立—平可逆粗轧的三维数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了提高热轧带钢粗轧机组宽度控制精度及提高成材率,改善产品的表面质量,开展了对粗轧机组金属变形规律的研究,并侧重对“狗骨”材在随后平轧过程中的变形情况进行了分析和比较,为制定合理的工艺规程提供可靠的依据。本文以梅山钢铁厂热轧机组的现场条件为背景,针对其粗轧中间坯距板边缘10mm-20mm的区域出现“黑线”的问题进行理论分析。本文运用有限元软件ANSYS10.0/LS-DYNA建立立-平轧制三维有限元模型,模拟了该粗轧机组的轧制过程,重点研究了在立-平轧制过程中不同形状的立辊对板坯横断面形状、边角部金属的流动和应力应变规律,同时研究了立-平调宽轧制中轧辊和轧件的温度场分布。着重通过运用重启动方法和显示动力学方法相结合的方式模拟了5道次可逆立-平轧制过程,模拟结果与现场实测值对比,误差均在允许范围内,说明该方法的合理性和可行性。通过数值模拟得到以下结论:
     1)当01.5时为薄件的轧制变形,主要受表面摩擦的影响,一般为单鼓形。孔型立辊能更有效的纠正双鼓变形,避免产生边部夹层;
     2)轧件的边角部金属在轧制过程中逐渐流动到轧件的上下表面;且在相同轧制工艺条件下,孔型立辊轧制的翻平量大于平立辊轧制的翻平量,且随着孔型内倒角半径的增加翻平量逐渐增大,横断面鼓形随之变小;
     3)轧件边角部的金属在轧制过程中一直处于低温、高应变和高应力的状态,并逐渐向板坯的宽度中心移动,原始边界和每道次生成的边界在轧件边部逐渐累积,最终有可能引起沿轧件的长度方向产生“黑线”等缺陷;
     4)立轧具有一定的修复微小缺陷的作用,从而改善和提高了带钢的边部质量。合理的设计立辊的形状和优化侧压制度,可以有效的提高产品的质量。
To improve the precision of the width control and the rolling yield of the strip hot-rolling's rough rolling units, and amend the product's surface quality, this paper studies the deformation law of work-piece processed by rough rolling units. It focus on the analysis and comparison of the dog-bone material's deformation condition during horizontal rolling which provides reliable basis for making reasonable technological procedure. The hot-rolling units'field condition of Meishan Steel Industry is quoted. And the seam-defect appears at the area which in the distance of 10mm-20mm to the plate edge of rough-rolling medium billet is studied. The ANSYS10.0/LS-DYNA finite element software is used to establish the Vertical-Horizontal rolling's three-dimensional finite element model. The rolling process is simulated, the main part of this paper are the effection of blank transverse shape caused by different shapes of vertical rolls; the flow law of the corner and edge metal; the transformation law of stress and strain and temperature filed distribution of rolled piece and roll. This paper numerically simulated the five-pass reversible V-H Rolling process by using explicit dynamic method and restart method. Contrasted simulation results with field test data the error is all in the limit of tolerance which shows the rationality and feasibility of this method. Outcomes show the following results:
     1) When 01.5, it's thin piece, the main effect is caused by surface friction, appears to be single drum. And it also shows that the groove vertical rolls can corret twin drum so that avoiding marginal interlayer.
     2) We found the metal of corner and edge gradually flowed to the upper and nether surfaces; and on the same rolling process conditions, the value of side tumbling on groove vertical rolling more than the value of side tumbling on flat vertical rolling, and the value of side tumbling increases while the drum of transversal profile decrease with the increasing of the groove fillet radius.
     3) During rolling process, the corner and edge metal is in the status of low temperature, high strain and high stress, and gradually flow to the width centre portion of blank, original boundary and new boundaries generated in each pass gradually cumulate on the edge of the workpiece, which may bring the seam-defect along the length of the workpiece.
