1503–A1508.
    [44] C. Huang, K. Fung, Degradation of rhombohedral (Y0.25Bi0.75)2O3 Solid Electrolyte, SOFC VII 393 (2001).
    [45] O. Yamamoto, Solid oxide fuel cells: fundamental aspects and prospects, Electrochim. Acta 45 (2000) 2423–2435.
    [46] G. Rietveld, P. Nammensma, J.P. Ouweltjes, Status of SOFC component development at ECN, SOFC VII 125 (2001).
    [47] J.W. Sevenson, K. Hasinska, T.R. Armstrong, Electrical and thermal properties of (La, Sr)(Ga, Mg, Co, Fe)O3, SOFC VI 275 (1999).
    [48] K. Masuda, A. Kaimai, K. Kawamura, Y. Nigara, T. Kawada, J. Mizusaki, H. Yugami, H. Arashi, Electrochemical reaction kinetics of mixed conducting electrodeson CeO2-based solid electrolytes, SOFC V 473 (1997).
    [49] C. Hatchwell, N.M. Sammes, I.W.M. Brown, Fabrication and properties of Ce0.8Gd0.2O1.9 electrolyte-based tubular solid oxide fuel cells, Solid State Ionics. 126 (1999) 201–208.
    [50] Y. Du, N.M. Sammes, Fabrication of tubular electrolytes for solid oxide fuel cells using strontium- and magnesium-doped LaGaO3 materials, J. Eur. Ceram. Soc. 21 (2000) 727–735.
    [51] S. Nessaraj, A. Raj, R. Pattabiraman, Alternate electrolyte material for intermediate temperature solid oxide fuel cells, Transactions of the SAEST 34 (2001) 89–96.
    [52] S.D. Vora, SECA Program at Siemens Westinghouse, Fourth Annual SECA Meeting, April 15, 2003.
    [53]Keegan C. Wincewicz, Joyce S. Cooper, Taxonomies of SOFC material and manufacturing alternatives, Journal of Power Sources 140 (2005) 280–296
    [54] K. Huang, J. Goodenough, A solid oxide fuel cell based on Sr and Mg LaGaO3 electrolyte: the role of a rare earth oxide buffer, J. Alloys Compd. 303–304 (2000) 454–464.
    [55] K.Yamaj, T.Horia, M.Ishikawa, etc. Chemical stability of the La0.9Sro0.1Ga0.8Mg0.2O3 electrolyte in a reducing atmosphere, Solid State Ionics, 1999, 121, 2 17-224
    [56] K.Yamaj, H.Negishi, T.Horia, etc. Compatibility of La0.9Sro0.1Ga0.8Mg0.2O3 as the electrolyte for SOFCs, Solid State Ionics, 1998 , 108, 415-421
    [57] N.T. Hart, N.P. Brandon, M.J. Day, N. Lapena-Rey, Functionally graded composite cathodes for solid oxide fuel cells, J. Power Sources 106 (2002) 42–50.
    [58] S. Yoon, J. Han, S. Nam, T. Lim, I. Oh, S. Hong, Y. Yoo, H. Lim, Performance of anode supported solid oxide fuel cell with La0.85Sr0.15MnO3 cathode modified by sol–gel coating technique, J. Power Sources 106 (2002) 160–166.
    [59] Doshj, V. Rajiv Richards, J. Carter, X. Wang, M. Krumpelt, Development of solid-oxide fuel cells that operate at 500℃, J. Electrochem. Soc. 146 (1999) 1273–1278.
    [60] H.Y.Tu, Y.Takeda, N.Imanishi, O.Yamamto, Ln1-xSrCoO3(Ln=Sm,Dy) for the electrode of solid oxide fuel cells, Solid State Ionics 100(1997) 283-288
    [61] M. Krumpelt, J. Ralph, T. Cruse, Argonne activity overview, in: SECA Core Technology Review, SECA, Sacramento, CA,2003.
    [62] L. Qiu, T. Ichikawa, A. Hirano, N. Imanishi, Y. Takeda,Ln1-xSrxCo1-yFeyO3-δ(Ln=Pr, Nd, Gd; x=0.2, 0.3) for the electrodes of solid oxide fuel cells, Solid State Ionics 158 (2003) 55– 65.
    [63] Jianfeng Gao, Xingqin Liu, Dingkun Peng, Guangyao Meng, Electrochemical behavior of Ln0.6Sr0.4Co0.2Fe0.8O3?δ (Ln = Ce, Gd, Sm, Dy) materials used as cathode of IT-SOFC, Catalysis Today 82 (2003) 207–211.
