耐热β-1,3-1,4-葡聚糖酶的构建及其酶学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
β-1,3-1,4-葡聚糖酶(β-1,3-1,4-glucanase, E.C.3.2.1.73,简称β-葡聚糖酶)属于糖基水解酶类,降解β-葡聚糖中与β-1,3糖苷键相邻的β-1,4糖苷键。β-葡聚糖酶是一种重要的工业用酶,广泛应用于啤酒和饲料工业中。在啤酒生产过程中,大麦中的β-葡聚糖会降低麦芽汁和啤酒过滤速度,在啤酒贮存过程中容易引起沉淀等问题;在畜禽饲料中如含有较多的β-葡聚糖会增加食糜粘度,影响动物内源性消化酶与营养物质的接触,降低饲料的消化率。β-葡聚糖酶可有效避免β-葡聚糖在酿造和饲料工业中的上述不良影响,提高啤酒的质量和饲料的消化率。
     热稳定性差和催化活性低是当前β-葡聚糖酶在工业应用中普遍存在的问题。解淀粉芽孢杆菌(Bacillusamyloliquefaciens)β-葡聚糖酶在酸性条件具有较高的酶活性,但其热稳定性较差;热纤梭菌(Clostridiumthermocellum)是一种嗜热的厌氧菌,其所产生的β-葡聚糖酶的热稳定性高于芽孢杆菌所产生的β-葡聚糖酶,但酶活力较低。本研究以热纤梭菌β-葡聚糖酶和解淀粉芽孢杆菌β-葡聚糖酶基因为研究材料,采用基因重叠延伸技术(SOE),将二者β-葡聚糖酶基因进行杂合和融合,构建耐热、高活性的β-葡聚糖酶。研究的主要结果如下:
     1.构建了解淀粉芽孢杆菌β-葡聚糖酶。经摇瓶发酵培养,该酶的酶活性为80U mL~(-1),纯化后酶的比活力为1106U mg~(-1),最适反应温度和pH分别为50℃和6.0,在pH5.0-7.0范围内,具有较高的酶活性;以大麦葡聚糖为底物时,该酶的米氏常数(K_m)和催化效率常数(K_(cat)/K_m)分别为1.5mg mL~(-1)和369mL mg~(-1)s~(-1);在80℃温度下处理30min,解淀粉芽孢杆菌β-葡聚糖酶仅有16%的残余酶活,具有较低的耐热性。
     2.构建了热纤梭菌缺失锚定结构域β-葡聚糖酶。经摇瓶发酵培养,该酶的酶活性为7.8U mL~(-1),纯化后的比活力为275U mg~(-1),最适反应温度和pH分别为70℃和8.0,在pH7.0-9.0范围内,具有较高的酶活性;该酶的K_m和K_(cat)/K_m分别为2.7mg mL~(-1)和51mL mg~(-1)s~(-1),在80℃温度下处理30min,有60%的残余酶活;与解淀粉芽孢杆菌β-葡聚糖酶相比,热纤梭菌缺失锚定结构域β-葡聚糖酶的催化活性较低,但具有较高的热稳定性。
     3.融合β-葡聚糖酶的构建。将热纤梭菌β-葡聚糖酶N-端13个和27个氨基酸残基分别与解淀粉芽孢杆菌β-葡聚糖酶N端融合,构建融合β-葡聚糖酶,分别命名为R13和R27。纯化后R13和R27的比活力分别为1074U mg~(-1)和1013U mg~(-1),它们的最适反应温度和pH分别为60℃和6.0;在80℃温度下处理30min,R13和R27分别保留34%和52%的残余酶活,分别高出解淀粉芽孢杆菌β-葡聚糖酶残余酶活的18%和36%,但它们的耐热性均低于热纤梭菌β-葡聚糖酶。表明融合热纤梭菌β-葡聚糖酶N-端13个和27个氨基酸残基,能够提高解淀粉芽孢杆菌β-葡聚糖酶的耐热性。酶催化动力学研究表明,R13的K_m和K_(cat)/K_m分别为1.7mg mL~(-1)和324mL mg~(-1)s~(-1),R27的K_m和K_(cat)/K_m分别为1.9mg mL~(-1)和288mL mg~(-1)s~(-1)。与解淀粉芽孢杆菌β-葡聚糖酶的催化活性相比较,R13和R27均有不同程度的降低,说明解淀粉芽孢杆菌N-端融合热纤梭菌β-葡聚糖酶N-端13或27个氨基酸残基后,降低了解淀粉芽孢杆菌β-葡聚糖酶与底物的亲和力,进而影响了酶的催化活性,其中融合热纤梭菌β-葡聚糖酶N-端27个氨基酸残基对解淀粉芽孢杆菌β-葡聚糖酶催化活性的抑制作用大于融合13个氨基酸残基的抑制作用。
