“1+4”铝热连轧机自动化系统设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在综观轧制过程计算机技术和信息化技术最新发展趋势,深入分析国内
    外热连轧机自动化系统的任务、分类和结构的基础上,通过作者全程亲历西南铝
    “1+4”铝热连轧项目,特别是参加在日本Toshiba公司历时10个月的联合设计,
    对自动化系统各个设计阶段的工作做了非常细致的研究,提出并完成了以下研究
    内容:
     1)总设计原则的确定在项目设计的总要求下,确定了自动化系统的复杂程度
    和自动化实现方法;
     2)工艺系统分析对本项目工艺技术和工艺流程进行了分析,根据分析结果并
    结合工艺设备的组成及其功能说明,明确了自动化系统要完成的具体功能;
     3)凸度控制设备配置方式的选择提出了在热粗轧机出口侧设置凸度仪,用于
    粗轧机凸度闭环控制,以此提高精轧机来料凸度精度,而精轧机轧辊全部采用普
    通辊的凸度控制设备配置方式;
     4)系统结构选取和硬件配置根据用户信息化系统现状及发展规划、工艺设备
    的布局、自动化系统具体功能的要求和分配,选择了合适的系统结构类型,并根
    据具体功能确定了系统的硬件配置;
     5)过程自动化级计算机的选择在传统设计中通常选用普通的小型计算机,但
    是其高可靠性集群系统配置复杂、维护繁琐,存在高成本负担等弱点,因此设计
    中选用了美国Stratus公司生产的ftServer 3300容错计算机系统;
     6)应用软件结构的确定为适应多人共同开发复杂应用软件的需要和便于以
    后扩展应用软件功能,确定应用软件采用模块式结构。
     通过以上各项研究,成功地将基于Windows操作平台的具有高可靠性和稳定
    性的容错计算机系统应用于铝热连轧过程自动化,进一步提高了系统的连续可靠
    性,简化了操作维护,为充分发挥热连轧的规模效益奠定了基础;提出的凸度控
    制设备配置方式,通用性强,可提高机械设备可靠性,大大降低资金投入和维护
    量,是一种全新的方式。此两方面充分体现了本设计的新思想和创造性。经出厂
    前仿真测试表明,利用最新信息技术、现代控制理论和人工智能理论设计的高精
    度铝热连轧自动化系统,具有高度自动化、极大灵活性、经济实用性和稳定可靠
    性等优点,达到了当今世界先进水平,具有工程设计的普遍意义和重大实用价值,
    值得推广和借鉴。
This paper makes a comprehensive survey of the latest trend of computer and information technology used in metal rolling process and takes a deep analysis on the tasks, classification and structure of the same kind computer system home and abroad. The following tasks are put forward and accomplished through fully involvement of the author in SWA, especially based on the studies in detail of automation system at different design phase during 10 months of co-design that has taken place in Toshiba Japan.
    Determination of general design principle. The complexity of the system and the
    method to achieve the automation are determined according to general design
    requirements of the project.
    Process analyses. To analyze the technology and process flow of the project, the
    specific functions to be achieved by the automation system are defined on the basis
    of results of analyzing in connection with equipment construction and function
    description.
    Selection of the equipment configuration of camber control system. It is supposed
    to mounting the camber equipment at the exit side of the rough mill, which is used
    to complete the camber closed control of rough mill, improve the camber precision
    of material of the fishing mill. Meanwhile, all the work rolls of the fishing mills are
    configured with camber control unit that are applied to common rolls.
    Selection of system structure and hardware configuration. The structure of the
    system is selected and hardware configuration is defined in terms of the status of
    user's information system and development planning, equipment arrangement and
    specific function requirements.
    Selection of communication network. The types of network have been chosen
    according to the characteristic of automation equipment supplied, the system
    requirement about rapidity and stability for data exchanging and the particularity of
    industry jobsite.
    Determination of software structure. The appropriate application software structure
    have been define in order to achieve the extension of application software and meet
    the requirement that complicated application software can be developed by more
    people together, the software development have been carried out using
    
