实际热电制冷系统的动态特性及热—电转换过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着大规模通信设备和和数据处理器的封装微型化及接触界面高热流密度发展趋势,以界面热量传递为主的热管理问题普遍存在。热电制冷作为一项全固态主动式界面冷却技术,噪音低、结构紧凑、无制冷工质、运行经济、环境友好,正好契合了部分特殊领域的发展需求而有了新的发展契机。然而,在目前还没有高优值系数热电材料或某些新型热电材料进入实际应用的背景下,如何对现有的热电材料进行优化应用已成为具有现实意义的重要研究课题。不仅如此,国外学者开始关注采用脉冲电源驱动热电制冷系统获得瞬态过冷强化作用,但研究人员主要侧重于瞬态实现热电过冷效应的最大化(即以获得最大瞬态温差,或者最低瞬态过冷温度为目标),却忽略了量化各参数作用的影响权重,以及在实际应用中,强化制冷效应在特征时间区域的热稳定性相关的动态特性研究。
     课题来源于“国家自然科学基金委员会科学部主任基金”(No.51246005)、“2012年教育部博士点基金”(No.20120142110045)、中国科学院“低温工程学重点实验室开放课题基金”(No.CRYO201121)、和“湖北省自然科学基金”(No.2011CD13288)。论文的主要工作是结合已有介绍的热-电转换机理,分别从实验研究和数值模拟的角度出发,系统讨论分析了实际热电制冷系统中多参数耦合作用下的制冷特性及其热-电转换过程,并尝试对当前新型的脉冲驱动强化瞬态热电制冷技术进行了探索性研究。
     首先,系统讨论了热电模块在稳态工况下的综合影响因素及其热-电转换过程中的基本工作特性。分析结果表明:选择小截面的半导体制冷器件不仅不会对器件的整体制冷性能造成不利,且有利于节省材料。在工作条件和材料确定之后,制冷量只取决于“面积/长度”的比值(G因子),并且存在最佳推荐区间为0.06cm~0.15cm,使得热电制冷器件的理论制冷量达到最佳工况。另外,以两级为例,得到级间元件总数比值在推荐范围2≤r≤4时,相比单级模块更能突出多级热电堆的制冷效果优势。
     其次,从实验的角度,对实际热电系统在几组变工况参数影响下的动态制冷特性进行了分析。实验结果表明:通过强化热电模块冷端热沉与冷侧介质环境之间的热交换强度,可以明显提高基于瞬态界面效应的帕尔贴制冷量在较短时间内对目标热载荷作用的制冷效果。而当热端热沉换为两相热虹吸式双环路热管,系统的制冷效率COP达到0.48,相比传统散热器结构(风扇+翅片的热沉形式)的散热性能,制冷器COP提高了78%。再者,从理论分析的角度,针对实际热电制冷系统建立了非稳态热传递能量守恒
     方程,并采用本征函数法和有限差分法相结合,获得了关于时间项和空间项的数值求解表达式。同时,还通过改建的PWM性能测试台,实验验证了数学模型对于突变电压作用下的制冷性能趋势预测的可行性和准确性。最后,在已建立的非稳态数学模型基础上,自定义构造了脉冲波形函数作为模型
     中的电压输入信号,由此建立了描述脉冲驱动模式作用的热电制冷非稳态模型。同时,还引入了3个表征动态响应特性的特征时间,系统分析了脉冲特征参数对瞬态强化热电过冷效应的作用规律,并尝试揭示了脉冲驱动作用下的瞬态热-电转换过程以及热量分配机制。具体分析得到:从输入电功的高效转化目标出发,具有单调递增趋势的脉冲电压相比单调递减趋势的脉冲电压,更能保证实现更高效的热-电转化过程。而进一步权衡脉冲波形的经济性优势,以正弦波形最值得推荐,甚至超过了常用的方波形脉冲电压驱动实现的过冷强化作用效果。为了弥补冷侧热源削弱冷端界面制冷能力的不利影响,可以采取适当延长脉冲驱动时间或者增大脉冲突变幅度,以提供热源更多的额外帕尔贴制冷量。以上分析为脉冲模式驱动热电制冷器的运行过程控制、系统及其结构的优化设计和匹配,提供较为准确的理论预测和方案比较。
For the continuous miniaturization and high packaging density of large-scale telecommunications and datacenter embedded processors, the interfacial thermal management is universal. Thus, there has been a considerable resurgence of interest for the all-solid-state thermoelectric cooling technology in cooling the active regions of high heat flux. However, there has no practical application with high thermoelectric figure of merit or new thermoelectric materials at present. So, how to optimize the cooling performance with the available material is still an important task with practical significance. More than that, the pulsed thermoelectric super-cooling behavior, namely a phenomenon of a large decrease in temperature instantaneously available for the interfacial heat dissipation, gradually reveals more advantages. But, most previous work on the transient super-cooling mainly focused on the minimum supercooling temperature achievable, and ignored to clarify quantitatively the extent of the interactional effects on the enhancement of the transient supercooling performance, as well as the dynamics analysis on the characteristic time related to the system thermostability.
