用户名: 密码: 验证码:
多热源联合供热系统调峰方式及综合优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来我国采暖热负荷增长迅速,采暖能耗占建筑总能耗的比例逐年提高,集中供热导致的季节性大气污染问题也日益严重。为改善现状,在我国能源结构调整的背景下,多热源联合供热系统逐渐得到更多的应用。但我国对多热源联合供热系统的技术研究存在一定的滞后,在系统的选择和设计方面尚缺乏系统的综合优化理论和决策模型。对此,本文在分析几种常见多热源联合供热系统形式和特点的基础上,建立了其热平衡方程,讨论了它们的运行调节方式,分析了调节方式对系统设计和运行的影响,考虑了经济、技术、能源和环境等指标对系统性能的影响,并将随机可接受性分析(SMAA)理论引入到多热源联合供热的综合优化研究中。
     文中分析了几种常见多热源联合供热系统形式、连接方式及特点,建立了二级网全部热力站等比例调峰和一级网集中燃气和燃煤锅炉调峰多热源联合供热系统的热平衡方程,对它们的优化运行调节方式进行了研究。结果表明一级网纯质调节不能满足多热源联合供热系统的运行调节要求。建立了以费用年值为目标函数的多热源联合供热系统技术经济分析模型和基于能质系数的能耗分析模型,研究了调节方式对多热源联合供热系统初投资和运行费用的影响,以及多种调峰方式的经济性及能耗随基本负荷比β值的变化趋势。
     探讨了二级网部分热力站调峰联合供热系统运行调节和负荷调度遵循的一般规律,结果表明该系统应采用质量-流量综合调节的方法进行供热调节,调峰开始后用改变热力站间流量分配的手段进行负荷调度。针对新建和改扩建的二级网部分热力站燃气锅炉调峰联合供热系统,分别给出了确定调峰锅炉的设置位置和容量及系统最优基本负荷比的方法。比较了二级网全部热力站燃气锅炉等比例调峰和部分热力站燃气锅炉调峰方案的优劣。
     建立了一种新型的基于最新大气扩散模式AERMOD的多热源联合供热系统热源环境影响模拟和评价模型,考虑了热源和人口分布的影响,在模拟污染物扩散空间分布的基础上,提出综合反映供热系统热源大气环境影响的指标——污染物平均空间分布(MSD)。利用政府间气候变化专门委员会(IPCC)的统计数据库和计算方法讨论多热源联合供热系统的温室气体CO_2减排潜力。将上述模型应用到几种常见多热源联合供热系统形式中,研究二级网全部热力站燃气锅炉等比例调峰和部分热力站燃气锅炉调峰,一级网集中燃气和燃煤锅炉调峰的大气环境影响,并比较集中和分布式燃气锅炉调峰对大气环境影响的区别。
     建立了多热源联合供热系统综合优化指标体系,引入基于互补判断矩阵的模糊层次分析法来计算指标权重。为克服采用单一权重向量对权重判断信息利用不足的缺点,提出权重可行域的概念,将传统的权重向量扩展到权重空间。
     最后,基于SMAA开展了多热源联合供热系统的综合优化。建立了可同时处理定量和定性问题的SMAA-2和SMAA-O有机结合模型,采用Monte-Carlo法模拟具有特定概率密度的指标和权重分布,通过计算各方案的相关统计量,如全局可接受性指标、效用函数、排序可接受性指标、中心权重向量、置信因子和交叉置信因子等进行综合优化,并分析了各方案对所有指标的部分效用函数,研究了不同指标对供热方案效用函数的贡献程度。利用上述模型研究以燃煤锅炉房为基本热源的多热源联合供热系统的调峰方式综合优化。基于SMAA的多指标综合优化不仅给出了指标表现值分布和权重可行域内可能的最优方案,还给出了这些方案达到最优的中心权重向量和概率,采用了交叉置信因子来进一步区分比较相近的方案,根据全局可接受性指标对方案进行排序,增强了综合优化结论的合理性和可靠性。
     本文在总结几种常见多热源联合供热系统形式的基础上,给出了不同系统设计及运行工况的相关参数计算方法,分别建立了各种系统的热平衡方程,在此基础上,深入研究了它们的调节方式及其对多热源联合供热系统的设计和运行的影响。系统分析了影响多热源联合供热系统性能的各种影响因素,并从经济、技术、能源及环境等方面对多热源联合供热系统进行了综合优化。本研究可以为今后多热源联合供热系统的规划和设计提供一定的理论基础,并为系统的合理运行起到一定的参考作用。
The district heating (DH) load in China has been increasing rapidly in recent years;the proportion of energy consumption in DH sector with respect to the total buildingenergy demand has also been growing year by year and the seasonal ambient airpollution issue posed by DH is becoming worse. In order to improve the currentsituation and under the background of energy structure reformation in China, combineddistrict heating systems are proposed and utilized in DH more extensively. However, thetechnical researches on the combined district heating system fall behind the currentrequirements; systematic multicriteria comprehensive optimization and decision makingmodels still need improving to guide the planning and retrofitting of the systems. Inview of this, the dissertation analyzes the peak-shaving heating modes andcharacteristics of different combined district heating systems; establishes their heatbalance equations; and discusses the regulation ways and their influences on the systemdesign and operation. This study also establishes a comprehensive optimization indexsystem from economic, technological, energetic and environmental points of views; andbased on the index system, stochastic multicriteria acceptability analysis (SMAA) isintroduced for the comprehensive optimization of combined district heating systems.
