带缝金属腔体、电子线路的微波耦合特性分析与基本电路的微波注入效应实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高功率微波与目标耦合效应研究是高功率微波应用与电子学系统加固领域的重要课题。本论文旨在研究微波与带缝腔体及基本电路的作用过程,在理论分析、数值模拟、微波注入实验的基础上,研究了微波与带缝腔体耦合、电路耦合及其电路传输效应问题,探索了一种系统研究和评估腔体封装系统微波效应的方法,对深入理解微波与带缝腔体及基本电路系统的相互作用具有重要意义。本文的主要研究内容和创新点有:
     1、对不同孔缝及孔缝阵列腔体的微波耦合特性进行了理论分析,得到了描述这些耦合特性的解析表达式,讨论了提高带缝腔体屏蔽性能的方法。首先利用互补天线理论,结合时域有限差分方法的数值模拟,分析了矩形、圆形、圆环、介质填充孔缝以及孔缝阵列的共振增强因子及共振耦合带宽与其尺寸和位置的关系。该理论适用于任意系统的带孔缝封装耦合特性的分析,所得到的耦合特性结论为系统的封装设计提供了依据。在此基础上利用空气离子化模型分析了矩形窄缝的击穿过程,推导了等离子体孔缝建立时间的表达式,详细讨论了微波波形和微波参数与等离子体孔缝的相互作用过程,并从物理上解释了矩形孔缝击穿时的尾融和频率偏移现象。微波在等离子体中的尾融现象为高功率微波窗口击穿的判断提供了理论参考,而利用尾融效应可制作等离子体限幅器,这是电子设备的高功率微波防护的一条可行途径。介质加载孔缝的耦合特性分析表明在模拟的情况范围内腔体的屏蔽性能最大可以提高6dB,介质加载是孔缝腔体耦合防护的另一条可行途径。最后总结了带缝腔体的耦合传输函数,完善了带封装系统的腔体耦合结构拓扑分析。
     2、对微波与电路的耦合特性进行了理论分析,利用得到的理论模型讨论了耦合过程中物理现象,为电子系统的电磁防护研究提供了参考依据。一方面利用等效传输线模型对同轴电缆及电子线路单线的耦合特性进行了理论研究,得到同轴电缆及电子线路单线的耦合防护的重点频带。另一方面在求解了等离子体覆盖电路的等效电路参数的基础上,利用拉普拉斯变换分析了沿线分布等离子体的产生对微波耦合和传输的影响,理论得到的频率漂移现象及随机加热为电路的防护提出了新的要求。
     3、采用理论分析、电路模拟和微波注入实验相结合的方法,研究了分别以74HC04和74LVCU04A两种芯片为核心的反相器基本缓冲及数模转换电路的微波效应问题,弥补了目前元器件和复杂电路系统的微波效应机理研究的不完整性,拓展了前人的研究成果。详细分析了线性干扰、非线性扰乱和损伤三个等级效应的微波有效功率阈值及其随频率、脉冲宽度和重复频率的影响,给出了线性干扰的电路放大倍数,通过反相器闩锁过程对非线性扰乱进行了机理分析,并利用元器件热积累模型推导了器件损伤与微波脉宽关系式。典型的实验结果是,在固定环境温度的注入实验中,有效注入功率大于26dBm,频率在3GHz以下的微波均可使设计的74HC04效应电路的噪声容限下降40%以上;有效注入功率大于23dBm,频率在3GHz以下的微波均可使设计的74LVCU04A效应电路的噪声容限下降40%以上;注入微波使非线性扰乱强度达到10%时的有效功率阈值比使线性干扰强度达到40%时的有效功率阈值大6-8dB。相同线性干扰或非线性扰乱强度的注入有效功率阈值近似随频率的提高而增大。在研究注入微波波形对微波效应的影响的实验中发现线性干扰随脉冲宽度的变化没有明显变化,而非线性干扰阈值随注入微波信号脉宽变化明显,拐点约为40-70ns不等,与反相器中的CMOS器件寄生三级管的导通电流积累有关。另一方面,注入微波的重复频率对微波线性干扰及非线性扰乱效应阈值影响很小。
     4、对微波注入实验结果进行了统计分析,证明了微波注入实验方案与实验结论的合理性,提出并研究了带缝腔体封装基本电路的微波效应的评估方法。数据处理主要包括无显著影响的参数的效应结果的统计检验、信号干扰规律的线性回归拟合检验、未知规律曲线的测量点置信区间估计、实验样本容量的选取以及损伤效应的“总体作用概率置信下限”分析,得到了确保实验可靠性和数据可信度的方法,同时利用网络算法对带孔缝金属封装的基本电路多层结构的微波耦合特性进行了分析,总结了系统传输函数矩阵。这些注入实验分析及数据处理的方法为电子系统微波注入效应实验提供了一条可行的技术方案。
The investigation of the interaction between high power microwave and the electronic system is an important topic in the area of the applications of high power microwave and the reinforcement of the electronic systems. The effects of microwace on cavity with slots and basic circuit are investigated by theoretical analysis, numerical simulation, and microwave injection experiment. The process of microwave-slot coupling in the cavity, microwave coupling into circuit, and the microwave effects on circuit transmission are studied, and the model and evaluation of microwave effects on system with metal enclosure are also provided, which is helpful to expore the effects of microwave on cavity with slots and basic circuit. The details of invesitagtion are as follows:
     1. The coupling characteristics of the slot and array slot are investigated in detail in order to improve the shielding performance of the cavity with slots. With complementary antenna theory, the resonant frequency, the resonant and enhancement factor, and the resonant bandwidth are derived with slots being rectangular, circular, annulus, media packing, and array. The expressions have wide application in studing the coupling characteristics of any metal cavity with slots and the results are helpful to the design of the cavity of the system. Using the analysis of the procession of the air ionization in the narrow rectangular slot, the relation between the breakdown time and peak incident electric field is derived to explain the tail erosion effects and the frequency upshifts. The analysis results can be used to the investigation of the widnow breakdown of the high power microwave and the design of plasma limiter for preventing high power microwave. The shielding performance of the cavity is improved 6 dB by the media coating, which is another microwave protection method in the microwave-slot coupling. The systemic and overall analysis of microwave-slot coupling gives a strong support for the investigation of microwave effects on the electronic systems and the improvement of shielding performance of electronic systems.