     The research was supported by National Natural Science Fund, DDSF (Grant No.51246005), the Doctoral Scientific Fund Project of the Ministry of Education of China (Grant No.20120142110045), Chinese Academy of Sciences (CAS) through Open Project Fund on the Key Laboratory of Cryogenic Engineering (Grant No. CRYO201121), and Natural Science Foundation of Hubei Province (Grant No.2011CD13288). In this work, based on the existing thermoelectric conversion mechanism, we investigated a synthetic approach on analyzing the coupling effects under various boundary and initial conditions, as well as an exploratory work for the pulsed thermoelectric supercooling technology.
     Firstly, after systematically analyzed the comprehensive influence factors and the essential cooling characteristics during the steady-state thermo-electric conversion process, it can be found that TE module with a small cross section will not make the deterioration of cooling performance, but save money on materials. For a fixed working condition, the cooling capacity depends only on G factor, along with the best ratio interval of0.06cm-0.15cm. Besides, TE module of2-4stages can make a satisfactory cooling capacity.
     Secondly, the dynamic characteristics of an actual thermoelectric cooling system were investigated experimentally. When coupled with an additional thermal load attached to Peltier junctions, the Petier cooling effect can be enhanced remarkably in a short time scale, if raising the heat transfer rate of the cold-junction heat sink. Similarly, instead of fan and fin heat sink on the hot side of TEC, there is an increase of78%in COP (namely the value of0.48) for the TEC system, due to the development of a thermosyphon with two phases to dissipate heat from the hot side.
     Thirdly, an unsteady heat transfer model for the actual TEC system was established. Then, combined with eigenfunction method and finite difference method, a numerical solution expression was derived with time-term and space-term. Certainly, the experiments by the PWM based performance test also verified the feasibility of this numerical method.
     Lastly, with the input of user-defined pulse mode function, a revised unsteady model was established, involving time-dependent imposed voltage pulse and time-dependent thermal boundary conditions on the transient supercooling behavior as well as the response of characteristic time and the pulse operation parameters during the periods of pulse start-up, pulse-on time and pulse-off time. Then, the coupling interaction of the thermoelectric effects on the amount of the availably electrical conversion was described. With the monotonically increasing pulse shape, it is more appropriate to achieve the maximum supercooling capacity. Especially for the economic evaluation, sine voltage pulse shows a greater advantage over other pulse shapes. To make up the interfacial cooling losses when coupled with an additional thermal load, the appropriate increase of pulse time or pulse amplitude can contribute to the full use of the electrical conversion. From this work, it can be served as a theoretical basis to guide the process control and system optimization for a thermoelectric cooling system driven by pulse modes in future.
引文
[1]王小群,杜善义.热电制冷技术在航空航天领域的应用[J].中国航天,2006,10:22-24.
    [2]H. Baumann, P. Heinemeyer, W. Staiger. Optimized cooling system for high-power semiconductor devices[J]. IEEE Transaction on Industrial Electronics,2001,48(2):298-306.
    [3]P.E. Phelan, V.A. Chiriac, T.Y.T. Lee. Current and future miniature refrigeration cooling technologies for high power microelectronics[J]. IEEE Transactions on Components and Packaging Technologies,2002,25(3):356-365.
    [4]何燕,聂宏飞,张洪兴.半导体制冷研究概述[J].科技创新导报,2009,24:53-56.
    [5]贾艳婷,徐昌贵,闫献国.半导体制冷研究综述[J].制冷,2012,31(1):49-55.
    [6]唐春晖.半导体制冷-21世纪的绿色“冷源”[J].半导体技术,2005,5(30):32-34.
    [7]刘华军,李来风.半导体热电制冷材料的研究进展[J].低温工程,2004,1(137):32-38.
    [8]陈东勇,应鹏展,崔教林.热电材料的研究现状及应用[J].材料导报,2008,22:280-282.
    [9]胡韩莹,朱冬生.热电制冷技术的研究进展与评述[J].制冷学报,2008,5(29):1-7.