     The dissertation studies some of the most common combined district heatingmodes, their system connections and characteristics; establishes the heat balanceequations and optimizes the regulation ways for the combined district heating systemswith small decentralized gas-fired boilers proportionally setting in heating substations insecondary network and with large-scale centralized gas-or coal-fired boilers in primarynetwork. The results show that pure quality regulation method doesn’t satisfy theregulation requirements in the primary network of the combined district heating systems.In addition, the economic and energy analyses models are developed based on annualcost method and energy quality factor, respectively. The influences of regulation wayson initial investments&operation costs and the variations of economic and energyperformances with β value for different peak-shaving modes are also studied.
     As to the combined district heating system with partial substations settingpeak-shaving gas-fired boilers, this study discusses the common principles that shouldbe followed in operation regulation and heat load dispatch. The results indicates thatquality and quantity comprehensive regulation method should be used in such kind ofcombined district heating systems and heat load dispatch be carried out by the mannersof changing the flowrate allocation in different heating substations when peak heating begins. The models for determining setting positions and capacities of peak-shavinggas-fired boilers for newly-built and retrofitted combined district heating systems withpartial peak heating are proposed. Besides, the dissertation also compares the economicand energy performances for combined district heating systems with proportional peakheating in all substations and with partial peak heating based on the abovementionedmodels.
     This study presents a novel atmospheric environmental impact assessment andsimulation model for the combined district heating systems based on the air dispersionmodel of AERMOD. This model incorporates the factors from the deployment of heatsources at different β and population distribution. On the basis of modeling the groundlevel concentrations (GLCs) for different local pollutants, mean spatial distributions(MSD) of pollutants are proposed to quantitatively determine the atmosphericenvironmental impacts from the heat sources of the combined district heating system. Inaddition, IPCC (Intergovernmental Panel on Climate Chang) scenarios and databasesare used to calculate the CO2emissions from combined district heating systems; CO2emission reduction effect is then illustrated. In addition, the atmospheric environmentalimpacts of combined district heating systems with all substations proportionally settinggas-fired boilers and with partial substations setting gas-fired boilers in secondarynetwork, as well as with large-scale gas-and coal-fired boiler in primary network arestudied using aforementioned model too. Finally the atmospheric environmentalimpacts of centralized and decentralized gas peak heating modes are also comparedusing the same model.
     The multicriteria optimization index system for the combined district heatingsystem is established and criteria weight vectors are calculated using fuzzy analyticalhierarchy process (FAHP). In order to overcome the shortcomings of using a singleweight vector that may cause judgment information loss, the dissertation brings forwardthe concept of criteria feasible weight space, which extends the traditional weight vectorto weight space.
     Finally, the study conducts the multicriteria comprehensive optimization of thecombined heating system using SMAA; first establishes an integrated model combinedwith SMAA-2and SMAA-O which can simultaneously deal with quantitative andqualitative decision problems; then employs Monte-Carlo simulation technique toproduce the criteria measurements and weights according to their stochasticdistributions and to calculate statistic variables e.g., holistic acceptability indices, utilityfunctions, rank acceptability indices, central weight vectors, confidence and crossconfidence factors. On this basis, the partial utility functions respect to each criterion can be calculated to determine their contributions to the total utility function of eachcombined district heating alternative. Then, the model is used in the comprehensiveoptimization of a coal-fired boiler based combined district heating system. Theproposed multicriteria comprehensive optimization framework based on SMAA notonly supplies the ranking of combined heating alternatives considering the stochasticdistributions of criteria and feasible weight space, but also indicates the central weightvectors and the possibilities that they reach the optimal; furthermore, uses crossconfidence factors to differentiate alternatives that are very close to each other, andfinally ranks the alternatives using holistic acceptability indices, which enhance thereasonability and reliability of the multicriteria comprehensive optimization.
     To conclude, the dissertation studied several common combined district heatingsystems; showed the calculation of relevant heating parameters in design and operationstages; established heat balance equations for different combined district heatingsystems; studied the regulation ways and their influences on the design and operation ofthe combined district heating systems; analyzed the factors influencing the performanceof combined district heating systems; and carried out the multicriteria comprehensiveoptimization study considering the economic, technical, energetic and environmentalaspects. This study can provide a theoretical and decision-making basis for the planning,design and retrofitting of the combined district heating systems, and promote theunderstanding of this kind of systems, thus promote the judicious operation of them inthe future.