     2. The microwave coupling into the circuit is theoretically studied. The coupling performance of cables and one-line print circuit are studied by using the equivalent transform line model, and the key bandwidth of the coupling frequency is derived. By using the Laplace transformation, the influence of the plasma on the microwave coupling and transmission is explored, indicating the frequency upshift of the microwave and the random heating phenomenon, which is a new challenge to electromagnetic compatibility of the electronic system.
     3. Based on the theoretical analysis, simulation and the experiment of microwave injection into the circuit, the microwave effects on the buffer and analog-digital converter circuit are investigated on the basic circuit level. The core chip of the ciruit is 74HC04 or 74LVCU04A inverter. The study is concentrated on the parameters of the injected microwave pulses, such as amplitude, carrier frequency, pulse width, and repetition frequency, changing the microwave effects on the circuit operation at three levels, which are linear interference, nonlinear disturbance, and damage effect. The analysis of the amplification gain of the circuit voltages, the process of the inverter shutting up and the relationship between the width of microwave pulse and power threshold of damage indicate the mechanism of linear interference, nonlinear disturbance, and the damage effect respectively. Under the conditions of the fixed temperature, the threshold of the effective injected microwave power for reducing the noise tolerance in the output signal by 40 % is 26 dBm for 74HC04 and 23 dBm for 74LVCU04A, when the carried frequency of injected microwave frequency is below 3GHz. The threshold of the effective injected microwave power for reducing the noise tolerance in the output signal by 50 % is 4 to 6 dBm, which is lower than that for reducing the sampling interval of the output signal by 10%, with which the response changes from the linear interference to the nonlinear disturbance. The threshold of the effective injected microwave power increases with the carrier frequency, which is similar to the linear interference and nonlinear disturbance. The threshold of the microwave effects on the circuit is almost independent to the repetition frequency of the injection microwave in linear disturbance regim. The threshold of nonlinear disturbance has a strong relation to the pulse width of the injection microwave, and the inflection point of the relation curves is about 40 to 70 ns, which is related to the current shutting up. The microwave effects on basic circuit are the extension to the study of the elementary device and the complex circuit.
     4. The results of injected microwave experiment are treated by the statistic analysis and the overall effects are studied by the effects analysis and evaluation. The statistic analyses, consisting of the statistic analysis on the no obvious influence variable, the fitted linear line analysis for the linear interference, the analysis of the believable region of measurement data, the analysis of the sample requirement of the experiment, and the analysis of the lower believable limit of probability of the completely destroying effect, making sure the reliability of injected microwave experiment results and giving a further improvement suggestion to the study of microwave effects on electronic system. The transmission functions matrix of basic circuit with cavity enclosure is studied by the theoretical analysis and network algorithm, which is useful for the high power microwave radiation experiment on the circuit.
引文
[1] J. Benford and J. A. Swegle. High-power microwaves. Norwood, Mass: Artech House, 1992.
    [2] E. Schamiloglu, K. H. Schoenbach, and R. Vidmar. Basic research on pulsed power for narrowband high power microwave sources [C]. Proceedings of SPIE, Intense Microwave PulsesⅨ, 2002, 4720: 1-9.
