罐体用大规格3104铝合金材料制备、组织与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文结合中国铝业公司科技基金项目,以易拉罐罐体用3104铝合金材料为研究对象,从现场生产线上取样,采用显微硬度、拉伸力学试验、金相、X射线衍射、扫描和透射电子显微分析以及JMatPro软件模拟,对大规格铸锭特性及其均匀化处理、热轧、冷轧等全流程关键工艺控制因素进行研究,在此基础上,深入探讨了3104铝合金薄带成分-组织结构和性能之间的关系。获得了以下创新性成果:
     (1)3104铝合金大规格铸锭横截面上明显的宏观偏析,从铸锭表面到中心,各元素含量差别很大,Ti含量极差达到0.025%,Mg含量的极差达到0.34%,Ti元素的偏析规律与其他元素相反。从铸锭表层到中心,晶粒和初生化合物尺寸逐渐增大。3104铝合金大规格铸锭横截面上不同部位的微观偏析也是不均匀的,铸锭表层晶内Mg分布较均匀,而铸锭中部存在Mg的晶内偏析。大规格铸锭必须均匀化。
     (2)随均匀化温度的升高和时间的延长,晶粒内部的偏析逐步减少,显微硬度趋于一致;晶内发生(AlMnSi)和(AlMnFeSi)化合物析出,在590℃以下温度均匀化后析出不均匀,晶界和晶粒中心析出少;600℃以上均匀化后,析出相长大,密度减小,在晶内分布更为均匀。与此同时,晶粒边界区域的铝化物逐步溶解、熔断和球化,部分Al6(FeMn)相转变为α-Al12(MnFe)3Si相;大生产条件下3104合金铸锭最佳均匀化处理工艺为600℃/8-12h。
     (3)热轧过程过程中化合物的破碎效果非常明显,但热粗轧板坯在厚度和宽度方向上的组织还存在不均匀性,表层为完全再结晶组织,中心部位为热轧变形组织,中间过渡层为部分再结晶组织。经过热精轧后,热轧带材整个断面基本上是完全再结晶组织。
     (4)热精轧终轧温度和冷却速度对热精轧带材的组织有明显影响,终轧温度愈高、冷却速度愈慢,立方织构含量愈高。终轧温度为340℃和冷却速度为1℃/min时,立方织构含量从热粗轧板坯的30%左右提高到热精轧带材的60%以上。
     (5)冷轧过程中,随冷轧压下量增大,中部的第二相尺寸略有减小,冷轧后铸锭组织的不均匀性无法彻底消除;冷轧变形量、冷却速度等因素影响冷轧卷材织构的种类,终轧温度则无明显的影响。
     (6)冷轧变形量、终轧温度和薄带冷却速度对成品薄带织构含量和制耳率有很大影响,冷轧变形量越大,终轧温度越低,形变织构的α、β取向密度值越大,即形变织构含量越高,制耳率越大;在相同终轧温度条件下,缓冷比快冷的薄带β取向密度更大,制耳率更高;由于带材边部冷却不均匀,带材边部的取向线分布规律性不如中部,带材边部的制耳率高于中部。
     (7) Fe/Si比低和Fe含量低的3104罐体料具有更高的立方织构含量,制耳率更小,Al(Fe,Mn,Si)相含量更高,化合物颗粒更小,力学性能更合适,应用性能更好。
Supported by the aluminum corporation of China technical fund,3104aluminum alloy strips used for canbody were investigated by the methods of micro-hardnessTesting, property testing, optical observation, SEM, TEM, XRD and JMatPro software simulation. The whole key processes for homogenization, hot rolling and cold rolling were studied. Based on this, the relationship between microstructures and properties was further discussed. The main results of the research are as follows:
     (1) Macro-segregation exists in the cross-sections of3104aluminum alloy largescale ingot, From the surface to the center of the ingot, The maximum differences of Ti contents reached0.025%, and the maximum differences of Mg contents reached0.34%, the rule of segregation is reverse,the grain and initial compounds size increase from surface to center of ingot. The micro-segregation was inhomogeneous at different positions, Mg distributed homogeneously in the surface of ingot and in-homogeneously in the center of ingot. It is necessary to homogenize for the largescale ingots.