    
    
    programmable aids and programmable software based on the basic situation.
    According to above investigation, it is successfully that the computer system with high reliability and stability is used to the automation of hot tandem rolling mills. The system is more reliable and steady than before, the operation and maintenance are simply, and all of this is the basis of plenty of produces are made by hot tandem rolling mills with high economy benefit. The stability of the mechanism could be improved by the configuration of camber control equipment. By the way, the expense can be decreased, and the maintenance is very simply. Both of the items represent the new think and creativity.
    The automation system of Aluminum hot tandem rolling mills with high quality concludes the latest information technology, modern control theory and artificial intelligence. The simulation test in manufactory shows that all the system high degree automation, flexibility, economic, stability and etc. the system has reached the advanced level of the world, it is worth popularizing and using for reference in the field of engineering design.
引文
[1] 孙一康.带钢热连轧的模型与控制.北京:冶金工业出版社,2002:17
    [2] 黄守汉. 塑性变形与轧制原理. 北京:冶金工出版社,2002:172
    [3] 方康铃.王新民.刘彦春.过程控制系统.武汉:武汉理工大学出版社,2001:6
    [4] Mockler,R.J. Developing knowledge-based systems using an expert system shell. MacMillan 1992.
    [5] DTI Guidelines for the introduction of expert systems technology.1990
    [6] Durkin,J.Expert systems,design & development.MacMillan 1994
    [7] Saridis,G.N. & Valavanis, K.P. Analytical design of intelligent machines.Automatica Vol.24 No 2 pp123-133
    [8] 赵刚,杨永立.轧制过程的计算机控制系统. 北京:冶金工业出版社,2002:16~26
    [9] 王岑.张志宏.黄浩东等.中国热轧宽带钢轧机及生产技术. 北京:冶金工出版社,2004:122~131
    [10] “Dictionary of Instrumentation Terminology,”Machine Design,Nov.23,1967.
    [11] Atack,P.A.,Round,P.F.& Wright,L.C.An adaptive scheduling and control system for a single stand reversing mill for hot rolling of aluminium.Proceedings of the Rolling Mill Gauge Shape/Profile Conf.June 1988 pp49-88
    [12] Ozaki,T. Complete computer control of an aluminium hot mill at Mooka works.Iron & Steel Eng. 1978
    [13] Silvestrini,M. Autoadaptive process control of a Sendzimir mill at ILVA.Iron & Steel Eng August 1993 pp50-55
    [14] MacAlister,A.Rolling mills:20 years of computer automation. GEC Review Vol 2 No 1 1986.
    [15] 吕程,王国栋,刘相华,姜正义,朱洪涛.基于神经网络的热连轧精轧机组轧制力高精度预报.钢铁,1998;33(3):33-35
    [16] Ditzhuijzen,G. The controlled cooling of hot rolled strip: a combination of physical modelling, control problems & practical adaption .IEEE Trans Automatic Control Vol138 No 7 1993 pp1060-1065
    [17] Fapiano,D.J. Linear programming for control of strip shape and grinding. Iron & strrl Eng.April 1988 pp24-28
    [18] Fujimoto et al. Grown control in aluminium not strip mill.Kobe R&D Vol 40 No 4 1900.
    [19] Tellman,J.G. Improving crown performance of a hot strip mill. Iron & Steel Eng.Dec 95
    
    
    pp21-26.
    [20] [美]V.B.金兹伯格著.姜明东.王国栋等译.高精度板带材轧制理论与实践. 北京:冶金工业出版社,2002:316~327
    [21]J.W.Besston and J.W.Edwards Automation of tandem mills,Iron and Steel Inst.London(1973)320
    [22] Atack,P.A & Robinson,I.S. Adaptation of hot mill process models.J.Mat Processing Tech. Vol.60 96 pp535-542.
    [23] O.C.Zienkiewicz,The Finite Element Method,Third Edition,McGraw-Hill,London, 1977, pp.1- 41.
    [24] I.Imai and T.Suzuki,“FARE(Fourier Analyzer of Roll Eccentricity Detector and Control System for Elimination of Roll Eccentricity,”IHI Publication,Sept. 1973, pp.1-12
    [25] 杨大地.谈骏渝.实用数值分析.重庆:重庆大学出版社,2000:74~86

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700