    [10]周兴华.半导体制冷技术及应用[J].电子世界,2000,9:52-53.
    [11]G.S. Nolas, J. Sharp, H.J. Goldsmid. Thermoelectircs:basic principles and new materials developments [M]. New York:Springer,2001:177-207'.
    [12JS.B. Riffat, X.L. Ma. Improving the coefficient of performance of thermoelectric cooling systems:a review[J]. International Journal of Energy Research,2004,28(2):753-768.
    [13]R. Chein, G. Huang. Thermoelectric cooler application in electronic cooling[J]. Applied Thermal Engineering,2004,24(14-15):2207-2217.
    [14]S.B. Riffat, X. Ma. Thermoelectrics:a review of present and potential applications[J]. Applied Thermal Engineering,2003,23(8):913-935.
    [15]P.K.S. Nain, S. Sharma, J.M. Giri. Non-dimensional multi-objective performance optimization of single stage thermoelectric cooler[J]. Simulated Evolution and Learning, 2010,6457:404-413.
    [16]I. Sauciuc, G. Chrysler, R. Mahajan, M. Szleper. Air-cooling extension-performance limits for processor cooling applications[C]. Semiconductor Thermal Measurement and Management Symposium,19th Annual IEEE,2003:74-81.
    [17]X. Xu, V.D. Steven. Evaluation of a prototype active building envelope window system[J]. Energy and Buildings,2008,2(10):168-174.
    [18]R.A. Khire, A. Messac, V.D. Steven. Design of a thermoelectric heat pump system for active building envelope systems[J]. International Journal of Heat and Mass Transfer,2005,48(11):4028-4040.
    [19]J.G. Vian, D. Astrain, M. Dominguez. Numerical modeling and a design of a thermoelectric dehumidifier[J]. Applied Thermal Engineering,2002,22(24):407-422.
    [20]H.S. Choi, S.K. Yun. Development of a temperature-controlled car-seat system utilizing therm olectric device[J]. Applied Thermal Engineering,2007,27(5):2841-2849.
    [21]T.C. Chenga, C.H. Chengb, Z.Z. Huanga. Development of an energy-saving module via combination of solar cells and thermoelectric coolers for green building applications[J]. Energy,2011,36(1):133-140.
    [22]H.Y. Zhang, Y. C. Mui. M. Tarin. Analysis of thermoelectric cooler performance for high power electronic packages[J]. Applied Thermal Engineering,2010,30(6-7):561-568.
    [23]罗清海,汤广发,王静伟.小型和微型热电制冷的应用与前景[J].制冷空调与电力机械,2006,25(1):16-20.
    [24]石尧文,乔冠军,金志浩.热电材料研究进展[J].稀有金属材料与工程,2005,34(1):12-15.
    [25]朱文,杨君友,崔昆等.热电材料在发电和制冷方面的应用前景及研究进展[J].材料科学与工程,2002,20(4):585-588.
    [26]R. Funahashi, I. Matsubara, H. Ikuta. An oxide single crytal with high thermoelectric performance in air [J]. Japan Journal of Applied Physics,2000,(39):1127-1129.
    [27]R. Funahashi, M. Shikano. Bi2Sr2Co2Oy whiskers with high thermoelectric figure of merit [J]. Applied Physics Letter,2002,81(8):1459-1461.
    [28]D. Y. Chung, T. Hogan, P. Brazis. CsBi4Te6:a high-performance thermoelectric material for low-temperature application[J]. Science,2000,287:1024-1027
    [29]张丽鹏,于先进,肖小明.热电材料的研究进展[J].现代技术陶瓷,2006,(3):20-25.
    [30]C. Brain. Sales smaller is cooler[J]. Science,2002,295:1248-1249.
    [31]O. Karlstroml, H. Linkel, G. Karlstrom. Increasing thermoelectric performance using coherent transport behavior of thermoelectric coolers[J]. Physical Review E,2011,84(15):113-115.
    [32]卢希红,李茂德,潘葆炯.半导体制冷器温度场的数值分析[J].能源研究与信息,2001,17(1):18-21.
    [33]O. Yamashita. Effect of temperature dependence of electrical resistivity on the cooling performance of a single thermoelectric element[J]. Applied Energy,2008,10(85):1002-1014.
    [34]L.W. da Silva, M. Kaviany. Micro-thermoelectric cooler:interfacial effects on thermal and electrical transport[J]. International Journal of Heat and Mass Transfer,2004,47(10-11):2417-2435.