    [3]周传明,刘国治等译. Robert J. Barker and Edl Schamiloglu编著.高功率微波源与技术.北京:清华大学出版社, 2005.
    [4] S. H. Gold and G. S. Nusinovich. Review of high-power microwave source research [J]. Rev. Sci. Instrum., 1997, 68(11): 3945-3974.
    [5] L. D. Bacon and L. F. Rinehart. A brief technology survey of high-power microwave sources [C]. Sandia National Laboratory report, 2001. [ 6 ] R. J. Barker and E. Schamiloglu. High-power microwave sources and technologies [M]. New York: The Institute of Electrical and Electronics Engineer, Inc., 2001.
    [7] J. N. Benford, N. J. Cooksey, J. S. Levine, et al. Techniques for High Power Microwave Source at High Average Power [J]. IEEE Trans. Plasma Sci., 1993, 21(4): 388-392.
    [8] D. B. McDermott, A. T. Lin, and K. R. Chu. The ninth special issue on high-power microwave generation [J]. IEEE Trans. Plasma Sci., 2002, 30(3): 731.
    [9] V. L. Granatstein and A. Igro. High-power microwaves. Norwood, Mass: Artech House, 1987.
    [10] J. N. Benford, S. Ashby, R. R. Smith, et al. High power microwave source development [J]. Technical report, Defense Nuclear Agency, 1995.
    [11]周传明,刘国治,刘永贵等.高功率微波源[M].北京:原子能出版社,2007:40-47.
    [12]《高功率微波源与技术》翻译组译,《高功率微波源与技术》[M].北京:清华大学出版社,2005.
    [13] J. A. Swegle and J. Benford. High-power microwave at 25 years: the current state of development [C]. Proceedings of the 12th international conference on high-power particle beams, Haifa, Israel, 1998.
    [14] J. Benford, J. A. Swegle, and E. Schamiloglu. High Power Microwaes, Second Edition [M]. New York, 2007.
    [15] R.K. Parker, R.H. Abramis, Jr., B.G. Danly and B. Levush, Vacuum Electronics,IEEE Trants. MiT, Vol. 50, pp. 835-845, March 2002.
    [16] R.H. Abrams, Jr., B. Levush, A.A. Mondelli and R.K. Parker, Vacuum Electronics for the 21' Century, IEEE Microwave Magazine, pp. 60-72, September 2001.
    [17]左群声,陈洪元,沈文军,史建东,现代军用电子设备抗高能电磁辐射研究,电子工程信息, 2003(5): 9-12.
    [18]谭水,王光明,杨洲,高功率微波(HPM)雷达抗反辐射导弹研究,飞航导弹, 2004(7): 57-60.
    [19]高功率微波系统和效应, Clayborne D Taylor, D.V.Giri著,杨德秀等译,中国工程物理研究院科技信息中心, 1995:108-109.
    [20]周介群,高功率微波武器[J].舰载武器. 2001.4: 33-38. [ 21 ] Zhou Dong-fang, Lin Jing-yu and Ren Jing-pu. "The Application of Electromagnetic Topology in the Analysis of the System Effects By HPM Striking". 2003 6th International symposium on antennas, propagation and EM theory proceedings, IEEE publication, 2003, 10: 454-457
    [22] Song Hang, Rao Yu-ping, Shao Ying, Zhou Dong-fang, Hu Tao, Niu Zhong-xia, et al,“Analysis of Microwave Electromagnetic Compatibility in Shielding Electronic System”, Electromagnetic Compatibility, 2004 International Symposium on, 2004, Vol. 2, pp. 691-695.
    [23]生芳,高功率微波对电子器件损伤的初步研究[D].沈阳,沈阳理工大学. 2007: 2.
    [24] ITRS 2003 Roadmap (2003) (Online), http://public.itrs.net.
    [25] D Nitsch, M Camp, F Sabath, et al. Susceptibility of some electronic equipment to HPEM threats. IEEE transaction on Electromagnetic Compatibility, 2004, 46(3): 380-389.
    [26] M Camp, Heyno. G, D Nitsch. UWB and EMP susceptibility of modern electronics. IEEE International Symposium on Electromagnetic Compatibility, 2001, (2): 1015-1020.
    [27] P. O. Leach, M. B. Alexander. Electronic systems failures and anomalies attributed to electromagnetic interference. National Aeronautics and Space Administration, Washington, DC, NASA Report 1374, 1995: 7-11.
    [28] A. J. Pesta, G. T. Capraro. A methodology for the evaluation of HPM effects on electronic systems. IEEE International Symposium on Electromagnetic Compatibility, 1990: 349-352.