     4.双催化结构域β-葡聚糖酶的构建。将解淀粉芽孢杆菌β-葡聚糖酶的催化结构域和热纤梭菌β-葡聚糖酶的催化结构域连接,构建双催化结构域β-葡聚糖酶。构建的双催化结构域β-葡聚糖酶命名为RQ,纯化后RQ的比活力为2434U mg~(-1),RQ的最适反应温度和pH分别为70℃和6.0;耐热性研究表明,在80℃温度下处理30min,RQ有67%的残余酶活,分别高出R13和R27残余酶活的33%和15%,RQ的耐热性与热纤梭菌β-葡聚糖的耐热性相接近;RQ的K_m和K_(cat)/K_m分别为1.2mg mL~(-1)和1014mL mg~(-1)s~(-1),其催化效率分别是R13和R27催化效率的3.13倍和3.52倍,也是解淀粉芽孢杆菌β-葡聚糖酶和热纤梭菌β-葡聚糖酶催化效率之和的2.41倍。以上结果表明:RQ的酶学性质并不是简单的解淀粉芽孢杆菌β-葡聚糖酶和热纤梭菌β-葡聚糖酶的酶学性质的叠加,而是赋予了新的酶学特性的β-葡聚糖酶,它除具有热纤梭菌β-葡聚糖酶的热稳定性外,其催化效率也高于解淀粉芽孢杆菌β-葡聚糖酶和热纤梭菌β-葡聚糖酶的催化效率之和。热纤梭菌β-葡聚糖酶的连接子可有效改善双催化结构域β-葡聚糖酶的耐热性和催化活性。
     5.双催化结构域β-葡聚糖酶的耐热机理初步研究。将RQ中热纤梭菌β-葡聚糖酶的两个催化活性位点的谷氨酸(E134和E138)定点突变为丙氨酸(E134A和E138A),构建含点突变的双催化结构域β-葡聚糖酶,并命名为RQM。耐热性研究表明,在80℃温度下处理30min,RQM有57%的残余酶活,分别比解淀粉芽孢杆菌β-葡聚糖酶、R13和R27的耐热性提高了41%、23%和5%;与热纤梭菌β-葡聚糖酶和RQ的耐热性相比,RQM的耐热性分别降低了3%和10%。说明热纤梭菌β-葡聚糖酶不仅其N-端对RQ的耐热性有影响,而且其催化结构域的整个结构在稳定酶分子中发挥作用,包括其催化活性位点,热纤梭菌β-葡聚糖酶催化结构域和解淀粉芽孢杆菌β-葡聚糖酶催化结构域之间相互影响,产生协同效应,形成一种特性优良的、新的β-葡聚糖酶。
     6.双催化结构域β-葡聚糖酶发酵培养基和培养条件如下:大麦粉43.48g L~(-1)、豆粉34.40g L~(-1)、NaCl2.40g L~(-1)、KH_2PO_42.40g L~(-1)和K_2HPO_412.50g L~(-1);接种量1%(V/V)、装样量45mL/250mL、发酵培养基初始pH6.0-7.0、最佳诱导时期为在200rpm转速下培养3h后诱导。优化后的发酵培养基产β-葡聚糖酶的量为110U mL~(-1),比初始发酵培养基提高了11%。虽然发酵产β-葡聚糖酶的量没有得到大幅度提高,但是优化后的发酵培养基中的碳源和氮源是廉价的大麦粉和豆粉,大大降低了β-葡聚糖酶的生产成本,具有很好的实际应用价值。
β-1,3-1,4-glucanases (E.C.3.2.1.73, β-glucanases) are glycosyl hydrolases, which exhibit strict substratespecificity for cleavage of β-1,4glycosidic bonds in3-O-substituted glucopyranose units. β-glucanases are animportant industrial enzyme widely used in beer and feed industries. In the brewing industry, barley β-glucan cancaused severe problems such as reduced yield of extract and lowered rates of wort separation or beer filtration,and causing the precipitation during beer storage. In anminal feed, β-glucan will increase the viscosity of feed, andeffect the contaction between endogenous digestive enzyme and nutrients, and reduce the nutritional value of feed.β-glucanases can effectively avoid the negative impact of grain β-glucan in brewing and feed industries andimprove the quality of beer and the biological efficiency of feed.