引文
[1]张沈生.城市供热模式评价理论方法及应用研究[D].长春:吉林大学博士学位论文,2009,4.
    [2] BP石油公司,中国国家发展与改革委员会能源局,国家统计局. BP世界能源统计[M].2005.
    [3]国家统计局,中国统计摘要(2011)[M].北京:中国统计出版社.
    [4]张旭.建筑节能发展缓慢的原因及其对策[J].徐州建筑职业技术学院学报,2005,(5):55-57.
    [5]江亿.中国的建筑节能—现状、问题和解决途径[R].清华大学建筑节能研究中心,2009,11.
    [6]江亿.我国建筑能耗趋势与节能重点[EB/OL].(2009-05-06)[2011-10-18].http://www.autooo.net/pv/htm/1/18053.html.
    [7]张东林.能源危机激发建筑节能潜力.中国建设报,2004,(8):25-27.
    [8]陈清如.我国燃煤大气污染的防治[J].苏州科技学院学报(工程技术版),2003,16(1):1-7.
    [9]巴雅尔塔.乌鲁木齐市大气污染现状成因与综合防治对策研究[D].乌鲁木齐:新疆农业大学硕士学位论文,2003,6.
    [10]List of Countries by Carbon Dioxide Emissions[EB/OL].[2011-10-18]. http://en.wikipedia. org/wiki/List_of_countries_by_carbon_dioxide_emissions.
    [11]China CO2Emissions Growing Faster Than Anticipated[EB/OL].[2011-10-18].http://news.nationalgeographic.com/news/2008/03/080318-china-warming.html.
    [12]http://www.chinanews.com/cj/cj-hbht/news/2009/11-26/1986490.shtml.[EB/OL].
    [2012-12-07].
    [13]International Energy Agency (IEA), Word Energy Outlook2010[EB/OL].
    [2012-03-12]. http://www.worldenergyoutlook.org/docs/weo2010/weo2010_es_english. pdf.
    [14]BP, Statistical Review of World Energy2012[EB/OL].[2011-10-18].http://www.bp.com/sectionbodycopy.do?categoryId=7500&contentId=7068481.
    [15]中国石油化工集团公司,天然气消费结构将显著变化[EB/OL].[2012-03-12].http://www.chinaccm.com/97/9713/971301/news/20100622/121335. asp.
    [16]国家能源局[EB/OL].[2012-03-12]. http://cn.reuters.com/article/cnInvNews/idCNCHINA-2498520100621.
    [17]国家发展改革委,财政部,住房城乡建设部,国家能源局.关于发展天然气分散能源的指导意见.[2012-03-12]. http://www.mof.gov.cn/Zhengwuxinxi/zhengcefabu/201110/t20111018_600273.htm.
    [18]张殿光.多热源联合供热的工况分析及最佳方案确定[D].哈尔滨:哈尔滨工程大学硕士学位论文,2005,1.
    [19]Barelli L, Bidini G, Pinchi E M. Implementation of a Cogenerative District Heating:Optimization of a Simulation Model for the Thermal Power Demand[J]. Energy andBuildings,2006(38):1434-1442.
    [20]Brki D, Tanaskovi T. Systematic Approach to Natural Gas Usage for DomesticHeating in Urban Areas[J]. Energy,2008(33):1738-1753.
    [21]王魁吉.多热源环网供热技术[J].暖通空调,2002,32(6):83-86.
    [22]贺平,陶永纯,许明哲.多热源联合供热工况分析[J].煤气与热力,1990,10(4):34-40.
    [23]贺平,陶永纯,孙刚.多热源联合供热系统管网设计原则与方法剖析[J].煤气与热力,1990,10(5):43-48.
    [24]林宗虎.我国能源政策的调整对工业锅炉发展的影响[J].工业锅炉,2002,(3):4-7.
    [25]刘京城.燃煤锅炉房与小型燃气锅炉联合供热的技术经济分析[D].哈尔滨:哈尔滨工业大学硕士学位论文,2008,6.
    [26]郑雪晶.二级网燃气调峰集中供热系统优化设计[J].天津大学学报,2007,40(8):948-951.
    [27]韩伟国,江亿,郭非.多种供热供暖方式的能耗分析[J].暖通空调,2005,35(11):106-110.
    [28]江亿,付林,刘兰斌.一种燃煤燃气联合供热的方法[P].2007年4月25日.申请号:200610114687.7;公开号:CN1952493A。
    [29]黄娇.燃气调峰锅炉房配置的综合评价[D].背景:北京建筑工程学院硕士学位论文,2008.
    [30]秦绪忠,江亿.多热源并网供热的水力优化调度研究[J].暖通空调,2001,31(1):11-16.
    [31]Tromborg E, Bolkesjo T F, Solberg B. Impacts of Policy Means for Increased Useof Forest-based Bio-energy in Norway[J]. Energy Policy,2007(35):5980-5991.
    [32]Zhou B, Ang B W, Poh K L. A Survey of Data Envelopment Analysis in Energy andEnvironmental Studies[J]. European Journal of Operational Research,2008(189):1-18.