     (2) With the increase of homogenization temperatures and the prolongation of homogenization time, the micro-segregation in the grains gradually decreased, the difference of micro-hardness gradually decreased.(AlMnSi) and (AlMnFeSi) phase precipitated in the grains. Homogenized below590℃, precipitates is small, and the distribution is uneven, in the grain and on the boundary is few. Homogenized up600"C, the intensity of precipitates decreased and the size of precipitates increased, the distribution is more homogenous. Meantime, the aluminide gradually dissolved and parts of Al6(FeMn) phase gradually transformed into a-Al12(MnFe)3Si phase. Under the production conditions, the proper homogenization treatment for3104ingot is600℃/8-12h.
     (3) The surface, center and interlayer of hot roughing sheet consisted of fully recrystallized, hot-rolling deformed and uncompletely recrystallized structure. The initial compounds were broken and distributed in-homogeneously. After hot finish rolling, the whole section of strip consisted of fully recrystallized structure.
     (4) The final rolling temperature and cooling rate had great and obvious effect on the structure of hot finishing trips. The final rolling temperature were higher and the cooling rate were lower, the content of cube texture was higher. When the final rolling temperature was340℃and the cooling rate was1℃/min, the content of cube texture increased from30%in hot roughing sheet into above60%in hot rolled trip.
     (5) During cold rolling, with the increase of cold rolling reduction, the size of the second phase decreased in the center of the material. After cold rolling, the structure inhomogeneity of the ingot can not be eliminated ultimately. The cold reduction and cooling rate affect the kinds of texture, but the final rolling temperature has no obvious effect.
     (6) The contents of clod rolling texture and earing were affected by deformation rate, final rolling temperature and cooling rate. With the increase of cold rolling reduction and the decrease of final rolling temperature, the intensity of α、β deformation texture is higher, the deformation texture and earing ratio increased. At the same final rolling temperature, the intensity of β texture and earing ratio were higher under the slow cooling rate. Due to the inhomogeneity of cooling rate, the earing ratio were higher at the edge of strip than at the center of strip.
     (7) The3104canbody with low Fe/Si ratio and Fe content have higher Cube texture, lower earing ratio, higher content of Al(Fe,Mn,Si) phase, smaller compound particles, appropriate mechanical properties and better performance properties.
引文
[1]王祝堂,田荣璋.铝合金及其加工手册[M].长沙:中南大学出版社.2000:141-142.
    [2]江鸿,向群,铝罐生产技术和市场发展[J].铝加工.2005.2:26-34
    [3]陈冬一,杨兴学,关予,王祝堂,改革开放30年:中国铝罐料工业从无到有,轻合金加工技术,2009.7:1-5
    [4]叶凯,林明山,铝质易拉罐技术研究与应用.饮食包装,2002,3:6-9
    [5]姚宗勇.3104铝合金板材深冲制耳的有限元模拟[D].长沙:中南大学,2004:
    [6]王祝堂,国际协定牌号的加工纯铝及加工铝合金[J].轻合金加工技术,1996,24(4):24-28.
    [7]李飞庆,双级均匀化对3104铝合金组织和再结晶行为的影响,中南大学硕士研究论文,2009
    [8]李松瑞,周善初.金属热处理[M].长沙:中南大学出版社,2003:22-23.
    [9]张士林,任颂赞.简明铝合金手册[M],上海:上海科学技术文献出版社,2001:133-134.
    [10]佟长清,3004合金铸锭锰偏析及均匀化处理[j].轻合金加工技术,1997.25(1):31-36.