    [29] J. C. Joly, D. J. Serafin. High power electromagnetic effects: methodology and associated tool. Proceedings of 27th General Assembly of the URSI, Masstricht,Netherlands, 2002.
    [30] M.P.Robinson, J. D. Turner, D. W. P. Thomas. Shielding effectiveness of a rectangular enclosure with a rectangular aperture[J]. Electronics letters,15th Aug. 1996, vol. 32, No. 17: 1559-1560.
    [31] Martin Paul Robinson, Trevor M. Benson, Christos Christopoulos. Analytical Formulation for the Shielding Effectiveness of Enclosures with Apertures[J]. IEEE transaction on Electromagnetic Compatibility, Aug, 1998, vol. 40(3): 240-248.
    [32]邓小斌,侯朝桢.有孔矩形腔屏蔽效能的传输线法分析[J].强激光与粒子束. 2004, 16(3): 341-344
    [33] I. Belokour et al. A higher-order mode transmission line model of the shielding effectiveness of enclosures with apertures[J]. IEEE International Symposium on Electromagnetic Compatibility, Aug, 2001, (2): 13-17.
    [34] H. A. Bathe.“Theory of diffraction by small holes”, Phy. Rev., Jan. 1944. vol. 66: 163-182.
    [35] X. Zheng, T. M. Antonsen Jr, E. Ott. Statistics of impedance and scattering matrics in chaotic microwave cavities: single channel case. Electromagnetics, 2006, 26(1): 3-25.
    [36] X. Zheng, T. M. Antonsen Jr, E. Ott. Statistics of impedance and scattering matrics in chaotic microwave cavities with multiple ports. Electromagnetics, 2006, 26(1): 37-55.
    [37] C. E. Baum. Electromagnetic Topology: A formal approach to the analysis and design of complex electronics systems. Proceeding of Zurich EMC Symposium, 1981: 209-241.
    [38] C. E. Baum. Generalizaton of the BLT equation. Proceeding of 13th Zurich EMC Symposium, 1999: 131-136.
    [39] P. Kirawanich, N. Kranthi, R. Gunda, et al. A method to characterize the interactions of external pulses and multiconductor lines electromagnetic topology based simulations. Journal of Applied Physics, 2004, 96(10): 5892-5897.
    [40] F. M. Tesche, C. M. Butler. On the addition of EM field propagation and coupling effects in the BLT equation. Ineration Notes, 2004, 588: 1-43. [ 41 ] C. E. Baum. Including apertures and cavities in the BLT formalism. Electromagnetics, 2005, 25(7): 623-635.
    [42] K. P. Ma, M. Li, J. L. Drewniak, et al., Comparison of FDTD algorithms for subcellular modeling of slots in shielding enclosures[J]. IEEE transaction on Electromagnetic Compatibility, May 1997, vol. 39: 147-155.
    [43]吕飞燕,沙斐.用FDTD法分析开孔金属板的屏蔽效能[J].北方交通大学学报, 2003, 27(3): 87-90
    [44] J. M. Jin and J. L. Volakis.A finite element-boundary integral formulation for scattering by three-dimensional cavity-backed apertures[J]. IEEE Transactions on Antennas Propagation, Jan. 1991, vol. 39: 97-104
    [45] R. P. Jedlicka et al. Coupling through tortuous path narrow slot apertures into complex cavities[J]. IEEE Transaction on Antennas Propagation, Mar. 2000, vol. 48(3): 456-466. [ 46 ] B. Audone et al. Shielding effectiveness of apertures in rectangular cavities[J].IEEE Transactions on Electromagnetic Compatibility, Feb. 1989, vo1.31(1): 102-106. [ 47 ] Taoyun Wang, Roger F. Harrington, Joseph R. Mautz. Electromagnetic Scattering from and Transmission Through Arbitrary Apertures in Conducting Bodies[J].IEEE Transaction on Antennas Propagation, Nov. 1990, 38(11): 1805-1814.
    [48] Graziano Cerri, Roberto De Leo, Valter Mariani Primiani. Theoretical and Experimental Evaluation of the Electromagnetic Radiation from Apertures in Shielded Enclosures[J]. IEEE Transactions on Electromagnetic Compatibility, Nov. 1989, 34(4): 423-432.
    [49]曹祥玉,梁昌洪,项铁铭,宗卫华.无限大导体表面孔缝耦合电磁能量分析[J].电波科学学报, 2002, 17(4): 418-425.
    [50] Nestor Pena and Michel M. Ney, Absorbing-boundary conditions using perfectly matched-layer (PML) technique for three-dimensional TLM simulations, IEEE Transactions on Microwave Theory Technology, Oct. 1997, 45(10): 1749-1755.