     The major drawback of the current β-glucanases is their poor thermal stability and low activity. β-glucanasefrom Bacillus amyloliquefaciens displays high activity under acidic conditions, but has poor thermal stability.Clostridium thermocellum is a thermophilic anaerobic bacterium, and its β-glucanase displayed higher thermalstability than Bacillus β-glucanase, while β-glucanase from Clostridium thermocellum has low activity. In thisstudy, constructing a β-glucanase with high thermal stability and catalytic activity is the major purpose. Theβ-glucanase genes from Bacillus amyloliquefaciens and Clostridium thermocellum were chosen as reserech object,fusion enzymes were constructed between them using gene splicing by overlap extension technology. The mainfindings are as follows:
     1. β-glucanase from Bacillus amyloliquefaciens was constructed. The activity of β-glucanase in thefermentation broth was80U mL~(-1), specific activity of recombinant enzyme was1106U mg~(-1)after purification,and the recombinant enzyme exhibited maximal activity at50℃and pH6.0. The Michaelis constants (K_m) andcatalytic efficiency (K_(cat)/K_m) of recombinant enzyme were1.5mg mL~(-1)and369mL mg~(-1)s~(-1), respectively. Thethermal stability of recombinant enzyme was not high, which only retained16%of activity following incubationat80℃for30min.
     2. β-glucanase deleted dockerin domain from Clostridium thermocellum was constructed. The activity ofβ-glucanase in the fermentation broth was7.8U mL~(-1), Specific activity of the recombinant enzyme was275Umg~(-1)after purification, the optimal temperature and pH of the recombinant enzyme were70℃and8.0,respectively. The enzyme displayed high stability between pH7.0and9.0. Compared with β-glucanase fromBacillus amyloliquefaciens, the recombinant enzyme displays low catalytic activity, but has high thermal stability.The Michaelis constants (K_m) and catalytic efficiency (K_(cat)/K_m) of recombinant enzyme were2.7mg mL~(-1)and51mL mg~(-1)s~(-1), respectively. When incubated at80℃for30min, the recombinant enzyme can retain60%residualactivity.
     3. The fusion β-glucanases were constructed by end-to-end fusion between N-terminal of the β-glucanasefrom Bacillus amyloliquefaciens and the N-terminal13or27amino acid fragments of β-glucanase fromClostridium thermocellum. The fusion β-glucanases were named as R13and R27, respectively. Specific activity ofR13and R27were1074U mg~(-1)and1013U mg~(-1)after purification, respectively. The optimal temperature of R13and R27was all60℃, and the optimal pH was all6.0. R13and R27can retain34%and52%of their activityfollowing incubation at80℃for30min, which was18%and36%higher than that of β-glucanase from Bacillusamyloliquefaciens, respectively, but they all displayed lower thermal stability than that of β-glucanase fromClostridium thermocellum. The result showed that β-glucanase from Bacillus amyloliquefaciens fused with theN-terminal13or27amino acid fragments of β-glucanase from Clostridium thermocellum, can significantlyimp-rove its thermal stability. The Michaelis constants (K_m) and catalytic efficiency (K_(cat)/K_m) of R13were1.7mgmL1and324mL mg~(-1)s~(-1), respectively, while K_mand K_(cat)/K_mof R27were1.9mg mL~(-1)and288mL mg~(-1)s~(-1),respectively. Compared with the catalytic activity of β-glucanase from Bacillus amyloliquefaciens, R13and R27displayed low catalytic activity, because of its low the affinity with substrate, and β-glucanase from Bacillusamyloliquefaciens constructed with27amino acid fragment in which its enzymatic activity inhibition greater than13amino acid fragment.