    [33]许明哲,贺平.采暖热负荷延续图的确定方法[J].区域供热,1986,(1):4-11.
    [34]Ke eba A. Energetic, Exergetic, Economic and Environmental Evaluations ofGeothermal District Heating Systems: An Application[J]. Energy Conversion andManagement,2013,65(1):546-556.
    [35]Pirouti M, Bagdanavicius A, Ekanayake J, et al. Energy Consumption andEconomic Analyses of a District Heating Network[J]. Energy,2013,http://dx.doi.org/10.1016/j.energy.2013.01.065.
    [36]Klaassen R E, Patel M K. District Heating in the Netherlands Today: ATechno-economic Assessment for NGCC-CHP (Natural Gas Combined CycleCombined Heat and Power)[J]. Energy,2013,54(6):63-73.
    [37]Ke eba A, Alkan M A, smail Y, et al. Energetic and Economic Evaluations ofGeothermal District Heating Systems by Using ANN[J]. Energy Policy,2013,56(5):558-567.
    [38]Rentizelas A A, Tatsiopoulos I P, Tolis A. An Optimization Model forMulti-biomass Tri-generation Energy Supply[J]. Biomass and Bioenergy,2009(33):223-233.
    [39]Lahdelma R, Hakonen H. An Efficient Linear Programming Algorithm forCombined Heat and Power Production[J]. European Journal of OperationalResearch,2003,148(1):141-151.
    [40]Rong A Y, Lahdelma R. An Efficient Linear Programming Model and OptimizationAlgorithm for Trigeneration[J]. Applied Energy,2005(1):40-63.
    [41]Rong A Y, Lahdelma R. Efficient Algorithms for Combined Heat and PowerProduction Planning under the Deregulated Electricity Market[J]. European Journalof Operational Research,2007,176(2):1219-1245.
    [42]Casisi M, Pinamonti P, Reini M. Optimal Lay-out and Operation of Combined Heat&Power (CHP) Distributed Generation Systems[J]. Energy,2009(34):2175-2183.
    [43]Lozano M A, Ramos J C, Serra L M. Cost Optimization of the Design of CHCP(Combined Heat, Cooling and Power) Systems under Legal Constraints[J]. Energy,2010(35):794-805.
    [44]Thorin E, Brand H, Weber C. Long-term Optimization of Cogeneration Systems ina Competitive Market Environment[J]. Applied Energy,2005(81):152-169.
    [45]郑雪晶,由世俊,张欢,等.二级网燃气调峰集中供热系统优化设计[J].天津大学学报,2008,40(8):948-951.
    [46]郑雪晶,由世俊,姜南.二级网调峰集中供热系统运行调节方案[J].天津大学学报,2008,40(12):1511-1516.
    [47]由世俊,朱晏琳,郑雪晶,等.供热二级网侧设置燃气调峰锅炉的探讨及节能分析[J].暖通空调,2007,37(1):48-52.
    [48]朱晏琳.二级网调峰集中供热系统技术经济性研究[D].天津:天津大学硕士学位论文,2007.
    [49]穆振英,由世俊,郑雪晶,等.二级网调峰集中供热系统调峰系数研究[J].暖通空调,2008,38(增刊):13-17.
    [50]杨翠英.燃煤热电厂多种调峰方式的技术经济分析[D].哈尔滨:哈尔滨工业大学硕士论文,2009.
    [51]刘孟军,邹平华.多热源环状管网热源位置的优化分析[J].区域供热,2003,5:7-11.
    [52]Karlssona A, Gustavsson L. External Costs and Taxes in Heat Supply Systems[J].Energy policy,2003(31):1541-1560.
    [53]Holmgren K, Amiri S. Internalising External Costs of Electricity and HeatProduction in a Municipal Energy System[J]. Energy Policy,2007(35):5242-5253.
    [54]Henning D. MODEST—an Energy-system Optimization Model Applicable toLocal Utilities and Contries[J]. Energy,1997,22(12):1135-1150.
    [55]Sundberg G, Henning D. Investments in Combined Heat and Power Plants:Influence of Fuel Price on Cost Minimised Operation[J]. Energy Conversion andManagement,2002(43):639-650.
    [56]Alanne K, Saari A. Estimating the Environmental Burdens of Residential EnergySupply Systems through Material Input and Emission Factors[J]. Building andEnvironment,2008(43):1734-1748.
    [57]Gebremedhin A, Carlson A. Optimisation of Merged District-heatingSystems—Benefits of Co-operation in the Light of Externality Costs[J]. AppliedEnergy,2002(73):223-235.
    [58]Carlson A. Energy System Analysis of the Inclusion of Monetary Values ofEnvironmental Damage[J]. Biomass and Bioenergy,2002(22):169-177.
    [59]Oliver-Sola J, Gabarrell X, Rieradevall J. Environmental Impacts of theInfrastructure for District Heating in Urban Neighbourhoods[J]. Energy Policy,2009(37):4711-4719.