    [51] Sameer Hemmady, Xing Zheng, Thomas M. Antonsen, Jr., Edward Ott, et al. Universal statistics of the scattering coefficient of chaotic microwave cavities, Physics Review E 71, 056215, 2005.
    [52]王建国,刘国治,周金山.微波孔缝线性耦合函数研究[J].强激光与粒子束, 2003, 15(11): 1093-1099.
    [53]王建国,屈华民,华鸣等.微波脉冲与圆柱腔体耦合的时域有限差分模拟[C].高功率微波会议文集,北京, 1993.
    [54]王建国,刘国治,陈雨生等.微波脉冲孔缝线性耦合的数值与实验研究[J].微波学报, 1995, 11(4): 244-251.
    [55]周金山,刘国治,彭鹏,王建国.不同形状孔缝微波耦合的实验研究[J].强激光与粒子束, 2004, 16(1): 88-90.
    [56]王建国,屈华民,范如玉等.孔洞厚度对高功率微波脉冲耦合的影响[J].强激光与粒子束, 1994, 6(2): 282-286.
    [57]付继伟,侯朝祯,窦丽华.电磁脉冲斜入射时对孔缝耦合效应的数值分析[J].强激光与粒子束, 2003, 15(3): 249-252.
    [58]孟萃,陈雨生,王建国.瞬态电磁场对多孔洞目标耦合规律的数值研究[J].强激光与粒子束, 2000, 12(6): 732~736.
    [59]范颖鹏,杜正伟,龚克等.不同形状孔阵屏蔽效应的分析[J].强激光与粒子束, 2004, 16(11): 1441-1444.
    [60]夏昌明,路宏敏,周力.金属腔体孔阵电磁耦合的数值分析[J].电子质量, 2003,测试技术与自动化卷(8): 25-27.
    [61]朱占平.微波与内置物质块带缝腔体耦合的研究[D].长沙:国防科学技术大学, 2005.
    [62]刘强.微波脉冲与带缝单层腔体、嵌套腔体耦合的研究[D].长沙:国防科学技术大学, 2006.
    [63]李锐.微波脉冲与带孔阵腔体、带介质窗口腔体耦合的研究[D].长沙:国防科学技术大学, 2007.
    [64] G E. Sieger, J H. Yee, D J. Mayhall. Computer Simulation of Nonlinear Coupling of High-Power Microwaves With Slots, IEEE Trans Plasma Science, 1989, 17 (4): 616-621
    [65] R.A. Alvarez et al, Sparse Breakdown and Statistical,"Sneakthrough" Effects in Low-Altitude Microwave Propagation",UCRL-101807, Lawrence Livemore National Laboratory, 1990.
    [66] U. Jordan, D. Anderson, M. B?ckstr?m et al. Microwave Breakdown in Slots, IEEE Trans Plasma Science, 2004, 32(6): 2250-2262.
    [67] U. Jordan, D. Anderson, A. Kim, M. Lisak, M. B?ckstr?m, and O. Lundén,“Microwave Breakdown in Slots,”Chalmers University of Technology, G?teborg, Sweden, Tech. Rep. ISRN CTH-EMT-R--6--SE, 2004.
    [68] D. Anderson, A. Kim, M. Lisak, and K. Madsen,“Self-induced erosion and spectral breaking of high-power microwave pulses,”J. Plasma Phys., vol. 63, p. 329, 2000.
    [69] Wang J G, Chen Y S, Fan R Y, et al. Numerical studies on nonlinear coupling of high-power microwave pulses into a cylindrical cavity, IEEE Transactions on Plasma Science, 1996, 24(1): 193-197.
    [70] Zhang J H, Chen X Q, Jiang P,“A Coupling Effects of High Power Microwave”, Computational Electromagnetics and Its Applications, 2004 InternationalSymposium on, Vol. 3, pp. 280-283.
    [71]王建国,屈华民,范如玉等.高功率微波与带孔洞腔体非线性耦合的理论研究[J],强激光与粒子束, 1995. 7(1):108-116.
    [72]刘莹,张勇,谢拥军.“自顶向下”的电子系统EMC设计流程[J]. 2009年全国微波毫米波会议论文集/中国电子学会微波分会主编,北京:电子工业出版社. 2009.5.
    [73] D. J. Serafin, D. Dupouy, Potential IEMI threats against civilian air traffic. Proceedings of 18th General Assembly of the URSI, New Delhi, 2005.
    [74] L. E. Piergiorgio. Analysis and design of ultrawide-band and high-power microwave pulse interactions with electronic circuits and systems.
    [75] F. Sonnemann, J. Bohl. Susceptibility and vulnerability of semiconductor components and circuits against HPM. Proceedings of 27th General Assembly of the URSI, Masstricht, Netherlands, 2002. [ 76 ] Eriksson G. et al., Microwave Coupling into a Generic Object. FDTD Simulations and Comparisons with Measurements, Proceedings of 2001 IEEE International Symposium on Electromagnetic Compatibility, Montreal, Canada, August 13-17, 2001.