    [64] Murray E.P., Sever M.J., Barnett S.A., Electrochemical performance of (La, Sr)(Co, Fe)O3-(Ce, Gd)O3 composite cathodes. Solid State Ionics, 2002, 148:27-34.
    [65] L.-W. Tai, M.M. Nasrallah, H.U.Anderson, etc. Structure and electrical properties of LaxSr1-xCoyFe1-yO3. Part 1. The system La0.8Sr0.2CoyFe1-yO3, Solid State Ionics, 1995,76:259-271.
    [66] L.-W. Tai, M.M. Nasrallah, H.U.Anderson, etc., Structure and electrical properties of LaxSr1-xCoyFe1-yO3. Part 2. The system La1-xSrxCo0.2Fe0.8O3, Solid State Ionics, 1995,76: 273-283.
    [67] J. M. Ralph, A.C. Schoeler and M. Krumpelt, Materials Development for Lower Temperature Solid Oxide Fuel Cells, J. Mater. Sci., 2001, 36, 1161-1172
    [68] Z. Shao and S. M. Haile, A high-performance cathode for the next generation of solid oxide fuel cells, Nature, 2004, 431, 170-173
    [69] K.T. Lee, A. Manthiram, Characterization of Nd0.6Sr0.4Co1-yFeyO3?δ(0≥y≤0.5) cathode materials for intermediate temperature solid oxide fuel cells, Solid State Ionics 176 (2005) 1521 – 1527
    [70] Spacil, H.S. Electrical device including nickel-containing stabilized zirconia electrode, US Patent 3,558,360 (1970)
    [71] O.Marina, C.Bagger, S.Primdahl, M.Mogensen, A solid oxide fuel cell with a gadolinia-doped ceria anode: preparation and performance, Solid State Ionics. 123 (1999) 199–208.
    [72] S. Livermore, J. Cotton, M. Ormerod, Fuel reforming and electrical performance studies in intermediate temperature ceria-gadoliniabased SOFCs, J. Power Sources 86 (2000) 411–416.
    [73] Takashi Hibino, Atsuko Hashimoto, Takao Inoue, etc. A low-operating-temperature solid oxide fuel cell in hydrocarbon-air mixtures, Science 288 (2000) 2031-2033.
    [74] San Ping Jiang, Siew HWA Chan, A review of anode materials development in solid oxide fuel cell, J. Materials Science 39 (2004) 4405-4439.
    [75] Seungdoo Park, John M. Vohs, Raymond J. Gorte, Direct oxidation of hydrocarbons in a solid-oxide fuel cell, Nature 404 (2000) 265-267
    [76] Raymond J. Gorte, Seungdoo Park, John M, etc. Anode for direct oxidation of Dry hydrocarbons in a solid-oxide fuel cell, Advanced Materials 12 (2000) 1465-1469.
    [77] Steel. Brian C.H., Running on natural gas, Nature 400 (1999) 619
    [78] Yuanbo Lin, Zhongliang Zhan, Jiang Liu, Scott A. Barnett, Direct operation of solid oxide fuel cells with methane fuel, Solid State Ionics 176 (2005) 1827 – 1835
    [79] Liu, Jiang, Barnett, Scott A, Operation of anode-supported solid oxide fuel cells on methane and natural gas, Solid State Ionics 158 (2003) 11
    [80] Z.F.Zhou, C.Gallo, M.B.Pague, etc. Direct oxidation of jet fuels and Pennsylvania crude oil in a solid oxide fuel cell, J. Power Sources 133 (2004) 181-187
    [81] E. Perry Murray, T. Tsai, S.A. Barnett, A direct-methane fuel cell with a ceria-based anode, Nature 400 (1999) 649-651
    [82] Rangachary Mukundan, Eric L. Brosha, Fernando H.Garzon, Sulfur tolerant anode for SOFCs, Electrochemical and Solid-State Letters 7 (1) 2004 A5-A7.
    [83] Wei Liu, Maria Flytzani-Stephanopoulos, Total oxidation of carbon monoxide and methane over transition metal-fluorite oxide composite catalysts Ⅰ.Catalyst composition and activity, Journal of catalysis 153(1995)304-316.
    [84] Wei Liu, Maria Flytzani-Stephanopoulos, Total oxidation of carbon monoxide and methane over transition metal-fluorite oxide composite catalysts Ⅱ.Catalyst characterization and reaction kinetics, Journal of catalysis 153 (1995) 317-332.