    [60]Pehnt M. Environmental Impacts of Distributed Energy Systems—The Case ofMicro Cogeneration[J]. Environmental Science&Policy,2008(11):25-37.
    [61]Pa A T, Bi X T, Sokhansanj S. A Life Cycle Evaluation of Wood Pellet Gasificationfor District Heating in British Columbia[J]. Bioresource Technology,2011(102):6167-6177.
    [62]Torchio M F, Genon G, Poggio A, et al. Merging of Energy and EnvironmentalAnalyses for District Heating Systems[J]. Energy,2009(34):220-227.
    [63]Genon G, Torchio M F, Poggio A, et al. Energy and Environmental Assessment ofSmall District Heating Systems: Global and Local Effects in Two Case-studies[J].Energy Conversion and Management,2009(50):522-529.
    [64]卢军,冯源,龚琪.大气污染的数值模拟[J].重庆大学学报(自然科学版),2005,28(9):88-91.
    [65]吴飞.集中供热管网的设计方法分析与改进[D].哈尔滨:哈尔滨工业大学硕士学位论文,2006.
    [66]李祥立,孙宗宇,邹平华.多热源环状热水管网的水力计算与分析.暖通空调,2004,34(7):97-101.
    [67]韩晓红,邹平华,陈光明.多热源环状热网的水力计算与事故工况分析[J].煤气与热力,2004,24(6):307-311.
    [68]王晓霞,周志刚,邹平华.多热源多环空间热网的水力工况模拟与分析方法[J].暖通空调,2004,34(11):131-134.
    [69]王晓霞.多热源环状热水管网故障工况及可靠性研究[D].哈尔滨:哈尔滨工业大学博士论文,2005,12.
    [70]王芃.基于图论的供热系统可靠性研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2010.
    [71]周游,李嘉.多热源环状热网水力计算研究[J].煤气与热力,2011,31(7):A19-A22.
    [72]秦绪忠,江亿.集中供热网的可及性分析[J].暖通空调,1999,29:2-7.
    [73]徐宝萍,付林,狄洪发.大型多热源环状热水网水力计算方法区域供热[J].区域供热,2005,(6):25-32.
    [74]郑雪晶,由世俊,姜南.二级网调峰供热管网系统的可靠性[J].天津大学学报,2008,41(2):163-167.
    [75]苏为华.多指标综合优化理论及方法问题研究[D].厦门:厦门大学博士学位论文,2000,9.
    [76]Chinese D, Nardin G, Saro O. Multi-criteria Analysis for the Selection of SpaceHeating Systems in an Industrial Building[J]. Energy,2011(36):556-565.
    [77]Avgelis A, Papadopoulos A M. Application of Multicriteria Analysis in DesigningHVAC Systems[J]. Energy and Buildings,2009(41):774-780.
    [78]Agrell P J, Bogetoft P. Economic and Environmental Efficiency of District HeatingPlants[J]. Energy Policy,2005(33):1351-1362.
    [79]H m l inen R P, M ntysaari J. Dynamic Multi-objective Heating Optimization[J].European Journal of Operational Research,2002(142):1-15.
    [80]Bowitz E, Trong M D. The Social Cost of District Heating in a Sparsely PopulatedCountry[J]. Energy Policy,2001,29(13):1163-1173.
    [81]Karlsson M, Gebremedhin A, Klugman S, et al. Regional Energy SystemOptimization–Potential for a Regional Heat Market. Applied Energy,2009(86):441-451.
    [82]Browne D, O’Regan B, Moles R. Use of Multi-criteria Decision Analysis toExplore Alternative Domestic Energy and Electricity Policy Scenarios in an IrishCity-region[J]. Energy,2010(35):518-528.
    [83]Molyneaux A, Leyland G, Favrat D. Environomic Multi-objective Optimisation of aDistrict Heating Network Considering Centralized and Decentralized HeatPumps[J]. Energy,2010(35):751-758.
    [84]Curti V, von Spakovsky M R, Favrat D. An Environomic Approach for theModeling and Optimization of a District Heating Network Based on Centralizedand Decentralized Heat Pumps, Cogeneration and/or Gas Furnace. Part I:Methodology[J]. International Journal of Thermal Sciences,2000,39(7):721-730.
    [85]Bouvy C, Lucas K. Multicriterial Optimisation of Communal Energy SupplyConcepts[J]. Energy Conversion and Management,2007(48):2827-2835.
    [86]Lazzarin R, Noro M. Local or District Heating by Natural Gas: Which is Betterfrom Energetic, Environmental and Economic Point of Views?[J]. Applied ThermalEngineering,2006(26):244-250.
    [87]Lipo ak M, Afgan N H, Dui N, et al. Sustainability Assessment of CogenerationSector Development in Croatia[J]. Energy,2006,31(13):2276-2284.
    [88]Pilavachi P A, Roumpeas C P, Minett S, et al. Multi-criteria Evaluation for CHPSystem Options[J]. Energy Conversion and Management,2006(47):3519-3529.