    [77] C. D. Taylor, D. V. Giri著,杨德秀等译,高功率微波系统和效应,中国工程物理研究院科技信息中心, 1995.2, pp: 86-87.
    [78] C. D. Taylor, N. H. Younan. Effects from high-power microwave illumination. Microwave Journal, 1992, vol. 6: 80-96.
    [79] S. Yang, Goldsman, Ramahi,“Modeling RF Signal Propagation Along On-Chip Interconnect and the Effect of Substrate Doping with Alternating-Direction-Implicit Finite-Difference Time-Domain (ADI-FDTD) Method,”27th Power Modulation Symposium and 2006 High Voltage Workshop (PMC 2006), May 14-18 2006, Washington DC.
    [80] K. Kim, A. A. Iliadis, V. L. Granatstein, Effects of microwave interference on the operational parameters of n-channel enhancement mode MOSFET devices in CMOS integrated circuits, Solid State Electronics, 2004, Vol. 48 Issues 10-11, pp. 1795-1799.
    [81] K. Kim and A. A. Iliadis, Impact of microwave interference on dynamic operation andpower dissipation of CMOS inverters, IEEE Transactions on Electromagnetic Compatibility, 2007, 49(2): 329-338.
    [82] Y. Bayram, K. Kim, P. C. Chang, J. L. Volakis, and A. A. Iliadis, High power EMI on digital circuits within automotive structures, 2006 IEEE International Symposium on Electromagnetic Compatibility, Jan. 2006.
    [83] K. K. Kim, A. A. Iliadis, and V. Granatstein. Effects of microwave interference in CMOS integrated circuits. Proceedings of International Semiconductor Devices Research Symposium , 2003. pp: 530-531.
    [84] T. M. Firestone,“RF Induced Nonlinear Effects in High-Speed Electronics" Masters of Science Thesis, University of Maryland, May 2004.
    [85] J. Rodgers,“HPM upset in communications systems," Invited talk presented at the Defense Threat Reduction Agency workshop on Microwave Effects, Sept., 2005, Alb. NM..
    [86] M. Camp, H. Garbe, D. Nitch. UWB and EMP susceptibility of modern electronics. IEEE International Symposium on Electromagnetic Compatibility, Jan. 2001.
    [87] H. Garbe, M. Camp. Susceptibility of different semiconductor technologies to EMP and UWB. Proceedings of 27th General Assembly of the URSI, Masstricht, Netherlands, 2002.
    [88] C. Zammit, B. Kerr. General electronic equipment microwave susceptibility trend as a function of frequency. IEEE Pulsed Power Symposium 2006, The Institution of Engineering and Technology, 2006: 59-61.
    [89] L. Siniv, Y. Parfenov, L. Zdoukhov, et al., Electromagnetic threats to the civil infrastructure. Proceedings of 18th General Assembly of the URSI, New Delhi, 2005.
    [90] S. M. Hwang, J. I. Hong, C. S. Huh. Characterization of the susceptibility of integrated circuits with induction caused by High Power Microwaves. Progress in Electromagnetics Research, PIER 2008, 81: 61-72.
    [91] J. God?, O. H. Arnesen, M. B?ckstr?m, et al., High Power Microwave effects on alarm systems and components. Proceedings of 29th General Assembly of the URSI, Chicago, USA, 2008.
    [92]方进勇,申菊爱,杨志强等.集成电路器件微波损伤效应实验研究[J].强激光与粒子束, 2004 , 15 (6) :591-594.
    [93]余稳,蔡新华,周传明等.硅二极管对高功率微波的非线性响应计算[J].强激光与粒子束, 2000, 12(3): 324-326.
    [94]陈曦,杜正伟,龚克.脉冲宽度对PIN限幅器微波脉冲热效应的影响[J].强激光与粒子束, 2010, 22(7): 1602-1606.
    [95] H. Y. Wang, J. Y. Li, H. Li, et al., Experimental study and SPICE simulation of CMOS inverters latch2up effects due to high power microwaves interference[J]. Progress in Electromagnetic Research, 2008, 87: 313 - 330.
    [96]汪海洋.高功率微波效应机理理论与实验研究[D].成都:电子科技大学.2009.
    [97] D. C. Wunsch, R. R. Bell. Determination of threshold failure levels of semiconductor diodes and transistors due to pulse voltages. IEEE Transaction on Nuclear Science, 1968, 15(6): 244-259.
    [98]李平,刘国治,黄文华.半导体器件HPM损伤脉宽效应机理分析[J].强激光与粒子束, 2001, 13(3): 353-356.