     4. β-glucanase with double catalytic domain was constructed by end-to-end fusion of catalytic domain ofβ-glucanase from Bacillus amyloliquefaciens and Clostridium thermocellum. β-glucanase with double catalyticdomains was named as RQ. Specific activity of RQ was2434U mg~(-1)afeter purification, the optimal temperatureand pH of RQ was70℃and6.0, respectively. At80℃incubation for30min, RQ can retain67%residualactivity, which was33%and15%higher than that of R13and R27, respecitively. The thermal stability of RQ wassimilar with that of β-glucanase from Clostridium thermocellum. K_mand K_(cat)/K_mof RQ were1.2mg mL~(-1)and1014mL mg~(-1)s~(-1), respectively. The catalytic efficiency of RQ was3.13and3.52-fold higher than that of R13andR27, respectively, which was also2.41-fold higher than that of superposition between Bacillus amyloliquefaciensand Clostridium thermocellum. It showed that RQ was a new enzyme, whose enzymatic properties were notsimple superposition between β-glucanase from Bacillus amyloliquefaciens and Clostridium thermocellum, butgiven the new enzymatic properties. The thermal stability of RQ was similar with that of β-glucanase from Clostridium thermocellum, and whose the catalytic activity was also much higher than that of superposition ofβ-glucanase from Bacillus amyloliquefaciens and Clostridium thermocellum. The linker of β-glucanase fromClostridium thermocellum can effectively improve the thermal stability and catalytic activity of RQ.
     5. In order to study the heat-resistant mechanism of RQ, A site-directed mutant enzyme of RQ as RQM wasconstructed, in which two key glutamate residues (E134and E138) in active site of β-glucanase from Clostridiumthermocellum were reconstructed by substitution of alanine (E134A/E138A). The thermostable study showed thatRQM can retain57%of activity following incubation at80℃for30min, which was41%,23%and5%higherthan that of β-glucanase from Bacillus amyloliquefaciens, R13and R27, respectively. And the thermal stability ofRQM was3%and10%lower than that of β-glucanase from Clostridium thermocellum and RQ, respectively.These results suggest that the thermal stability of RQ was not only with N-terminal of β-glucanase fromClostridium thermocellum, but also involves all of the enzyme molecules, including its catalytic sites. The newβ-glucanase with fine features was constructed between β-glucanase from Bacillus amyloliquefaciens andClostridium thermocellum, in which the catalytic domain of β-glucanase from Clostridium thermocelluminteracted with that of β-glucanase from Bacillus amyloliquefaciens, and resulting in synergy effects.
     6. The optimization of fermentation medium and conditions for RQ were investigated. The results indicatedthat the highest production of β-glucanase could be obtained in the medium containing (g L~(-1)): barley powder43.48, soybean powder34.40, NaCl2.40, KH_2PO_42.40and K_2HPO_412.50. And the optimal fermentationconditions are as follows: inoculation volume1%(V/V), loading volume45mL/250mL, initial pH6.0-7.0,induced after cultivating for3h at200rpm. Compared with the initial fermentation medium, the product ofβ-glucanase cultivated by optimized fermentation medium increased by11%, which was110U mL~(-1). Althoughthe production of β-glucanase didn’t get a substantial improvement, barley powder and soybean powder werechosen as carbon and nitrogen sources in optimization fermentation medium, which are cheap meterials. All ofthis can significantly reduced the costs of β-glucanase, and has good practical value.