    [11]王祝堂,田荣璋.铝合金及其加工手册(第三版)[M],长沙:中南大学出版社.1996.3:21
    [12]肖亚庆,铝加工技术实用手册[M],冶金工业出版社,2005,151-151
    [13]朱清洋,3104铝合金化学成分优化及织构研究,重庆大学硕士研究论文,2006年
    [14]吴颖,化学成分对3104合金铸锭组织和性能的影响,铝加工,2006年第1期,21-24
    [15]齐向前,武建军,李玉昌等,合金元素对3X04铝合金铸锭组织及性能的影响.有色金属,2006,5:53-56
    [16]傅高升,康积行.工业纯铝中铁和硅的作用分析.特种铸造及有色合金,1999,(增刊):29-32
    [17]王沁峰,熔体处理对易拉罐用铝材热变形的流变应力与微观组织的影响,2005年1月,福州大学硕士论文
    [18]栗绮倩译.DI罐用铝合金材料(一)、(二)一技术进步与今后课题.住友轻金属技报,1990:5674
    [19]陈文,林林,论述易拉罐铝材生产的关键工艺技术,铝加工[J],2007N0.3总第175期,12-15
    [20]张机琴,大规格3104铝合金扁锭的生产技术,铸造技术,2009年第5期:692-694
    [21]陈永禄,经高效熔体处理的易拉罐用铝材微观组织与力学性能研究,2002年1月福州大学硕士论文
    [22]肖亚庆,铝加工技术实用手册[M],冶金工业出版社,2005,258-265
    [23]孙锋山,熔体处理对提高高性能铝材冶金质量和力学性能的作用研究,2001年1月福州大学硕士论文
    [24]陈永禄,熔体处理对易拉罐用铝材热变形行为的作用研究,2005年12月福州大学博士论文
    [25]李飞庆,双级均匀化对3104铝合金组织和再结晶行为的影响,中南大学硕士研究论文,2009
    [26]张新明,李飞庆,唐建国,徐敏,黄平,郭金龙,3104铝合金铸锭均匀化过程中的溶解析出行为,第40卷第4期,2009年8月:909-914
    [27]张新明,吴文祥,唐建国,李慧中,周卓平,预析出对冷轧3003铝合金析出行为及再结晶晶粒尺寸的影响,中南大学学报(自然科学版),第37卷第2期,2006年4月:212-216
    [28]王超群,王云,陈洪育,3004铝合金析出状态及其与性能的关系[J].轻金属,1990,(11):5-58.
    [29]孙东立,姜石峰,高兴锡,均匀化处理对3004铝合金显微组织的影响,中国有色金属学报,1999年9月:557-561
    [30]张新明,肖亚庆,赵世庆等,易拉罐罐体用铝合金铸锭的均化热处理方法,专利号CN101016607A,2007年8月
    [31]包耳,温熙宇,张静武等,铸轧法生产罐用3004铝合金板材工艺中析出相的研究[J].轻金属,1994,(3):39-42.
    [32]卢敬华,均匀化温度、热轧道次对3104制罐板化合物形貌的影响,铝加工[J],2003 No 6总第153期:25-31
    [33]Watanabe H, Ohori K, Takeuchi Y. Phasenumwandlung in Al Mnl Mgl-Legierungen bei gesteigerten Temperature[J]. Aluminium,1984,60: 373-376.
    [34]Alexander D T L, Greer A L. Solid-state intermetallic phase tranformations in 3XXX aluminium alloys[J]. Acta Materialia,2002, 50(10):2571-2583.
    [35]Li Y J, Haonsen A, Mortensen D, et al. Modelling the phase transformation from Al6(Mn, Fe) to a-Al(Mn, Fe)Si phase during homogenization of AA3xxx alloys [J]. Materials Science Forum,2006, 519-521(1):297-302.
    [36]Schneider M, Gottstein G, Lochte L, et al. A statistical model for precipitation-Applications to commercial Al-Mn-Mg-Fe-Si alloys[J]. Materials Science Forum,2002,396-402(2):637-642.
    [37]毛卫民,金属材料的晶体学织构与各向异性.北京:科学出版社,2002
    [38]陈志勇.立方金属单品屈服面和纯铝轧制织构演变的研究.中南大学博士学位论文,2002-12-1:15-17
    [39]毛卫民,张新明,晶体材料织构定量分析。北京:冶金上业出版社,1993
    [40]王国军.铝及铝合金板带材织构.轻合金加上技术,2002,32(6):2931
    [41]Blade J C. The cube texture in aluminum and its roles in the control of earing [J]. Australian Institute of Metals,1967,12(1):55-63
    [42]钱宝华,加工工艺对5052合金板材组织与性能的影响,重庆大学硕士学位论文,2008
    [43]李赛毅,张新明.深冲用板材的制耳现象及其控制途径[J].铝加工,1996,19(2)
    [44]蒋显全,张秀锦,文华,冲杯制耳率计算公式质疑与重建,中国有色金属学报,1999年7月:275-279
    [45]毛卫民,赵新兵,金属的再结晶与晶粒长大.北京:冶金上业出版社,1994
    [46]Dillamore I L, Katoh H. Comparison of the observed and predicted deformation textures in cubic metals[J]. Metal Science,1974, 8(1):21-27.