    [35]S. H. wang, A.J. Gross, H. Kim, S.W. Lee, N. Ghafouri. Micro-thermoelectric cooler: planar multistage[J]. International Journal of Heat and Mass Transfer,2009,7(52):1843-1852.
    [36]X.C. Xuan, K.C. Ng, C. Yap. Optimization of two-stage thermoelectric coolers with two design configurations[J]. Energy Conversion and Management,2002,43(15):2041-2052.
    [37]K.W. Lindler. Use of multi-stage cascades to improve performance of thermoelectric heat pumps[J]. Energy Conversion and Management,1998,39(10):1014-1019.
    [38]P. Naphon, S. Wiriyasart. Liquid cooling in the mini-rectangular fin heat sink with and without thermoelectric for CPU[J]. International Communications in Heat and Mass Transfer,2009,36(2):166-171.
    [39]S.B. Riffat, S.A. Omer, X. Ma. A novel thermoelectric refrigeration system employing heat pipes and a phase change material:an experimental investigation[J]. Renewable Energy,2001,23(2):313-323.
    [40]Z.X. Bian, A. Shakouri. Cooling enhancement using inhomogeneous thermoelectric materials[C].25th International Conference on Thermoelectrics,2006:264-267.
    [41]K.J. Landecke. Improvement of the performance of peltier junctions for thermoelectric cooling[J]. Journal of Physics C:Solid State Physics,1970,3:2146-2150.
    [42]J.W. Straehle, S. Rath, T. Hans. Prospects for peltier cooling of the cuprate superconductors[C].17th International Conference on Thermoelectric,1998:491-494.
    [43]M. Chung, N.M. Miskovsky, P.H. Cutler. Theoretical analysis of a field emission enhanced semiconductor thermoelectric cooler[J]. Solid-state Electronics,2003,47:1745-1751.
    [44]T. Caillat, J.P. Fluerial, G.J. Snyder. Thermoelectric properties of the incommensurate layered semiconductor GexNbTe2[J]. Journal of Materials Research,2000,15:2789-2793.
    [45]S.E. Mohamed, H.H. Saber. High efficiency segmented thermoelectric unicouple for operation between973and300K[J]. Energy Conversion and Management,2003,(44):1069-1088.
    [46]A. Miner, A. Majumdar, U. Ghoshal. Thermo-electro-mechanical refrigeration based on transient thermoelectric effects[J]. Applied Physics Letter,1999,75(8):1176-1178.
    [47]R. McCarty, D. Monaghan, K.P. Hallinan. Experimental verification of thermal switch effectiveness in thermoelectric energy harvesting[J]. Journal of Heat Transfer,2007,21(3):505-511.
    [48]U. Choshal, S. Ghoshal, C. Ddowell. Enhanced thermoelectric cooling at cold junction interfaces [J]. Applied Physics Letter,2002,80(16):3006-3008.
    [49]S.V. Dessel, B.J. Foubert. Active thermal insulators:Finite elements modeling and parametric study of thermoelectric modules integrated into a double pane glazing system[J]. Energy and Buildings,2010,42(5):1156-1164.
    [50]L.I. Analychuk. Optimal functions as an effective method for thermoelecric devices design[C].15th International Conference on Thermoelectrics, Chernivtsi,1996:223-226.
    [51]H. Yasuda, I. Ohnaka, Y. Inada. Evaluation of a thermoelectric device utilizing porous medium[C].Proceedings of IEEE International Symposium on Circuits and Systems,2001.
    [52]O. Yamashita. Effect of linear and non-linear components in the temperature dependences of thermoelectric properties on the cooling performance[J]. Applied Energy,2009,9(86):1746-1756.
    [53]W.H. Chen, C.Y. Liao, C.I. Hung. A numerical study on the performance of miniature thermoelectric cooler affected by Thomson effect[J]. Applied Energy,2012,89(11):464-473.
    [54]T.C. Harman, P.J. Taylor, M. P. Walsh. Quantum dot superlattice thermoelectric materials and devices[J]. Science,2002,297(5590):2229-2232.
    [55]R.Venkatasubramanian, E. Siivola, T. Colpitts. Thin-film thermoelectric devices with high room-temperature figures of merit[J]. Nature,2001,413(6856):597-602.
    [56]X.Fan, G. Zeng, C. LaBounty. SiGeC/Si superlattice micro-coolers[J]. Applied Physics Letters,2001,78(11):1580-1600.
    [57]V. Semenyuk. Cascade thermoelectric micro modules for spot cooling high power electronic components[C].21th International Conference on Thermoelectrics,2002:531-534.