    [99] F. Sabath. HPEM susceptibility test on IT-Networks and their components. Proceedings of 29th General Assembly of the URSI, Chicago, USA, 2008.
    [100] M. B?ckstr?m, K. G. L?vstrand and B. Nordstr?m. The Swedish microwave test facility: Technical Features and Experience on Systems Testing. Proceedings of 27th General Assembly of the URSI, Masstricht, Netherlands, 2002.
    [101] S. N. Spark, B. A. Kerr, D. M. Parker. The High Power Microwave facility: Orion. IEEE Symposium Pulsed Power 2001, London. UK, 2001: 14-15.
    [102] F. Sabath, M. B?ckstr?m, B. Nordstr?m, et al., Overview of four European High-Power Microwave narrow-band test facilities. IEEE Transaction on Electromagnetic Compatibility, 2004, 46(3): 329-334.
    [103] R. Diane. Proposed HIRF test facility for aircraft testing. AIAA/IEEE Digital Avionics Systems conference-proceedings, 1997, (1): 4.2-22-4.2-25.
    [104] A.W. Reuben. The NASA high intensity radiated fields laboratory. AIAA/IEEE Digital Avionics Systems conference-proceedings, 1997, (1): 4.2-17-4.2-21.
    [105] J. P. K?rst, H. Garbe. Characterization of loaded TEM-waveguides using time-domain refectometry. IEEE International Symposium on Electromagnetic Compatibility, 1999, 1.
    [106] W. Coburn, M. Berry, T. Turter. Radio-frequency susceptibility experiments using a model 5317 GTEM cell. Book of Abstracts, EUROEM 2000 Euro Electromagnetics, Edinburgh, 2000: 26.
    [107] Effects of High Power Microwaves and Chaos in 21st Century Analog and Digital Electronics, Final Performance Report, AFOSR Grant Number F496200110374.
    [108] D. Price, E. Goldman, D. Nett, et al., DEW technology at the Titan Corporation. 1st International Energy Conversion Engineering Conference(IECEC), 2003, AIAA-2003-5913: 17-21.
    [109] L. Witt. The effects of intense RF pulses on electronic circuits and systems- a new university center-of-excellence. Abstracts of IEEE International Conference on Plasma Science, 2001.
    [110] G. G?ransson. HPM effects on electronic components and the importance of this knowledge evaluation of system susceptibility. IEEE International Symposiumon Electromagnetic Compatibility, 1999(1): 543-548.
    [111] M. B?ckstr?m, K. G. L?vstrand. Susceptibility of electronic systems to High-Power Microwave: summary of test experience. IEEE Transaction on Electromagnetic Compatibility, 2007, 43(3): 396-403.
    [112] M. B?ckstr?m, B. Nordstr?m and K. G. L?vstrand. Is HPM a threat against civil society? Proceedings of 27th General Assembly of the URSI, Masstricht, Netherlands, 2002.
    [113] D. M?nsson, R. Thottappillil, T. Nisson, et al., Vulnerability of European rail traffic management system to radiated intentional EMI. IEEE Transaction on Electromagnetic Compatibility, 2008, 50(1): 101-109.
    [114] D. J. Serafin, J. L. Lasseree, J. C. Bolomey, et al., Spherical near-field facility for microwave coupling assessments in the 100MHz-6GHz frequency range. IEEE Transaction on Electromagnetic Compatibility, 1998, 40(3): 225-234.
    [115] Y. Bayram, H. Garbe, and N. Danial. Influence of the technology on the destruction effects of semiconductors by impact of EMP and UWB pulses. IEEE Transactions Symoposium on Elecromagnetic Compatibility. 2002:87-92.
    [116] M. G. Backstrom, K. G. Lovstrand. Susceptibility of electronic systems to high power microwaves: summary of test experience [J]. IEEE Transactions on Electromagnetic Compatibility, 2004 , 46 (3) :396-403.
    [117]蒲天乐,刘长军,闫丽萍等.微型计算机微波辐照效应的实验研究[J].强激光与粒子束, 2006, 18 (9) :1549-1552.
    [118]王艳,马弘舸,孟凡宝等.计算机系统高功率微波效应[J],中国工程物理研究院科技年报, 2006:198-199.
    [119]刘长军,闫丽萍,范如东,等. L波段微波脉冲对微型计算机的辐照效应实验[J].强激光与粒子束, 2007, 19 (9):1580-1584.
    [120]江伟华,张驰译. J. Benford, J. A. Swegle. and Edl Schamiloglu著.高功率微波.北京:国防工业出版社.2009.
    [121] R. L. Gardner. A physical basis of empirical electromagnetic effects research. Proceedings of 28th General Assembly of the URSI, New Dehli, 2005.