    [47]Vatne H E, Shahani R, Nes E. Deformation of cube-oriented grains and formation of recrystallized cube grain in a hot deformed commercial Al-Mg-Mn aluminium alloy[J]. Acta Materialia,1996,44(11):4463-4473
    [48]Vatne H E, Futu T, Orsund R, et al. Modelling recrystallization after hot deformation of aluminum[J]. Acta Materialia,1996, 44(11)=4463-4473.
    [49]Engler O. Nucleation and growth during recrystallization of aluminium alloys investigated by local texture analysis [J], Materials Science and Technology,1996, (12):859-859.
    [50]Barret C S. Recrystallization texture of aluminium after compression[J]Trans. AIME,1940, (137):128-145.
    [51]Beck P A. Effect of a dispersal phase on grain growth in Al-Mn alloys[J]. Trans. AIME,1949, (180):163-192.
    [52]Duggan B J, Lucke K, Koehlhoff G, et al. On the origin of cube texture in copper[J].Acta Metallurgica et Materialia,1993,41(6):1921-1927.
    [53]聂柞仁,张新明,尹志民,等.深冲铝板中的再结晶织构与选择生长[J].金属学报,1997,33(9):976-980.
    [54]Lee D N. Strain energy release maximization model for evolution of recrystallization texture[J]. International Journal of Mechanical Sciences,2000,42(8):1645-1678.
    [55]周奕全,张义斌,王祝堂,铝板带多机架热连轧工艺及罐料热轧,轻合金加工技术,2002,Vol.30,No 1
    [56]Hutchinson W B, Oscarsson A, Karlsson A. Control of microstructure and earing behaviour in aluminium alloy AA 3004 hot bands [J]. Materials Science and Technology,1989,5(11):1118-1127.
    [57]Humphreys F J, Hatherly M. Recrystallization and related annealing phenomena[M]. Oxford:Elsevier Science Ltd,1995:474-475.
    [58]张德芬,胡卓超,左良,王福,3004铝合金再结晶织构及其显微组织,东北大学学报(自然科学版),2004年9月:840-843
    [59]张德芬,胡卓超,左良,王福,3004铝合金在轧制及退火过程中织构的演变,东北大学学报(自然科学版),2002年8月:786-789
    [60]张德芬,王福,左良,3104铝合金冷轧变形织构的分析,轻合金加工技术[J],2003_Vol.31.N07:22-24
    [61]张德芬,黄涛,胡卓超,左良,王福,3104铝合金再结晶织构的研究,材料工程,2004年第11期,28-31
    [62]姚宗勇,GODFREY Andrew,刘伟,刘庆,AA3104铝合金冷轧过程中微观组织结构的演变,电子背散射衍射技术及应用,127-130
    [63]黄光杰,汪凌云,3104铝合金板材织构和制耳行为研究,重庆大学学报(自然科学版),2000年5月第23卷第3期:20-39
    [64]陈文,林林,工艺因素对3104铝合金板材织构和制耳的影响,金属成形工艺[J]Vol.17.N0.5.1999:17-19
    [65]沈健,章四琪,卢斌,等,3004铝合金退火过程中的形核行为[J].材料科学与工艺,1995,3(4):67-71。
    [66]魏云华,3004合金热连轧坯料不经退火轧制罐料的工艺探讨[J],铝加工, 2002.25(4):4-16.
    [67]胡卓超,刘沿东,张德芬,吴静婷,左良,王福,润滑对3104铝合金板变形织构的影响,中国有色金属学报,第14卷第3期,410-413
    [68]马全仓,徐阳,廖佳,毛卫民,国内外3104深冲铝板织构对比分析,轻合金加工技术,2008,Vo1.36,N0.6,23-30
    [69]马全仓,陈永,阂睿,毛卫民,刘涛,3104铝合金热连轧板的织构,轻金属,2008年第6期,59-62。
    [70]孙锋山,熔体处理对提高高性能铝材冶金质量和力学性能的作用研究,2001年1月福州大学硕士论文
    [71]李太保,AA5182大型A1-Mg合金铸锭熔铸过程研究,山东大学博士论文,2008
    [72]傅高升,孙锋山,王连登,中间合金对铝合金细化处理的现状分析与出探明.特种铸造及有色合金[J],2001(2):50-53:
    [73]Rao A A, Murty B S, Chakraborty M. Rode of Zirconium and Impurties in GrainRefinement of Aluminum with Al-Ti-B[J], Mater. Sci. Techol,1997, 13(9):769-777;
    [74]马宏声,孝云祯,刘劲波,铝一钦一硼晶粒细化机理[J].轻金属,1991(2):57-61
    [75]魏国忠,3104铝合金扁锭疏松缺陷分析及其抑制方法,2009年第4期:52-53
    [76]王祝堂,田荣璋,铝合金及其加工手册,中南大学出版社,1996,68-71
    [77]曹明盛,物理冶金基础,冶金工业出版社,1988,291-297
    [78]杨觉先,金属塑性变形的物理基础.北京:冶金上业出版社,1988
    [79]万胜秋主编.金属塑性成型原理.北京:机械上业出版社,1995,10
    [80]哈富宽.金属力学性质的微观理论.北京:科学出版社,1991,5
    [81]Jonas J. J, Sellars, C. M., MG, W. J Tegart. Strength and structure under hot working conditions. Metal Reviews 1969,14(130):1-24.