    [85] Ramirez-Cabrera, E.,Atkinson, A. & Chadwick,D. The influence of point defects on the resistance of ceria to carbon deposition in hydrocarbon catalysis. Solid State Ionics 136 (2000), 825–831.
    [86] Marina,O. A. & Mogensen, M.High-temperature conversion of methane on a composite gadolinia-doped ceria-gold electrode. Appl. Catal.A 189 (1999), 117–126.
    [87] R.J.Gorte, J.M.Vohs, Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbons, Journal of Catalysis 216 (2003) 477-486.
    [88] R.J.Gorte, H.Kim, J.M.Vohs, Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbons, J. Power Sources 106 (2002) 10-15.
    [89] R.J.Gorte, J.M.Vohs, S.McIntosh, Recent developments on anodes for direct fuel utilization in SOFC, Solid State Ionics, 175 (2004) 1-6.
    [90] A.Atkinson, S.Barnett, R.J.Gorte, etc. Advanced anodes for high-temperature fuel cells, Nature Materials, 3 (2004) 17-27.
    [91] ZongPing Shao, Sossina M.Haile, Jeongmin Ahn, etc. A thermally self-sustained micro solid-oxide fuel-cell stack with high power density, Nature, 435 (2005)795-798.
    [92] Shanwen Tao, John T.S. Irvine, A redox-stable efficient anode for solid-oxide fuel cells, Nature, 2 (2003) 320-323.
    [93] Juan Carlos Ruiz-Morales1, Jesu′s Canales-Va′zquez1, Cristian Savaniu1, etc. Disruption of extended defects in solid oxide fuel cell anodes for methane oxidation, Nature 439 (2006) 568-571
    [94] A.Bieberle, L.J.Gauckler, State-space modeling of the anodic SOFC system Ni, H2-H2O/YSZ, Solid State Ionics, 2002(146):23-41
    [95] A.L. Dicks, K.D. Pointon , A. Siddle, Intrinsic reaction kinetics of methane steam reforming on a nickelr/zirconia anode, Journal of Power Sources 86 (2000) 523–530.
    [96] T.Horita, K.Yamaji, N.Sakai, et al., Electrode reaction of La1-xSrxCoO3-d cathode on La0.8Sr0.2Ga0.8Mg0.2O3-y electrolyte in solid oxide fuel cells, J. Electrochem. Soc., 2001, 148(5):A456-A462
    [97] 查全性,电极过程动力学理论,第三版,北京:科学出版社,2002.272
    [1] Richard, J.Brook, Processing of Ceramics. Materials and Technology, 17A, 71-72.
    [2] Tao Y, Zhao G W, Zhang W P, et al. Combustion synthesis and photoluminescence of nanocrystalline Y2O3: Eu phosphors. Materials Research Bulletin, 1997, 32(5):501-506
    [3] Lamas D qJuarez R E, Lascalea G E, Walsoe De Reca N E. Synthesis of compositionally homogeneous, nanocrystalline ZrO2-35mo1% CeO2 powders by gel-combustion. Journal of Materials Science Letters, 2001, 20: 1447-1449
    [4] Bianchetti M F, Juarez R E, Lamas D Gs et al. Synthesis of nanocrystalline CeO2-Y2O3 powders by a nitrate-glycine gel-combustion process. Journal of Materials Research, 2002, 17(9): 2185-2188
    [5] Purohit R D, Sharma B P, Pillai K T, et al. Ultrafme ceria powders via glycine-nitrate combustion. Materials Research Bulletin, 2001, 36: 2711-2721
    [6] 高冬梅,李朝辉,连建设等.溶胶-凝胶低温燃烧法合成 Cel-xGdxO2-x/2,固体氧化物纳米粉,中国稀土学报,2002, 20: 116-118
    [7] Chavan S V, Tyagi A K. Combustion synthesis of nanocrystalline yttria-doped ceria. Journal of Materials Research, 2002, 119(2): 474-480
    [8] Fu Yenpei, Lin Chenghsiung. Preparation of CexZr1-xO2 powders by combustion process. Journal of Alloys and Compounds, 2003, 354: 232-235
    [9] Frost, J.C., Nature 334,577(1988)
    [10] Wei Liu, Maria F.S., Journal of Catalysis, 153, 304-316(1995)
    [11] Levine, E.M., Robbins, C.R., and McMurdie, H. F.,(Eds.), “Phase Diagrams for Ceramists,” Am. Ceramic Soc. Westerville, OH, 1969
    [12] Tianshu,Z.; Hing,P.; Huang H.;Kilner, J, J.Mater. Proc. Technol., 2001,113,463
    [13] F. J. Pe′rez-Alonso, M. Lo′pez Granados, M. Ojeda, P. Terreros, S. Rojas, etc. Chemical Structures of Coprecipitated Fe-Ce Mixed Oxides, Chem. Mater. 2005, 17, 2329-2339
    [14] S.R.Jain, K.C.Adiga, V..R.P. Vemeker, A new approach to thermochemicalcalculation of condensed fuel-oxidizer mixtures, Combustion and Flame, 1981, 40(1):71-76
    [15] Masato Machida, Daisuke Kurogi, and Tsuyoshi Kijima, MnOx-CeO2 Binary Oxides for Catalytic NOx-Sorption at Low Temperatures. Selective Reduction of Sorbed Nox, Chem. Mater. 2000, 12, 3165-3170
    [16] PDFwin 81-0792
    [1] E. Perry Murray, T. Tsai, S.A. Barnett, A direct-methane fuel cell with a ceria-based anode, Nature 400 (1999) 649-651
    [2] Susana Larrondo a, Mar?′a Adelina Vidal a, Beatriz Irigoyen a, et al. Preparation and characterization of Ce/Zr mixed oxides and their use as catalysts for the direct oxidation of dry CH4, Catalysis Today 54 107–108 (2005) 53–59.
