聚丙烯腈纤维亲水改性及SAF非织造材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究是利用有机溶剂法制备超吸水性聚丙烯腈纤维,让腈纶丝在含碱的有机溶剂中水解,再经交联处理制成具有交联结构的超吸水纤维,此纤维具有较强吸水、保水能力、无刺激性且有一定强力,可通过热粘合法制成非织造材料。
     本研究还借助傅里叶红外(FTIR)、扫描电子显微镜(SEM)等测试方法对改性后纤维的化学结构、表面形态、大分子聚集态结构及力学性能等进行了分析和讨论,同时也对其非织造材料进行了力学性能、吸收渗透性能以及其非织造材料的应用前景进行了研究和分析。
     研究表明,在有机溶剂与无离子水的混合液中,水在混合液中的重量百分比为10%、碱液在混合液中的重量百分含量为10%、腈纶纤维在混合液中的重量百分浓度为5%,水解温度为85℃,时间为3小时,水解后的纤维经过酸中和后交联,交联剂控制在纤维重量的0.03%,反应时间控制在1h,交联后纤维在70-80℃条件下干燥,所得纤维吸水、保水、强力等综合性能最佳。通过对水解反应中的三大影响因素研究分析,发现碱浓度,温度,水解时间对纤维的水解影响具有一定的等效性,即较低浓度长时间水解与较高浓度短时间水解下所得产物吸水率比较接近。
     研究发现,超吸水纤维可与其他纤维按一定比例共混,经梳理、成网、加固、分切等工艺制成吸水性非织造材料,其中纤维配比、成网工艺、加固工艺对非织造材料的强力、吸收、渗透性能均有影响;当ES含量在配比达到30%以上,可满足纤网强力;交叉成网后纤网叠合位置有明显的分层现象,但可通过线速度、加热温度、加热时间改善;加固温度在一定的范围内上升可以改善粘结效果,增强纤网强力;随着SAF纤维配比增加,滑渗量逐渐减小,回渗量增加;采用交叉成网的非织造材料吸水量比单层纤网的吸水量增加,滑渗、回渗量减少。
     根据不同的配比制成非织造材料的吸水倍率为10~150不等,材料强度、吸水、保水性能可满足不同工作条件需要,可广泛应用于医疗、卫生护理、园艺及产业用织品等领域内,尤其在离子交换类材料、电线/电缆包覆材料及卫生材料吸收芯层三个方面。
In this study, the Super-absorbent polyacrylonitrile fiber are prepared in the organic solvents ; allow polyacrylonitrile yarn in alkaline hydrolysis of organic solvents, then by cross-linking treatment,This fiber has a strong water-absorbent, water-retention capacity and non-irritating and has a certain strength, nonwovens with Super-absorbent-fiber were Prepared by Thermal Bonding.
     Studies have shown that mixture with isopropyl alcohol and water, When water was control-ed to be 10% in the mixed organic solvents, alkali was controlled to be 0.1 wt% in the mixed organic solvent, acrylic fiber was controlled to be 5wt% in the mixed organic solvents, hydrolysis temperature was about 85°C for 3 hours, after crosslinking treatment in the solution containing high-priced metal ions, the reaction time was controlled at 1h, Crosslinker was controlled to be 0.03% of fiber weight, drying at 80℃, The fiber showed good performance during this procedure research on the three factors in the Hydrolysis reaction, we found that concentration, temperature and time have a certain amount of equivalent effect.
     The study found that The absorbent non-woven materials can be made of the super-absorbent fibers and a certain percentage of normal-fiber through blending、neting、reinforcement and cut process, properties, water absorption depending on the ratio of super-absorbent fibers, material capability can be required to meet the different working conditions, can be widely used in the field of medical, health care, horticulture and industrial fabrics etc; the characteristic of such materials is simple-technics, low-cost, non-polluting, biodegradable.
     In addition, The influences of the crosslinking conditions and hydrolyzing Processes on the chemical structure of the fiber, the surface structure of the fiber, assembling state of the moleculars in the fiber and the mechanic Properties of the fiber were also discussed using FTIR, SEM etc; mechanical properties, water absorption capability、the infiltration capability of its absorbent non-woven materials also be researched and analysis.
     The range of the Water Absorbency from the non-woven material which was made depending on the different ratio is 10~150. The strength of the material、Absorbent and Retention capability may content the requests of different working conditions,they can be used in the areas of medical, health care、gardening and industrial textiles etc. Especially in the three areas of Ion-exchangetype of material、Wire /cable coating materials, Absorbing core layer of health material.
引文
[1]洪有纪.简述世界化纤生产的现状及发展趋势[J].纺织科学研究,1995,25(4):21-25.
    [2]张亚坤.世界聚丙烯腈纤维的发展[J].纺织导报,1999,27(6):35-39.
    [3]Economics Bureau.World wide Manufaetured Fiber Survey[J].Fiber organnon,2005,42(6):107-109.
    [4]Stuart A.Mr.strong.The Market Dynamics and Technology Advancement of Acrylie Fibers[J].The Collections of the These for the Seventh Beijing International Conference On Man-made Fibers,Beijing,1998.
    [5]李秀刚.中国腈纶的现状及未来[J].合成纤维,2008,19(3):40-44.
    [6]张震东.我国腈纶工业现状及发展前景[J].合成纤维工业,2004,33(9):18-21.
    [7]张连敏,李祥高.聚丙烯腈纤维的生产技术及其应用综述[J].非织造布,2007,35(2):22-26.
    [8]邓爱琴.加入WTO中国腈纶发展对策[J].合成纤维工业,2001,22(6):13-15.