    [122] C. A. Ropiak, D. C. Stoudt, R. L. Gardner, et al., Electromagnetic susceptibility data analysis using multivariate logistic regression. Proceedings of 27th General Assembly of the URSI, Masstricht, Netherlands, 2002.
    [123] C. A. Ropiak, R. L. Gardner, J. Kohlberg. Techniques relevant to the analysis of electromagnetic interference effects on electromagnetic systems. Proceedings of 28th General Assembly of the URSI, New Dehli, 2005.
    [124]方进勇,王建国,乔登江.模糊神经网络系统在微波效应数据处理中的应用[J],强激光与粒子束, 2002. 14(2): 291-294.
    [125]韩峰.模糊神经网络学习算法及其在电子系统易损性评估中的应用[D].西安:西安电子科技大学. 2004.
    [126]徐勇,丁武,杜祥碗.电子系统HPM效应敏感度评估新方法.强激光与粒子束, 2002, 9(4): 568-572.
    [127] Mohajer-Iravani, S. Shahparnia and O. M. Ramahi. Coupling reduction in enclosures and cavities using electromagnetic band gap structures. IEEE Transactions on Electromagnetic Compatibility, May 2006, 48(2): 292-303. [ 128 ] S. Shahparnia and O. M. Ramahi. A simple and effective model for electromagnetic bandgap structures embedded in printed circuit boards. IEEE Microwave and Wireless Components Letters, Oct. 2005, 15(10): 621-623.
    [129] T. Kamgaing and O. M. Ramahi. Design and modeling of high-impedance electromagnetic surfaces for switching noise suppression in power planes. IEEE Transactions on Electromagnetic Compatibility, Aug. 2005, 47(3): 479-489.
    [130] C. A. Balanis. Antenna theory: analysis and design(Third edition). John Wiley & Sons, Inc., Hoboken. 2005:160-177.
    [131]梁昌洪,谢拥军,官伯然著.简明微波[M].北京:高等教育出版社, 2006.
    [132] C. D. Taylor, R. S. Satterwhite, and C. W. Harrison. The response of a terminated Two-wire transmission line excited by non-uniform electromagnetic field. IEEE Transaction on Antennas Propagation, Nov. 1965, AP-38(6): 987-989.
    [133] C. A. Balanis. Advanced Engineering Electromagnetics. John Wiley & Sons, Inc., New York. 1989.
    [134]张克潜,李德杰著,微波与光电子学中的电磁理论(第二版)[M],北京:电子工业出版社, 2001:164-167; 362-370.
    [135] J. E.罗埃著,张静波,刘国政,黄妙珠译.电子与波的非线性互作用现象[M].北京:科学出版社, 1979: 50-52.
    [136] C. L. Jiang. Electromagnetic wave propagation and radiation in a suddenly created plasma. Ph.D. dissertation. Pasadena, 1972.
    [137] Philips semicouductors. Data sheet of 74HC04 hex inveter. The Netherlands: NXP Semiconductors, 2003. Http://ics.nxp.com/products/hc/datasheet/74HC04. pdf.
    [138] Philips semicouductors. Data sheet of 74LVCU04A hex inveter. The Netherlands: NXP Semiconductors, 1998. Http://ics.nxp.com/products/lvcu/datasheet/74LV CU04A.pdf.
    [139]邓永孝著.半导体器件失效分析.北京:宇航出版社. 1991:45-50.
    [140]高光渤,李学信编.半导体器件可靠性物理.北京:科学出版社. 1987:77-78.
    [141]赵殿甲编.可控硅电路.北京:冶金工业出版社. 1980:7-13.
    [142]《电子元器件电磁脉冲效应手册》编委会编.电子元器件电磁脉冲效应手册. 1992: 30-31.
    [143] D. C. Wunsch, R. R. Bell. Determination of threshold failure levels of semiconductor diodes and transistors due to pulse voltages. IEEE Transaction on Nuclear Science, 1968, 15(6): 244-259.
    [144] J.G.格雷姆等著,何同杰等译.运算放大器设计和应用.北京:科学出版社. 1978:74-96.
    [145]盛骤,谢式千,潘承毅编.概率论与数理统计(第二版)[M],北京:高等教育出版社, 1989: 253-258.
    [146]李科,马弘舸,周海京.微波效应实验最小样本量估计分析.强激光与粒子束, 2009, 21(4): 541-544.
    [147]汪仁官、陈荣昭译.实验设计与分析.北京:中国统计出版. 1998:544-564.
    [148]王学民编.应用概率统计.上海:上海财经大学出版社. 2005:198-200.
    [149]汪仁官、陈荣昭译.实验设计与分析.北京:中国统计出版. 1998:34-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700