    [89]Saaty T L. The Analytic Hierarchy Process[M]. New York: McGraw-Hill,1980.
    [90]Saaty T L. Decision Making for Leaders[M]. Pittsburgh: RWS Publications,1992.
    [91]Wang J J, Jing Y Y, Zhang C F, et al. A Fuzzy Multi-criteria Decision-makingModel for Trigeneration System[J]. Energy Policy,2008(36):3823-3832.
    [92]Wang J J, Zhang C F, Jing Y Y, et al. Using the Fuzzy Multi-criteria Model to Selectthe Optimal Cool Storage System for Air Conditioning[J]. Energy and Buildings,2008(40):2059-2066.
    [93]Chatzimouratidis A I, Pilavachi P A. Technological, Economic and SustainabilityEvaluation of Power Plants Using the Analytic Hierarchy Process[J]. Energy Policy,2009(37):778-787.
    [94]Chatzimouratidis A I, Pilavachi P A. Objective and Subjective Evaluation of PowerPlants and Their Non-radioactive Emissions Using the Analytic HierarchyProcess[J]. Energy Policy,2007(35):4027-4038.
    [95]Chatzimouratidis A I, Pilavachi P A. Sensitivity Analysis of the Evaluation ofPower Plants Impact on the Living Standard Using the Analytic HierarchyProcess[J]. Energy Conversion and Management,2008(49):3599-3611.
    [96]Chatzimouratidis A I, Pilavachi P A. Multicriteria Evaluation of Power PlantsImpact on the Living Standard Using the Analytic Hierarchy Process[J]. EnergyPolicy,2008(36):1074-1089.
    [97]June W Y, Rosen M A. Assessing and Optimizing the Economic and EnvironmentalImpacts of Cogeneration/District Energy Systems Using an Energy EquilibriumModel[J]. Applied Energy,1999(62):141-154.
    [98]Zmeureanu R, Wu X Y. Energy and Exergy Performance of Residential HeatingSystems with Separate Mechanical Ventilation[J]. Energy,2007(32):187-195.
    [99]Yang L J, Zmeureanu R, Rivard H. Comparison of Environmental Impacts of TwoResidential Heating Systems[J]. Building and Environment,2008(43):1072-1081.
    [100] Mróz T M. Planning of Community Heating Systems Modernization andDevelopment[J]. Applied Thermal Engineering,2008(28):1844-1852.
    [101] Benayoun R, Roy B, Sussman N. Manual de Reference du Programme Electre[M].Pairs: Direction Scientifiques SEMA,1966.
    [102] Roy B. ELECTRE III: Un Algorithme de Classements Fonde sur uneRepresentation Floue des Preference en Presence de Criteres Multiples[J]. Cahiersde CERO1978(20):3-24.
    [103] Ghafghazi S, Sowlati T, Sokhansanj S, et al. A Multicriteria Approach to EvaluateDistrict Heating System Options[J]. Applied Energy,2010,87(4):1134-1140.
    [104] Brans J P. Operational Research[M]. Amsterdam: North-Holland,1984.
    [105] Diakoulaki D, Karangelis F. Multi-criteria Decision Analysis and Cost-benefitAnalysis of Alternative Scenarios for the Power Generation Sector in Greece[J].Renewable and Sustainable Energy Reviews,2007(11):716-727.
    [106] Dinca C, Badea A, Rousseaux P, et al. A Multi-criteria Approach to Evaluate theNatural Gas Energy Systems[J]. Energy Policy,2007(35):5754-5765.
    [107] Alanne K, Salo A, Saari A, et al. Multi-criteria Evaluation of Residential EnergySupply Systems[J]. Energy and Buildings,2007(39):1218-1226.
    [108] Keeny RL, Raiffa H. Decisions with Multiple Objectives: Preferences and ValueTradeoffs[M]. NewYork: Wiley,1976.
    [109] Li H T, Burer M, Song Z P, et al. Green Heating System: Characteristics andIllustration with Multi-criteria Optimization of an Integrated Energy System[J].Energy,2004(29):225-244.
    [110] Wei B, Song L W, Li L. Fuzzy Comprehensive Evaluation of District HeatingSystems[J]. Energy Policy,2010(38):5947-5955.
    [111]曹勇,陈光明,许文发.大中型城市供热模式优化方法研究[J].暖通空调,2002,32(1):5-8.
    [112]邓聚龙.灰色控制系统[M].北京:科学出版社,1993,46-217.
    [113] Lin Y, Liu S. A Historical Introduction to Grey Systems Theory[C]. Proceedingsof the2004IEEE international conference on systems, man and cybernetics,2004.
    [114] Xu G, Yang Y P, Lu S Y, et al. Comprehensive Evaluation of Coal-fired PowerPlants Based on Grey Relational Analysis and Analytic Hierarchy Process[J].Energy Policy,2011,39(5):2343-2351.