    [82]Sellars C.M., MG, W. J., Tegart. On the mechanism of deformation. Acta metall.,1966(14):1136-1138
    [83]Sellars C.M.,MG,W. J., Tegart., Mem. Scient Revue. Metall., 1966(63):731
    [84]Sellars C.M., MG, W. J., Tegart. Joumees Metal lurgiques d' Autcmne, Paris Oct. (1965), Rev. Met. in press
    [85]Tassa 0, Testani C, Ricci Bitti R. Plastic flow at high tem-perature and strain rate of hot deformed FeAl alloy[J].Scripta Metallurgica et Materialia,1992,26:1813-1816.
    [86]Zaidli M A, Sheppar T. Development of microstructure throughout roll gap during rolling of aluminium alloys[J]Metal Science,1982,16: 229-238.
    [87]黄光杰,程虎,3104铝合金流变应力行为,重庆大学学报(自然科学版),2007年1月第30卷第1期:70-72
    [88]黄光杰,朱清洋,黄本多,3104铝合金高温塑性变形本构关系研究,材料导报,2006年11月,460-462
    [89]陈文,林林,邓成林,3104铝合金热变形流变应力模型,铝加工,2007年第5期总第177期:22-24
    [90]程虎,3104铝合金热变形行为研究,重庆大学硕士研究论文,2006年
    [91]蒙春标,3104铝合金热轧组织演变的数值模拟研究,湖南大学硕士学位论文,2009
    [92]蒙春标,张辉,吴文祥,李落星,3104铝合金高温热压缩变形流变行为研究,材料热处理技术,2008年第37卷第12期:1-4
    [93]胡卓超,张德芬,黄涛,左良,王福,3104铝合金的流变应力行为与动态再结晶,机械工程材料,2005年2月:6-9
    [94]陈永禄,傅高升,陈文哲,王火生,易拉罐用铝材多道次热压缩变形的软化规律研究,热加工工工艺,2005年第12期:8-10
    [95]王火生,易拉罐用铝材高温变形的流变应力行为及微观组织特征,福州大学2003年12月硕士论文
    [96]王占学主编,塑性加上金属学[M].北京:冶金上业出版社,1991.11,1版.
    [97]钱宝华,加工工艺对5052合金板材组织与性能的影响,重庆大学硕士学位论文,2008
    [98]邓至谦,周善初,金属材料及热处理[M],长沙:中南工业大学出版社,1989.6,1版
    [99]曹明盛,物理冶金基础[M],北京:冶金工业出版社,1988.4
    [100]韩向东,李志见,铝质易拉罐成形工艺及模具,《模具工业》2004.No.4总278,17-20
    [101]叶凯,易拉罐变薄拉伸成形分析,《模具制造》2004年第5期,19-22
    [102]林明山,易拉罐内涂技术与应用,中国包装工业,2002年第12期,39-40
    [103]Ren Baolute. Li Zhong, Morris, James G. Correlation between the preferred grain orientation and the deep-drawing behavior of AA 3104 and AA 5052 aluminum alloy sheets, Scripta Metallurgica et Materialia, Vol.31,1994
    [104]CAO Yong, HUANG Guang-jie, Homogenizing Annealing of 3104 Aluminum Alloy, Materials for Mechanical Engineering,2010-01
    [105]Zhuo Chao Hu, Yu Dong Zhang, X. Zhao, Liang Zuo, Claude Esling, Electric Field Annealing on 3104, Aluminum Alloy Sheets:Evolution of Microstructure and Texture, Solid State Phenomena,2005,105, 169
    [106]Graeme J. Marshall, Microstructural Control during Processing of Aluminium Canning Alloys,1996, Materials Science Forum,217-222,
    [107]冯鹏发,唐靖林,李双寿,曾大本,铝晶粒细化机制的研究进展,铸造技术Vo1.26 No.3,Mar.2005:220-223
    [108]Johnsson M, Backerud L, Sigworth G K. Study of the mechanism of grain refinement of aluminum after additions of Ti and B containing master alloys[J].Metal Trans A,1993,24A:481
    [109]Mohant P S, Gruzleski J E. Mechanism of grain refinement in aluminum[J].Acta Metal et M ater,1995,43(5):2001Sigworth G K.