     4) Vertical roll has the ability to repair minimal defects, so that it can increase and improve the quality of the edge of strip steel. Reasonable design of the vertical roll shape and optimization of the side pressure system can effectively improve the quality of the product.
引文
[1]H. Nikaido, T.Naoi, K.Shibata, et al. Numerical simulation of width spread of dog-bone slab in non-steady horizontal rolling[J]. Jpn Soc Technol Plasticity,1984,277(25): 129-140.
    [2]Liu Xiang-hua, Hu Xian-lei, Du Lin-xiu, et al.. Calculation model and application of rolling parameter[M]. Beijing:Chemical Engineering Press,2007:151-153.
    [3]陈韧,刘立文,李梦炜等.粗轧板坯侧翻变形的数值模拟[J].中国冶金,2007,17(8):29-32.
    [4]陈应耀,谢向群,夏小明.梅山1422mm热连轧机组的现代化改造[J].设计与改造,2004,21(6):59-62.
    [5]武仁户.可逆粗轧机在梅钢热轧板厂的应用[J].梅山科技,2007,3:1-3.
    [6]齐志国.热卷箱在梅钢热轧生产中的应用[J].梅山科技,2007,3:4-8.
    [7]喻海良,刘相华,李长生.多道次立-平辊轧制轧件角部金属流动状态有限元模拟[J].东北大学学报(自然科学版),2005,26(10):982-985.
    [8]贾静.钢锭(坯)在轧制过程中出现翘皮及断裂等常见缺陷的原因分析和防止途径[J].甘肃冶金,2001,(3):9-13.
    [9]赵长亮,孙彦辉,田志红等.CSP热轧板卷边部裂纹成因[J].北京科技大学学报,2007,29(5):499-503.
    [10]刘波.热轧带钢边裂缺陷的成因研究[J].四川冶金,2006,28(2):16-20.
    [11]刘相华,胡贤磊,杜林秀等.轧制参数计算模型及其应用[M].北京:化学工业出版社,2007.
    [12]熊尚武.热带粗轧机组调宽过程的实验与理论研究[D].沈阳:东北大学,1998.
    [13]A.Fassel, E.liegeon, P.siener and M.Vathaire. Reduction of crop-losses by optimal setting of the roughing stands in a hot strip mill[J]. Proc.ICSTIS,1980,252-262.
    [14]刘明,李云中.热轧板带钢宽度自动控制.轧钢学会第五届板带学术会议,1990.
    [15]Wolfgang Rohde, Lothar Vogtmanm.为热带钢生产厂生产合理化而新开发的板坯定尺挤压机[J].宝钢情报,1991,4:57-59.
    [16]NiKaido H. Development of Slab Sizing Press for Heavy Width Reduction in Hot Strip Mills[J]. Iron and Steel Engineer,1990,67(9):21-26.
    [17]斋藤好弘,绫田伦彦,加藤减三.长方形断面材的平轧的压延特性[J].昭53春塑加讲论,1978:209-212.
    [18]Okado.M, et al. New light on behavior of width of edge of head and tail of slabs in hot strip rolling mills[J]. JISIJ,1981,67(15):2509-2515.
    [19]Tazoe.N, et al. New forms of hot strip mill width rolling installations[J].1984 AISE Spring Conference. Dearborn, Mich, April 30-May 2,1984:1132.
    [20]Vladimir B, Ginzbury, Naum Kaplan, Fereldoon Bakhtar, Charles J.Tabone. Width Control in Hot Strip Nills[J]. Iron and Steel Engineer,1991,68(6):25-39.
    [21]田中明弘,宫下诚,安部可治.幅制御压延的研究(第3报)[J].昭56春塑加讲论,1981:9.
    [22]赵刚,黄克琴,杨节等.热连轧窄带钢宽度变化规律的研究[J].钢铁,1990,28(3):33.
    [23]付江,赵以相.板坯大侧压调宽变形的模拟研究[J].宝钢技术,1993,41(2):44-47.
    [24]孙本荣,率民,杨新法等.热宽带钢连轧机调宽轧制工艺参数研究[J].钢铁,1995,30(10):37-41.