    [115] Huang Fu Y, Wu J Y, Wang R Z, et al. Study on Comprehensive Evaluation Modelfor Combined Cooling Heating and Power System (CCHP)[J]. Journal ofEngineering Thermophysics,2005(26):13-16.
    [116] Wang J J, Jing Y Y, Zhang C F. Weighting Methodologies in Multi-criteriaEvaluations of Combined Heat and Power Systems[J]. International Journal ofEnergy Research,2009(33):1023-1039.
    [117] Wang J J, Zhang C F, Jing Y Y. Multi-criteria Analysis of Combined Cooling,Heating and Power Systems in Different Climate Zones in China[J]. AppliedEnergy,2010(87):1247-1259.
    [118] Wang J J, Jing Y Y, Zhang C F, et al. Integrated Evaluation of DistributedTriple-generation Systems Using Improved Grey Incidence Approach[J]. Energy,2008(33):1427-1437.
    [119] Zadeh L A. Fuzzy Set[J]. Information and Control,1965,8(3):338-353.
    [120] Cengiz K. Fuzzy Multi-criteria Decision Making[M]. Springer;2008.
    [121] Lee S K, Mogi G, Kim J W, et al. A Fuzzy Analytic Hierarchy Process Approachfor Assessing National Competitiveness in the Hydrogen Technology Sector[J].International Journal of Hydrogen Energy,2008(33):6840-6848.
    [122]金菊良,魏一鸣,丁晶.基于改进层次分析法的模糊综合优化模型[J].水力学报,2004(3):65-70.
    [123]董万银.热电联产环境效益分析方法研究[D].北京:华北电力大学硕士学位论文,2005,1.
    [124]郑忠海,付林,狄洪发,等.利用层次分析法对城市供热方式的综合优化[J].暖通空调,2009,39(8):96-98.
    [125]杨建坤.北方小城镇供热模式分析与热网优化控制的研究[D].上海:同济大学工学博士学位论文,2007,3.
    [126]刘卫华.昂海松热力系统综合优化模型研究[J].热能动力工程,2003,18(3):233-238.
    [127]张云霞,丁明波.模糊数学在供热综合优化中的应用[J].兰州交通大学学报,2007,26(3):38-40.
    [128]郑利娟,蔡觉先.用灰色系统理论进行供热模式的优选[J].沈阳工程学院学报(自然科学版),2007,3(3):234-236.
    [129]周志刚.多热源联合供热系统优化调度[R].哈尔滨工业大学建筑热能工程系研究报告,2010.
    [130]王超.多热源联合供热系统热源负荷分配及其优化调度研究[D].北京:北京建筑工程学院硕士学位论文,2010.
    [131]雷翠红.热水供热系统的集中调节及能耗分析[D].哈尔滨:哈尔滨工业大学硕士学位论文,2005.
    [132] L en E. Use of Multicriteria Decision Analysis Methods for Energy PlanningProblems[J]. Renewable and Sustainable Energy Reviews,2007(11):1584-1595.
    [133] Chatzimouratidis A I, Pilavachi P A. Multicriteria Evaluation of Power PlantsImpact on the Living Standard Using the Analytic Hierarchy Process[J]. EnergyPolicy,2008(36):1074-1089.
    [134] Burton J, Hubacek K. Is Small Beautiful? A Multicriteria Assessment of SmallScale Energy Technology Applications in Local Governments[J]. Energy Policy,2007(35):6402-6412.
    [135] Lahdelma R, Hokkanen J, Salminen P. SMAA-stochastic MultiobjectiveAcceptability Analysis[J]. European Journal of Operational Research,1998(106):137-143.
    [136] Lahdelma R, Salminen P. SMAA-2: Stochastic Multicriteria AcceptabilityAnalysis for Group Decision Making[J]. Operations Research,2001,49(3):444-454.
    [137] Tervonen T, Figueira J R. A Survey on Stochastic Multicriteria AcceptabilityAnalysis Methods[J]. Journal of MCDA,2008(15):1-14.
    [138]贺平,孙刚,王飞,吴新华,编著.供热工程(第四版)[M].北京:中国建筑工业出版社.
    [139]周谟仁.流体力学泵与风机[M].北京:中国建筑工业出版社.
    [140] Thomas N, Peter N. A New Method for an Economic Assessment of Heat andPower Plants Using Dimensionless Numbers. Biomass and Bioenergy,2000,18(3):181-188.
    [141] Fu Y Z, Zhang X, Xu W F. Feasibility Study on Air-conditioners with Gas HeatPumps to Use in Residential Houses of Shanghai[J]. HVAC&Gas Institute ofTongji University,2006,14(2):75-78.
    [142]沈阳市热力工程设计研究院.城市供热热源工程投资估算指标[M].中国建设工业出版社,1999:59-61.
    [143]中华人民共和国建设部.全国市政工程投资估算指标第七分册〈燃气工程〉,
    [M].中国计划出版社,2007,11:30,108.