    [3] J.M. Ralph, J.A. Kilner, B.C.H. Steele, Improving Gd-doped ceria electrolytes for low temperature solid oxide fuel cells, Mater. Res. Soc. Symp. Proc. 575 (2001) 309.
    [4] T. Ishihara, T. Shibayama, M. Honda, H. Nishiguchi, Y. Takita, Transition metal doped LaGaO3 perovskite fast oxide ion conductor and intermediate temperature solid oxide fuel cell, Mater. Res. Soc. Symp. Proc. 575 (2000) 283.
    [5] T .Ishihara, H .Matsuda, and Y.Takita, Doped LaGaO3 perovskite type oxide as a new oxide ionic conductor, J. Am. Chem. Soc.,1994,116, 3801- 3803.
    [6] 衣宝廉, 燃料电池: 原理·技术·应用, 化学工业出版社 2003
    [7] M. Guillodo, P. Vernoux, J. Fouletier., Solid State Ionics 127 (2000) 99–107
    [8] G.C. Mather , F.M. Figueiredo , J.R. Jurado , J.R. Frade., Electrochimica Acta 49 (2004) 2601–2612
    [9] 王常珍,固体电解质和化学传感器,第一版,北京:冶金工业出版社,2000.33-38
    [10] 林祖纕,郭祝菎,严东生等,快离子导体(固体电解质)—基础、材料、应用,第一版,上海:上海科学技术出版社,1983.42
    [11] S.P.S.Badwal, N.Nardella, Polarization studies in solid oxide fuel cells with a fully automated galvanostatic current interruption technique, Solid State Ionics, 1990 (40-41):878-881
    [12] G.C. Mather , F.M. Figueiredo , J.R. Jurado , J.R. Frade., Electrochimica Acta 49 (2004) 2601.
    [13] Seungdoo Park, John M. Vohs & Raymond J. Gorte, Nature 404 ( 2000) 265.
    [14] S. Primdahl, M. Mogensen, J. Electrochem. Soc. 144 (1997), 3409-3419.
    [15] A. Bieberle, L.J. Gauckler, Solid State Ionics 146 (2002) 23–41.
    [1] E. Perry Murray, T. Tsai, S.A. Barnett, A direct-methane fuel cell with a ceria-based anode, Nature 400 (1999) 649-651
    [2] Rangachary Mukundan, Eric L. Brosha, Fernando H.Garzon, Electrochemical and Solid-State Letters 7 (1) 2004 A5-A7.
    [3] G.C. Mather , F.M. Figueiredo , J.R. Jurado , J.R. Frade., Electrochimica Acta 49 (2004) 2601.
    [4] F. J. Pe′rez-Alonso, M. Lo′pez Granados, M. Ojeda, P. Terreros, S. Rojas, etc. Chem. Mater. 2005, 17, 2329-2339.
    [5] Teruhisa Horita, Natsuko Sakai, Tatsuya Kawada, et al., J. Electrochom. Soc., Vol 143, (1996) 1161-1169.
    [6] J.Sasaki, J.Mizusaki, S.Yamauchi, Bull. Chem. Soc. Jan. 54(1981) 1688.
    [7] Hong-Ki Lee, Materials Chemistry and Physics, 77(2002) 639-646.
    [8] A.L. Dicks, K.D. Pointon , A. Siddle, Journal of Power Sources 86 (2000) 523–530.