    [58]V. Semenyuk. Miniature thermoelectric modules with Increased cooling power[C].25th International Conference on Thermoelectrics,2006:322-326.
    [59]V. Semenyuk. Thermoelectric micro modules for spot cooling of high density heat sources[C].20th International Conference on Thermoelectrics,2001:391-396
    [60]S. Linekin, S. Ben-Yaakov. Analysis of Thermoelectric Coolers by a Spice-Compatible Equivalent-circuit Model[J]. IEEE Journal of Power Electronics Letters,2005,3(2):63-66.
    [61]D. Mitrani, J. Salazar, A. Turo. One-dimensional modeling of TE devices considering temperature-dependent parameters using SPICE[J]. Microelectronics Journal,2009,40(9):1398-1405.
    [62]J. Chavez, J. Omega, J. Salazar, et al. Spice Model of Thermoelectric Elements Including Thermal Effects[C]. Proceeding of the Instrumentation and Measurement Technology Conference, Baltimore, USA,2000:1019-1023.
    [63]乐伟,李茂德,殷亮.半导体制冷系统的适应性调节[J].华北电力大学学报,2005, 32(2):108-112.
    [64]A. D. Downey, T. P. Hogan. Circuit Model of a Thermoelectric Module for AC Electrical Measurements[C]. Proceeding of the International Conference on Thermoelectrics, Clemson, USA,2005:79-82.
    [65]杨明伟,周兆英.微型热电制冷器非稳态特性的热电模拟研究[J].红外与激光工程,2008,37(3):432-435.
    [66]杨明伟,许文海,唐文彦等.热电制冷器的等效电路模拟与分析[J].红外与激光工程,2007,36(2):281-285.
    [67]任欣,张鹏.有限散热强度下半导体制冷器性能的实验研究[J].低温工程,2003,10(3):57-62.
    [68]齐臣杰,卞之,刘杰等.半导体制冷器优化设计工作状态的实验研究[J].低温工程,2007,24(2):43-46.
    [69]李茂德,卢希红.热电制冷过程中散热强度对制冷参数的影响分析[J].同济大学学报,2002,30(7):811-813.
    [70]A.M. Pettes, M.S. Hodes, K.E. Goodson. Optimized thermoelectric refrigeration in the presence of thermal boundary resistance[J]. American Society of Mechanical Engineers,2007,2:221-228
    [71]R.E. Simmons, M.J. Ellsworth, R.C. Chu. An assessment of module cooling enhancement with thermoelectric coolers[J]. Journal of Heat Transfer-Transactions of the ASME,2005,127:76-84,
    [72]R. Chein, Y. Chen. Performances of thermoelectric cooler integrated with microchannel heat sinks[J]. International Journal of Refrigeration,2005,6(28):828-839.
    [73]P. Wang, B.C. Avram, B. Yang. Enhanced thermoelectric cooler for on-chip hot spot cooling [C]. Proceedings of the ASME International Conference, Vancouver, BC, Canada,2007:249-258.
    [74]P. Naphon, S. Wiriyasart. Liquid cooling in the mini-rectangular fin heat sink with and without thermoelectric for CPU[J]. International Communications in Heat and Mass Transfer,2009,36(2):166-171.
    [75]H.S. Huanga, Y.C. Wenga, Y.W. Chang. Thermoelectric water-cooling device applied to electronic equipment [J]. International Communications in Heat and Mass Transfer,2011,37(8):140-146.
    [76]H.Y. Zhang, D. Pinjala, T.N. Wong. Single-phase liquid cooled microchannel heat sink for electronic packages [J].Applied Thermal Engineering,2005,25(10):1472-1487.
    [77]J. Bierschenk, D. Johnson.Extending the limits of air cooling with thermoelectrically enhanced heat sink[C].Proceedings of the9th ITHERM Conference, Las Vegas, NV, USA,2004:679-684.
    [78]Y.W. Changa, C.C. Changa, M.T. Keb. Thermoelectric air-cooling module for electronic devices[J]. Applied Thermal Engineering,2009,13(29):2731-2737.
    [79]D. Copeland. Optimization of parallel plate heatsinks for forced convection[C]. Proceedings of the16th IEEE SEMI-THERM Symposium, San Jose, CA, USA,2000:266-272.
    [80]J.G. Vian, D. Astrain. Development of a heat exchanger for the cold side of a thermoelectric module[J]. Applied Thermal Engineering,2008,28(12):1514-1521.
    [81]J. Esarte, J.M. Blanco, F. Mendia. Improving cooling devices for the hot face of Peltier pellets based on phase change fluids[J]. Applied Thermal Engineering,2006,10(26):967-973.