引文
1. Woodward JR, Fincher GB, Stone BA. Water soluble (1-3),(1-4)-β-D-glucans from barley (Hordeum vulgare)endosperm II Fine structure [J]. Carbohydr Polym,1983,3:207-225
    2. Anderson MA, Stone BA. A new substrate for investigating the specificity of beta-glucan hydrolases [J]. FEBSLett,1975,52(2):202-207
    3. Henrissat B, Davies G. Structural and sequence-based classification of glycoside hydrolases [J]. Curr OpinStruc Biol,1997,7:637-644
    4. Grimm A, Kruger E, Burchard W. Solution properties of β-D-(1,3)(1,4)-glucan isolated from beer[J]. CarbohydPolym,1995,27:205-214
    5. Gohl B, Alden S, Elwinger K, etc. Influence of β-glucanase on feeding value of barley for poultry and moisturecontent of excreta [J]. Brit Poultry Sci,1978,19:41-47
    6. Keitel T, Simon O, Borriss R, etc. Molecular and active-site structure of a Bacillus1,3-1,4-beta-glucanase[J].Proc Natl Acad Sci USA,1993,90(11):5287-5291
    7. Hahn M, Pons J, Planas A, etc. Crystal structure of Bacillus licheniformis1,3-1,4-beta-D-glucan4-glucanohydrolase at1.8A resolution[J]. FEBS Letters,1995,374:221-224
    8. Hahn M, Olsen O, Politz O, etc. Crystal structure and site-directed mutagenesis of Bacillus maceransendo-1,3-1,4-beta-glucanase[J]. J Biol Chem,1995,270(7):3081-3088
    9. Hahn M, Keitel T, Heinemann U. Crystal and molecular structure at0.16nm resolution of the hybrid Bacillusendo-1,3-1,4-beta-D-glucan4-glucanohydrolase H(A16-M)[J]. Eur J Biochem,1995,232(3):849-858
    10. Planas A. Bacterial1,3-1,4-β-glucanases: structure, function and protein engineering [J]. Biochimica etBiophysica Acta,2000,1543:361-382
    11.李卫芬,陆平,周绪霞.多粘芽孢杆菌β-葡聚糖酶特性及其基因克隆[J].浙江大学学报,2004,30(3):331-335
    12. Olsen O, Borriss R, Simon O, etc. Hybrid Bacillus (1-3,1-4)-beta-glucanases: engineering thermostableenzymes by construction of hybrid genes [J]. Mol Gen Genet,1991,225:177-185
    13. Lloberas J, Querol E, Bernues J. Purification and characterization of endo-β-1,3-glucanase activity fromBacillus licheniformis [J]. Appl Microbiol Biotechnol,1988,29:32-38
    14. Tabernero C, Coll PM, Fernandez-Abalos JM. Cloning and DNA sequencing of bga A, a gene encoding anendo-β-l,3-l,4-glucanase from an alkalophilic Bacillus strain (N137)[J]. Appl Environ Microbiol,1994,60(4):1213-1220
    15. Schimming S, Schwarz WH, Staudenbauer WJ, Properties of a thermoactive beta-1,3-1,4-glucanase (lichenase)from Clostridium thermocellum expressed in Escherichia coli[J]. Biochem Biophys Res Commun,1991,177:447-452
    16. Wen TN, Chen JL, Lee SH, etc. A truncated Fibrobacter succinogenes1,3-1,4-β-D-glucanase with improvedenzymatic activity and thermotolerance [J]. Biochemistry,2005,44:9197-9205
    17. Sait Ekinci M, Mccrae SI, Harry JF. Isolation and overexpression of a gene encoding an extracellularβ-(1,3-1,4)-glucanase from Streptococcus bovis JB1[J].Appl Environ Microb,1997,63(10):3752-3756
    18. Comlekcioglu U, Ozkose E, Akyol I, etc. Expression of beta-(1,3-1,4)-glucanase gene of Orpinomyces spGMLF18in Escherichia coli EC1000and Lactococcus lactis subsp cremoris MG1363[J]. Turkish Journal ofBiology,2011,35(4):405-414
    19. Connell E, Piggott C, Tuohy M. Purification of exo-1,3-beta-glucanase, a new extracellular glucanolyticenzyme from Talaromyces emersonii [J]. Appl Microbiol Biotechnol,2011,89:685-696
    20. Jung YJ, Lee YS, Park IH, etc. Molecular cloning, purification and characterization of thermostablebeta-1,3-1,4glucanase from Bacillus subtilis A8-8[J]. Indian J Biochem Biophys,2010,47(4):203-210
    21. Qiao JY, Zhang B, Chen YQ, etc. Codon optimization, expression and characterization of Bacillus subtilisMA139beta-1,3-1,4-glucanase in Pichia pastoris[J]. Biologia,2010,65:191-196