    [9] Keegan C. Wincewicz, Joyce S. Cooper, Journal of Power Sources 140 (2005) 280–296
    [1] N.Q. Minh, J. Am. Ceram. Soc. 76 (1993) 563.
    [2] E. Perry Murray, T. Tsai, S.A. Barnett, Nature 400 (1999) 649.
    [3] E. Perry Murray, S.A. Barnett, in: S.C. Singhal, M. Dokiya (Eds.), Solid Oxide Fuel Cells Ⅵ, The Electrochemical Society Proceedings Series (1999) p. 1001, Pennington, NJ.
    [4] S. Park, J.M. Vohs, R.J. Gorte, Nature 404 (2000) 265.
    [5] S.C. Singhal, Solid State Ionics 135(2000) 305-313.
    [6] Doshj, V. Rajiv Richards, J. Carter, X. Wang, M. Krumpelt, J. Electrochem.Soc. 146 (1999) 1273–1278.
    [7] Murray E. P.; Sever M. J., Barnett S. A., Solid State Ionics,2002,148(1):27~43
    [8] Dusastre V., Miner J. A., Solid State Tonics, 1999,126(2): 163~174
    [9] Wang S.,Jiang, Y.,Zhang, Y.Yan,,et al. Electrochem. Soc. ,1998,145(5): 1932~1939
    [10] Jiang, Y. Wang Shizhong, Zhang Yahong, et al. Solid State Ionics, 1998, 110(2): 111~119
    [11] T. Ishihara, T. Shibayama, M. Honda, H. Nishiguchi, Y. Takita, Mater. Res. Soc. Symp. Proc. 575(2000) 238.
    [12] Balagopal S., Bay I., Hartvigsen J., et al. Intermediate temperature solid oxide fuel cell development-SECA core technology program review meeting, Advance Materials & Electrochemical Technologies, 2002, 65
    [13] H.Y.Tu, Y.Takeda, N.Imanishi, O.Yamamoto, Solid State Ionics 100(1997) 283-288
    [14] L.-W. Tai, M.M. Nasrallah, H.U.Anderson, etc. Solid State Ionics 76(1995) 259-271.
    [15] K.T. Lee, A. Manthiram. Solid State Ionics. 176(2005) 1527-1527.
    [16] K. Huang, H.Y. Lee, J.B. Goodenough, J. Electrochem. Soc. 145 (1998) 3220.
    [17] M. Mori, N.M. Sammes, Solid State Ionics 146 (2000) 301.
    [18] C.N.R. Rao, O.M. Parkash, P. Ganguly, J. Solid State Chem. 15 (1975) 186.
    [19] H. Hayashi, M. Kanoh, C.J. Quan, H. Inaba, S. Wang, M. Dokiya, H. Tagawa, Solid State Ionics 132 (2000) 227.
    [20] A.R. Ruffa, J. Mater. Sci. 15 (1980) 2258.
    [21] E.J.W. Verwey, P.W. Haaijaman, F.C, Romeijin and G.W. vanosterhout, Phillips Res.Rep.5 (1950) 173
    [22] Chih-Chung T. Yang, Wen-Cheng J. Wei , Andreas Roosen. Materials Chemistry and Physics 81 (2003) 134–142
    [23] M. Guillodo. P. Vernoux. J. Fouletier, Solid State Ionics[J], 2000,127:99.
    [24] L.Qiu, T. Ichikawa, A.Hirano, N. Imanishi, Y. Tackeda, Solid State Ionics[J], 2003,158:55-65
    [25] J. Gao, X. Liu, D. Peng, G. Meng, Catal. Today 82 (2003) 207.
    [26] T. Ishigaki, S. Yamauchi, K. Kishio, J. Mizusaki, K. Fueki, J. Solid State Chem. 73 (1988) 179.
    [27] S. Sekido, H. Tachibana, Y. Yamamura, T. Kambara, Solid State Ionics 37 (1990) 253.
    [28] R.A. De Souza, J.A. Kilner. Solid State Ionics. 106(1998) 175-187
    [1] N. Maffei), A.K. Kuriakose, Journal of Power Sources. 75(1998).162–166.
    [2] Sossina M. Haile, Acta Materialia 51 (2003) 5981–6000.
    [3] Joon-Ho Koh, Young-Sung Yoo, Jin-Woo Park, Hee Chun Lim, Solid State Ionics 149 (2002) 157– 166.
    [4] Tatsuya Takeguchia, Yukimune Kania, Tatsuya Yano. etal, Journal of Power Sources 112 (2002) 588–595

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700