    [144]中华人民共和国建设部.全国市政工程投资估算指标第八分册〈集中供热热力管网工程〉[M].中国计划出版社,2007,11:18-50.
    [145] Zmeureanu R, Wu X Y. Energy and Exergy Performance of Residential HeatingSystems with Separate Mechanical Ventilation[J]. Energy,2007(32):187-195.
    [146]郑忠海.基于动态模拟和空间分布分析的城市能源综合规划研究[D].北京:清华大学博士学位论文,2009.
    [147]朱明善.能量系统的(有用能)分析[M].北京:清华大学出版社,1988.
    [148]段玉倩,贺家李.遗传算法及其改进[J].电力系统及其自动化学报,1998,(1):39-52.
    [149]王增强,曾碧.遗传算法中交叉算子的配对策略研究[J].汕头大学学报,2005,20(4):55-58.
    [150]中国气象局气象信息中心气象资料室,清华大学.中国建筑热环境分析专用气象数据集[M].北京:中国建筑工业出版社,2005,4.
    [151]苏强.大型燃煤热源热网末端燃气分散调峰优化设计研究[D].哈尔滨:哈尔滨工业大学硕士学位论文,2010.
    [152]江磊,黄国忠,吴文军.美国AERMOD模型与中国大气导则推荐模型点源比较[J].环境科学研究,2007,20(3):45-51.
    [153] US EPA. User’s guide for the AMS/EPA regulatory model-AERMOD.2004,September (EPA-454/B-03-001).
    [154]杨多兴,杨木水,赵晓宏,等. AERMOD模式系统理论[J].化学工业与工程,2005,22(2):130-135.
    [155] IPCC. http://www.ipcc.ch/ipccreports/tar/wg1/pdf/TAR-02.PDF.2001.
    [156] IPCC. http://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_2_Ch2_Stationary_Combustion.pdf.2006.
    [157] Isakov V, Venkatram A, Touma J S, et al. Evaluating the Use of Outputs fromComprehensive Meteorological Models in Air Quality Modeling Applications [J].Atmospheric Environment,2007(41):1689-1705.
    [158] Kesarkar A P, Dalvi M, Kaginalkar A, et al. Coupling of the Weather Research andForecasting Model with AERMOD for Pollutant Dispersion Modeling. A caseStudy for PM10Dispersion over Pune, India[J]. Atmospheric Environment,2007(41):1976-1988.
    [159] US EPA. Module3: Characteristics of Particles [EB/OL].[2013-01-25].http://www.epa.gov/eogapti1/bces/module3/index.htm.
    [160] Zou B, Zhan F B, Wilson J G, et al. Performance of AERMOD at Different TimeScales [J].. Simulation Modelling Practice and Theory,2010,18(5):612-623.
    [161] IPCC. http://www.ipcc.ch/ipccreports/tar/wg1/pdf/TAR-02.PDF.2001.
    [162] IPCC. http://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_2_Ch2_Stationary_Combustion.pdf.2006.
    [163] China Energy Net. http://www.china5e.com/show.php?contentid=77707.2010.
    [164] Tanino T. Fuzzy Preference Orderings in Group Decision Making[J]. Fuzzy Setsand System,1984(12):117-131.
    [165] Zhang J J. Fuzzy Analytical Hierarchy Process[J]. Fuzzy Systems andMathematics,2000(14):80-88.
    [166] Lv Y J. Weight Calculation Method of Fuzzy Analytical Hierarchy Process[J].Fuzzy Systems and Mathematics,2002(16):80-86.
    [167] Xu G L. Deriving Interval Weights from Interval Complementary JudgmentMatrix Based on Consistency Test[C]. Proceedings of20112nd AIMSEC,1046-1049.
    [168]徐泽水.三角模糊数互补判断矩阵排序方法研究[J].系统工程学报,2004,19(1):85-88.
    [169]刘胜,张玉廷,于大泳.小生境遗传算法修正三角模糊数互补判断矩阵一致性及排序[J].系统工程理论与实践,2011,31(3):522-529.
    [170] Lahdelma R, Salminen P, Hokkanen J. Using Multicriteria Methods inEnvironmental Planning and Management[J]. Environmental Management,2000,26(6):595-605.
    [171] Lahdelma R, Miettinen K, Salminen P. Ordinal Criteria in Stochastic MulticriteriaAcceptability Analysis (SMAA)[J]. European Journal of Operational Research,2003(147):117-127.
    [172] Lahdelma R, Salminen P. Classifying Efficient Alternatives in SMAA Using CrossConfidence Factors. European Journal of Operational Research[J].2006,170(1):228-240.
    [173] Tervonen T, Lahdelma R. Implementing Stochastic Multicriteria AcceptabilityAnalysis[J]. European Journal of Operational Research,2007,178(2):500-513.
    [174] Hokkanen J, Lahdelma R, Salminen P. Multicriteria Decision Support in aTechnology Competition for Cleaning Polluted Soil in Helsinki[J]. Journal ofEnvironmental Management,2000(60):339-348.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700