    [25]Xiong Shang-wu, Liu Xiang-hua, Wang Guo-dong, et al. A three-dimensional finite element simulation of the vertical-horizontal rolling process in the width reduction of slab[J]. Mater Process Technol,2000,101(1):146-151.
    [26]Xiong Shang-wu, Liu Xiang-hua, Wang Guo-dong, et al. Simulation ofvertical-horizontal rolling process during width reduction by full three-dimensional rigid-plastic finite element method [J]. Journal of Materials Engineering and Performance,1997,6(6):757-765.
    [27]张志臣板坯立辊轧边过程的实验研究[J].太原重型机械学院学报,2003,24(2):84-88.
    [28]陈火红,杨剑,薛小香等.新编Marc有限元实例教程[M].北京:机械工业出版社,2007.
    [29]冯桂起.热轧粗轧过程金属变形规律的有限元模拟研究[D].秦皇岛:燕山大学,2003.
    [30]董洪波,康永林.有限元模拟技术在板带钢轧制中的应用[J].轧钢,2004,21(2):44-47.
    [31]郭太雄,龙晋明,郑之旺.板带粗轧不均匀变形行为的数值解析[J].钢铁钒钛,2006,27(3):15-20.
    [32]章传国,韩静涛,刘靖等.立辊调宽热粗轧过程三维有限元模拟[J].塑性工程学报,2005,13(1):74-77.
    [33]张鹏,鹿守理,高永生等.板带轧制过程温度场有限元模拟及影响因素分析(Ⅱ)[J].北京科技大学学报,1998,20(1):99-102.
    [34]周维海,臧新良,杜凤山等.板带热轧过程中温度场的三维热力耦合有限元模拟[J].钢铁研究学报,2001,13(3):24-26.
    [35]李学通,杜凤山,吴建峰.孔型立辊调宽轧制的三维刚塑性有限元研究[J].上海金属,2005,27(1):31-34.
    [36]李学通,杜凤山,臧新良.板带粗轧过程热、力、组织耦合三维有限元模拟[J].中国机械工程,2006,17(1):92-95.
    [37]沈丙振,周进,韩志强等.热轧带钢粗轧区轧件温度场的数值模拟[J].钢铁研究学报,2003,15(3):10-13.
    [38]李学通,王敏婷,杜凤山等.热带钢粗轧机组温度场有限元模拟[J].钢铁,2003,20(5):7-9.
    [39]杨正波.轧制过程中粗轧宽度变形的三维有限元模拟[J].梅山科技,2006增刊,20-23.
    [40]陈林,李晓谦.板带热轧三维有限元热力耦合仿真分析[J].机械设计与制造,2007,9:106-108.
    [41]刘慧,王国栋,刘相华.立辊轧边的显式动力有限元模拟[J].2006,18(3):18-21.
    [42]赵宪明,王国栋,朴海斗等.立辊形状对粗杂板坯侧弯的影响[J].2002,23(12):1174-1176.
    [43]喻海良,刘相华,李长生.多道次立-平辊轧制轧件角部金属流动状态有限元模拟[J].东北大学学报(自然科学版),2005,26(10):982-985.
    [44]Yu Hai-liang, Liu Xiang-hua, Zhao Xian-ming, et al. FEM analysis for V-H rolling process by updating geometric method[J]. Mater Process Technol,2006,180(1-3):323-327.
    [45]许建国,杜晓钟.热带钢粗轧立辊调宽轧制过程有限元模拟[J].冶金设备,2007,8(4):31-34.
    [46]李裕春,时党勇,赵远.ANSYS10.0/LS-DYNA基础理论与工程实践[M].北京:中国水利水电出版社,2005.
    [47]时党勇,李裕春,张胜民.基于ANSYS/LS-DYNA8.1进行显示动力分析.北京:清华大学出版社,2005.
    [48]白金泽.LS-DYNA3D理论基础与实例分析.北京:科学出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700