    [9]李健颖.高吸水与高吸油性树脂[J].化学工业出版社.2005.12(9):23-25.
    [10]闫春绵.方少明.高吸水性树脂的研究及应用[J].精细石油化工,1999,2(05).
    [11]顾利霞.浏兆峰.亲水性纤维[M].北京石化出版社,1997:130-136.
    [12]管迎梅,陈兆文,张强,聚丙烯腈纤维碱法部分水解机理研究[J].舰船科学技术,第28卷第6期.
    [13]郭建维.崔英德等.高吸水性树脂的现状与发展方向[J].广州化工.2000.28(4):136.
    [14]刘廷栋.刘京.高吸水性树脂在闩用化学工业中应用[J].日用化学工业.1995,22(1):22.
    [15]赵稼祥.医用功能纤维,中国石化出版社,1996.
    [16]高茜斐,赵耀明.高吸水纤维[J],合成纤维,2002,7:24-27.
    [17]杨大川,曹建平,聚丙烯腈碱性条件下的水解研究[J],北京化工学院学报(自然科学版),1990,17(1):13~15.
    [18]甲乙女和雄,高分子加工(日).1982,41(7):3.
    [19]Chihani,T hami,C anback.Super absorbent fiber or nonwoven materia,a method for its manufacture,and an absorbent article comprising the super absorbent fiber of nonwoven material,USP 6194630.February 27,2001.
    [20]Lee S-G,Kang T-J.Polymer Bulletin,1998,40(1):95.
    [21]Hamada H,Kitayama T,et al.Inter Conf CompInterf(ICCI-VIII),2000:82.
    [22]Le-Khac.Ultra-highwater absorbing fiber-formig composition,USP 4892533,January 9,1990.
    [23]Le-Khac.Polymer compositions and absorbent fibers produced,USP 5154165,September 29,1992.
    [24]Brunskill.Method of producig fiber or film,USP 5827861,December 10,1996.
    [25]吴培熙,张留城.聚合物共混改性.北京:中国轻工业出版社,1996:7-9.
    [26]邱海霞,于九皋,林通.高吸水性树脂[J].化学通报,2003,9:598-601.
    [27]RAJU M P,RAJU K M.Design and synthesis of superabsorbent polymer[J].J Appl Polym Sci,2001,80(14):2635-2639.
    [28]赵军子,翁志学.耐电解质高吸水性树脂[J].高分子通报,2001,56(6):72-75.
    [29]龙明策,王鹏,郑彤.高吸水性树脂溶胀热力学及吸水机理[J].化学通报,2002,(10):705-708.
    [30]林润雄,姜斌,黄毓礼.高吸水性树脂吸水机理的探讨[J].北京化工大学学报,1998,3(25):20-25.
    [31]武荣瑞,张天骄.成纤聚合物的合成与改性,北京:中国石化出版社,2003.
    [32]JanakaK.US.Pat4,366,206,1982.
    [33]Masahito & MasashiA.JaP.Pat272,015,1993.
    [34]王琪,何凌云.聚丙烯腈的水解及水解产物与聚乙烯醇分子间氢键复合研究[J].功能高分子学报,1996,9:78-84.
    [35]赵淑芬.高吸水涤纶纤维的制备方法及应用开发[J].天津纺织科技,2005第4期
    [36]丁远蓉,肖长发,贾广霞,安树林.后交联型聚丙烯酸系吸水树脂的研究[J].天津工业大学学报,2003,(1):1-14.
    [37]李留忠,于元章,李永华.废腈纶水解物的制备与表征[J].高分子材料科学与工程,2003,(3):169-172.
    [38]废腈纶水解物的制备与表征[J].高分子材料科学与工程.2003,19:169-172.
    [39]高科技纤维新宠.技术与市场.2002.(8):8-9.
    [40]陈兆文,范海明,管迎梅,黄华尧.部分水解PAN纤维的性能研究[J].2007.12(6):1-6.
    [41]陈兆文,徐文国.PAN纤维部分水解法制备离子交换纤维[J].2008,(2) 2.
    [42]刘瑞霞,汤鸿霄,张宝文.聚丙烯腈氨基膦酸型螯合纤维对汞的吸附性能[J]环境化学.1998,17(3):231-236.
    [43]Deng Shubo,Bai Renbi,Chen JP.Behaviors and mechanisms of copper absorption on hydrolyzed polyacrylonitrile fibers[J].Journal of Colloild and Interface Science.2003.260-272.
    [44]Krentsel LB,Kudryavtsev YV,Rebrov AI,etal.Acidic hydrolysis of polyacrylonitrile:effect of neighboring groups[J].Macromolecules,2001,34-56.
    [45]代瑞华,刘会娟.醋酸纤维素吸附剂的制备及其性能表征[J].环境科学,2005,26(4):111-113.
    [46]马书斌,宁家成.高吸水纤维的开发和应用现状[J].石油化工,1994第3卷.
    [47]H.Barani PreParation of polyaerylonitrile and cellulose acetate blend Fibers through wet-spinning.Joumal of Applied Polymer Science.2006.103-112.
    [48]郭秉臣.非织造布学,北京:中国纺织出版社,2002.3-4,183-198.
    [49]车顺花,于湖尘.超吸水纤维非织造布吸水性能的探讨[J].山东纺织科技,2008年第4期.
    [50]杨晓丽,马俊红,买苏尔,司马义·努尔拉.聚丙烯酸钠超强吸水树脂综合应用性能研究[J],化工科技,2005.13(5):17-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700