    [82]J.G. Vian, D. Astrain. Development of a thermoelectric refrigerator with two-phase thermosyphons and capillary lift[J]. Applied Thermal Engineering,2009,10(29):1935-1940.
    [83]M. Zhang, Z. Liu, G. Ma. The experimental investigation on thermal performance of a flat two-phase thermosyphon[J]. International Journal of Thermal Sciences,2008,47(9):1195-1203.
    [84]王衍金.高热流密度电子部件热电冷却技术研究[硕士学位论文].湖南:南华大学,2011.
    [85]蔡德坡.半导体制冷热端的分析与实验研究[硕士学位论文].江西:南昌大学,2010.
    [86]殷亮.李茂德.热电制冷系统的非稳态温度场数值模拟及其冷端温度的分析[J].低温工程,2003,5(6):54-60.
    [87]A. Chakraborty, B.B. Saha, S. Koyama. Thermodynamic modeling of a solid state thermoelectric cooling device:Temperature-entropy analysis[J]. International Journal of Heat and Mass Transfer,2006,17(49):3547-3554.
    [88]Y. Cheng, C. Shih. Maximizing the cooling capacity and COP of two-stage thermoelectric coolers through genetic algorithm[J]. Applied Thermal Engineering,2006,26(8-9):937-947.
    [89]Y. Cheng, W. Lin. Geometric optimization of thermoelectric coolers in a confined volume using genetic algorithms[J]. Applied Thermal Engineering,2005,25(17-18):2983-2997.
    [90]C. Cheng, S. Huang, T. Cheng. A three-dimensional theoretical model for predicting transient thermal behavior of thermoelectric coolers[J]. International Journal of Heat and Mass Transfer,2010,53(24):2001-2011.
    [91]B.J. Huang, C.L. Duang. System dynamic model and temperature control of a thermoelectric cooler[J]. International Journal of Refrigeration,2000,6(23):197-207.
    [92]李巍.热电制冷器的动态特性研究[硕士学位论文].江苏:南京航空航天大学,2006.
    [93]李运泽,魏传锋,袁领双.应用热电制冷器的微型航天器主动温度控制及仿真[J].机械工程学报,2005,41(10):149-152.
    [94]宋绍京,薛永祺.复杂环境下半导体致冷器的动态模型及温度控制[J].红外与毫米波学报,2005,24(5):352-356.
    [95]C.H. Cheng, S.Y. Huang. Development of a non-uniform-current model for predicting transient thermal behavior of thermoelectric coolers[J]. Applied Energy,2012,100:326-335.
    [96]M. Alata, M.A. Al-Nimr, M. Naji. Transient behavior of a thermoelectric device under hyperbolic heat conduction model[J]. International Journal of Thermophysics,2003,24(7):1753-1768.
    [97]M. Naji, M. Alata, M.A. Al-Nimr. Transient behavior of a thermoelectric device[J]. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy,2003,217(6):615-621.
    [98]G.E. Hoyes, K.R. Rao, D. Jerger. Fast transient response of novel peltier junctions[J]. Energy Conversion and Management,1977,17(1):45-54.
    [99]G.E. Hoyes, K.R. Rao, D. Jerger. Numerical analysis of transient behavior of thermoelectric coolers[J]. Energy Conversion and Management,1977,17(1):23-29.
    [100]R. Field, H. Blum. Fast transient behaviour of thermoelectric coolers with high current pulse and finite cold junction[J]. Energy Conversion and Management,1979,19(3):159-165
    [101]A. Miner, A. Majumdar. Thermoelectrical refrigeration based on transient thermoelectric effects[J]. Applied Physics Letter,1999,75(8):1176-1179.
    [102]J.E. Parrott. The interpretation of the stationary and transient behaviour of refrigerating thermocouples[J]. Solid State Electron,1960,1(2):135-143.
    [103]P.E. Gray. The dynamic behavior of thermoelectric devices[M]. NewYork:Wiley,1960.
    [104]V.A. Semeniouk, T.V. Pilipenko. Thermoelectric coolers with small response time[C].15th International Conference on Thermoelectrics,1996:301-306.
    [105]Y.S. Ju. Impact of interface resistance on pulsed thermoelectric cooling[J]. Journal of Heat Transfer,2008,130(1):14502-14503.
    [106]H.Y. Zhang. A general approach in evaluating and optimizing thermoelectric coolers[J]. International Journal of Refrigeration,2010,33(6):1187-1196.