    [110]The grain refining of aluminum phase relationships in the Al-Ti-B system[J].Metal Trans A,1984,15A:277
    [111]梁平信,张君尧,变形铝合金的宏观偏析,轻合金加工技术,1987(10):20
    [112]王莉梅,张发明,双辊连续轧制铝合金厚板中部偏析,轻金属,1989(9):55
    [113]莫建新,潘清林,陈琴,刘畅,3104铝合金大扁锭的第二相与夹杂物,特种铸造及有色合金,2011(9):866-868.
    [114]Kattamis T Z, Storrs H D. Homogenization and coarsening in cast 3004 aluminium[J].Aluminium,1989,65(4):367-367.
    [115]Sukumaran K, Ravikumar K K, Pillai S G K, et al. Study on squeeze casting of A12124 alloy and 2124-10%SiCp metal matrix composite [J]. Materials Science and Engineering A,2008,490:235-241.
    [116]Y. J. Li, L. Arnberg. Quantitative study on the precipitation behaviour of dispersoids in DC-cast AA3003 alloy during heating and homogenization[J]. Acta Materialia,2003,51:3415-3428.
    [117]Backerud L, Krol E, Tamminen J, Solidification characteristics of aluminium, volumel:wrought alloys[M]. oslo, Sweden:skan Aluminium,1986
    [118]Tromborg E, Dons AL, Arnberg L. Investigation of the A16(Fe, Mn) to α-Al(FeMn)Si phase transformation during homogenization of AA3003 and AA3004 aluminium alloy [M]//Arnberg L, lohneo, Nes E, etal. Aluminium Alloys:Their physical and mechanical properties:IcAA3 trodneim Norway,SINEF Metallurgy 1992:270
    [119]D. Altenpohl. Aluminium and Aluminiumlegierungen[M]. Berlin: Springer Verlag,1965:117-119.
    [120]R. V Tilak, J.G Morris. Studies of the effect of thermomechanical treatents on the supersaturation content ofstrip-cast aluminum alloy 3004 [J]. Materials Science and Engineering,1985,73(1):139-150.
    [121]D. A Porter, K. E Easterling. Phase transformation in metals and alloy[M]. Oxford:Alden Press,1981:112-113.
    [122]变形铝合金金相图谱[M],北京:冶金工业出版社,1975:73-74.
    [123]Humphreys F J, Hatherly M. Recrystallization and related annealing phenomena[M]. Qxford:ELsevier Science Ltd, 1995:474-475.
    [124]曹乃光等,金属塑形加工原理,北京:冶金工业出版社,1982: 128-135
    [125]唐建国,张新明,徐敏等,3104铝合金热粗轧板的织构梯度及其对热压缩变形后退火织构演变的影响,中国有色金属学报:2010.10:1932-1940
    [126]Ito K, Musik R, Lucke k. The influence of iron content and annealing temperature on the recrystallization textures of high-purity aluminium-iron. Acta. metall.1983,31(12):2137-2149
    [127]M Q C,MAO WM, FENG H P, et al. Rapid texture measurement of cold-rolled aluminum sheet by X-ray diffraction [J]. Scripta Materialia,2006,54:1901-1905.
    [128]J Hu, TIshikawa, K Ikeda. Analysis of earing behaviour of textured pure aluminum and A5083 alloy sheets. Journal of Material Processing Technology[J],1998,83:200-208
    [129]H. Mizutani and S. Tsuchida:Sumitomo Light Metal Technical Report,37(1996), pp86-89; Morphologies and Causes of Flange Cracks in Aluminium D&I Can
    [130]E. J. Westerman. Aluminum Alloys for Packaging,TMS, (1992)ppl-16. Silicon:A vital alloying element in aluminum beverage canbody stock.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700