    [107]R.G. Yang, G. Chen, A.R. Kumar, G.J. Snyder, J. P. Fleurial. Transient cooling of thermoelectric coolers and its applications for micro devices[J]. Energy Conversion and Management,2005,46(14):1407-1421.
    [108]G. Chen. Theoretical efficiency of solar thermoelectric energy generators [J]. Journal of Applied Physics,2011,10(109):1-8.
    [109]A. Chakraborty, K.C. Ng. Thermodynamic formulation of temperature-entropy diagram for the transient operation of a pulsed thermoelectric cooler[J]. International Journal of Heat and Mass Transfer,2006,49(11):1845-1850.
    [110]T. Thonhauser, G.D. Mahan. Improved supercooling in transient thermoelcetrics[J]. Applied Physics Letters,2004,85(15):3247-3249.
    [111]Y. Ezzahri, J. Christofferson, G. Zeng. Short time transient thermal behavior of solid-state microrefrigerators[J]. Journal of Applied Physics,2009,106(11):114503-114512.
    [112]M. Bartkowiak, G.D. Mahan. Heat and electricity transport through interfaces[J]. Semiconductors and Semimetals,2001,70:245-271.
    [113]Y.G. Gurevich, O.L. Mashkevich. The electron-phonon drag and transport phenomena in semiconductors[J], Physics Reports,1989,181(6):327-394.
    [114]R. McCarty, K.P. Hallinan, B. Sanders. Enhancing thermoelectric energy recovery via modulations of source temperature for cyclical heat loadings[J]. Journal of Heat Transfer,2007,129(6):749-755.
    [115]G.J. Snyder, J.P. Fleurial, T. Caillat. Super-cooling of peltier cooler using a current pulse[J]. Journal of Applied Physics,2002,92(3):1564-1569.
    [116]Q. Zhou, Z. Bian, A. Shakouri. Pulsed cooling of inhomogeneous thermoelectric materials[J]. Journal of Physics D:Applied Physics,2007,40(14):4376-4381.
    [117]O. Yamashita. Effect of linear temperature dependence of thermoelectric properties on energy conversion efficiency [J]. Energy Conversion and Management,2008,11(49):3163-3169.
    [118]G. Torzo, I. Soletta, and M. Branca. Using peltier cells to study solid-liquid-vapor transitions and supercooling[J]. European Journal of Physics,2007,28(8):13-27.
    [119]M. Terry. Thermoelectric phenomena, materials, and applications[J]. Annual Review of Materials Research,2011,41(26):433-438.
    [120]徐德高,金刚.脉宽调制变换器型稳压电源[M].北京:科学出版社,1983.
    [121]王晓强. BiTe基热电模块脉冲方波驱动下的性效研究[硕士学位论文].陕西:西安电子科技大学,2005.
    [122]D.M. Rowe. Handbook of thermoelectrics[M]. Boca Raton:CRC Press,1995.
    [123]Y.Y. Zhou, J.L. Yu. Design optimization of thermoelectric cooling systems for applications in electronic devices[J]. International Journal of Refrigeration,2012,35(4):1139-1144.
    [124]E. K. Iordanishvili, B. E. Malkovich. Experimental study of transient thermoelectric cooling[J]. Journal of engineering physics,1972,23(3):1158-1163.
    [125]L.S. Stilbans, N.A. Fedorovich. Cooling of thermoelectric cells under nonstationary conditions[J]. Soviet Physics-Technical Physics,1958,3:60-463.
    [126]V.P. Babin, E.K. Iordanishvili. Enhancement of thermoelectric cooling in nonstationary operation[J]. Soviet Physics-Technical Physics,1969,14:293-301.
    [127]R.L. Field, H.A. Blum. Fast transient behavior of thermoelectric coolers with high current pulse and finite cold junction[J]. Energy Conversion and Management,1979,19(3):159-165.
    [128]K. Landecker. Some further remarks on the improvement of peltier junctions for thermoelectric cooling[J]. Energy Conversion and Management,1974,14:21-33.
    [129]L.M. Shen, F. Xiao, H.X. Chen. Numerical and experimental analysis of transient supercooling effect of voltage pulse on thermoelectric element[J]. International Journal of Refrigeration,2012,35(4):1156-1165.
    [130]S. Lineykin, S. Beb-Yaakov. User-friendly and intuitive graphical approach to the design of thermoelectric cooling systems[J]. International Journal of Refrigeration,2007,30(5):798-804.
    [131]H.J. Goldsmid. Electronic refrigeration[M]. New York:Plenum Press,1986.
    [132]R. Kumar, R.G. Yang, G. Chen. Transient thermoelectric cooling of thin film devices[C]. Proceedings of the MRS Spring meeting,2000.
    [133]R.G. Yang, G. Chen, G.J. Snyder. Geometric effect on the transient cooling of thermoelectric coolers[C]. Proceedings of the MRS Fall meeting,2001.
    [134]J.P. Fleurial, A. Borshchevsky, M.A. Ryan. Thermoelectric microcoolers for thermal management applications[C]. Proceedings of the16th International Conference on Thermoelectrics,1997:641-645.
    [135]G. Min, D.M. Rowe. Cooling performance of integrated thermoelectric microcooler[J]. Solid-State Electron,1999,43(5):923-929.
    [136]R.C. Chu. The challenges of electronic cooling:past, current and future[J]. Journal of Electronic packaging,2004,126(4):491-500.
    [137]S.W. Angrist. Direct energy conversion [M]. Boston:4th ed., Allyn and Bacon Inc.,1992.
    [138]D. Astrain, J.G. Vian. Computational model for refrigerators based on peltier effect application[J]. Applied Thermal Engineering,2005,2(17):3149-3162.
    [139]M.J. Huang, R.H. Yen, A.B. Wang. The influence of the Thomson effect on the performance of a thermoelectric cooler[J]. International Journal of Heat and Mass Transfer,2005,48(24):413-418.
    [140]张文杰.热电器件的热弹性应力分析及外加电、磁场环境下的性能测试[硕士学位论文].甘肃:兰州大学,2007.
    [141]D.A. Neamen. Semiconductor physics and devices:basic principles [M]. Boston: Irwin Inc.,1992.
    [142]李玉东.半导体多级制冷性能组合优化设计[硕士论文].上海:同济大学,2007.
    [143]申利梅,陈焕新,钱小龙等.热电制冷模块热连接与电连接的性能优化分析[J].化工学报,2012,63(5):1367-1372.
    [144]A. Bejan. Advanced engineering thermodynamics[M]. New York:Wiley,1997.
    [145]D.M. Rowe.Thermoelectrics handbook:macro to nano[M]. Boca Raton:CRC Taylor and Francis,2006.
    [146]毛佳妮,陈焕新,谢军龙.半导体制冷器制冷性能的综合影响因素探讨及其优化设计分析[C].中国制冷学会2009年学术年会论文集,2009.
    [147]毛佳妮,申丽梅,李爱博.半导体制冷器制冷性能的综合影响因素探讨及其优化设计分析[J].流体机械.2010,38(7):68-72.
    [148]G.V. Parmelee, R.G. Huebscher. Heat transfer by forced convection along a smooth flat surface[J]. Heat Piping Air Conditioning,1974,19(8):115-123.
    [149]S.W. Churchill, H.S. Chu. Correlating equations for laminar and turbulent free convection[J]. International Journal of Heat and Mass Transfer,1975,18(2):1323-1327.
    [150]李爱博,陈焕新,申利梅.结构与性能参数对单级半导体制冷器性能影响的数值分析[J].流体机械,2011,39(2):72-76.
    [151]徐德胜.半导体制冷与应用技术[M].上海:上海交通大学出版社,1992.
    [152]D. Astrain, J.G.Vian. Study and optimization of the Heat Dissipater of a Thermoelectric Refrigerator[J]. Journal of Enhanced Heat Transfer,2005,12(2):159-170.
    [153J.G. Stockholm. Current state of peltier cooling[C]. XVIth Intetional Conference of Thermoelectrics, Dresden, Germany,1997:236-240.
    [154]D. Astrain, J.G. Vian, M. Dominguez. Increase of COP in the thermoelectric refrigeration by the optimization of heat dissipation[J]. Applied Thermal Engineering, 2003,40(3):2183-2200.
    [155]J.N. Mao, H.X. Chen, H. Jia. X.L. Qian. The Transient behavior of pulsed supercooling for thermoelectric coolers (TEC)[C].10th IIF/IIR Gustav Lorentzen Conference on Natural Refrigerants, Delft, Netherlands,2012.
    [156]J. E. Parrott. Interpretation of stationary and transient behavior of refrigerating thermocouples[J]. Solid State Electron,1960,1(14):135-143.
    [157]K.A. Landecher, W. Findlay. Study of fast transient behavior of peltier junctions[J]. Solid State Electron,1961,2(5):239-245.
    [158]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,2006.
    [159]J.N. Mao, H.X. Chen, H. Jia. The transient behavior of peltier junctions pulsed with supercooling [J]. Journal of Applied Physics,2012,1(112):014514-014523.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700