    22. Qiao JY, Dong B, Li YH, etc. Cloning of a β-1,3-1,4-glucanase gene from Bacillus subtilis MA139and itsfunctional expression in Escherichia coli [J]. Appl Biochem Biotechnol,2009,152:334–342
    23. Lu P, Feng MG, Li WF, etc. Construction and characterization of a bifunctional fusion enzyme ofBacillus-sourced β-glucanase and xylanase expressed in E. coli [J]. FEMS Microbiol Lett,2006,261(2):224-230
    24. Heng NC, Jenkinson HF, Tannock GW, etc. Cloning and expression of an endo-1,3-1,4-beta-glucanase genefrom Bacillus macerans in Lactobacillus reuteri [J]. Appl Environ Microb,1997,63(8):3336-3340
    25. Borriss R, Buettner K, Maentsaelae P. Structure of the beta-1,3-1,4-glucanase gene of Bacillus macerans:homologies to other beta-glucanases [J]. Mol Gen Genet,1990,222:278-283
    26. Kim JY. Overproduction and secretion of Bacillus circulans endo-β-1,3-1,4-glucanase gene (bglBC1) in B.subtilis and B. megaterium [J]. Biotechnol Lett,2003,25:1445-1449
    27. Kim KH, Kim YO, Ko BS, etc. Over-expression of the gene (bglBC1) from Bacillus circulans encoding anendo-β-1,3-1,4-glucanase useful for the preparation of oligosaccharides from barley β-glucan [J]. Biotechnol Lett,2004,26:1749-1755
    28. Baird SD, Johnson DA, Seligy VL. Molecular cloning, expression, and characterization ofendo-beta-1,4-glucanase genes from Bacillus polymyxa and Bacillus circulans [J]. J Bacteriol,1990,172(3):1576-1586
    29. Teng D, Fan Y, Yang YL, etc. Codon optimization of Bacillus licheniformis β-1,3-1,4-glucanase gene and itsexpression in Pichia pastoris [J]. Appl Microbiol Biotechnol,2007,74:1074-1083
    30. Flint HJ, Martin J, McPherson CA, etc. A bifunctional enzyme, with separate xylanase and beta(1,3-1,4)-glucanase domains, encoded by the xynD gene of Ruminococcus flavefaciens [J]. J Bacteriol,1993,175(10):2943-2951
    31. Schwarz WH, Grabnitz F, Staudenbauer WL. Properties of a Clostridium thermocellum endoglucanaseproduced in Escherichia coli [J]. Appl Environ Microb,1986,51(6):1293-1299
    32. Irvin JE, Teather RM. Cloning and expression of a Bacteroides succinogenes mixed-linkage β-glucanase(1,3-1,4-β-D-glucan4-glucanohydrolase) gene in E. coli [J]. Appl Environ Microbiol,1988,54(11):2672-2676
    33. Chen H, Li XL, Ljungdahl LG. Sequencing of a1,3-1,4-beta-D-glucanase (lichenase) from the anaerobicfungus Orpinomyces strain PC-2: properties of the enzyme expressed in Escherichia coli and evidence that thegene has a bacterial origin [J]. J Bacteriol,1997,179(19):6028-6034
    34. Gorlach JM, Van Der Knaap E, Walton JD. Cloning and targeted disruption of MLG1, a gene encoding two ofthree extracellular mixed-linked glucanases of Cochliobolus carbonum [J]. Appl Environ Microbiol,1998,64(2):385-391
    35. Bang ML, Villadsen I, Sandal T. Cloning and characterization of an endo-beta-1,3(4)glucanase and an asparticproteinase from Phaffia rhodozymaPhaffia rhodozyma CBS6938[J]. Appl Microbiol Biotechnol,1999,51(2):215-222
    36. Juncosa M, Pons J, Dot T, etc. Identification of active site carboxylic residues in Bacillus licheniformis1,3-1,4-beta-D-glucan4-glucanohydrolase by site-directed mutagenesis [J]. J Biol Chem,1994,269(20):14530-14535
    37. Goldenkova IV, Musiychuk KA, Piruzian ES. A thermostable Clostridium thermocellum lichenase-basedreporter system for studying the gene expression regulation in Prokaryotic and Eukaryotic Cells [J]. Mol Biol,2002,36(5):698-704
    38. Goldenkova IV, Musiychuk KA, Piruzian ES. Bifunctional reporter genes: construction and expression inProkaryotic and Eukaryotic Cells [J]. Mol Biol,2003,37(2):307-313
    39.吕文平,许梓荣.地衣芽孢杆菌β-1,3-1,4-葡聚糖酶基因的克隆和表达[J].农业生物技术学报,2004,12(4):446-449
    40. Borriss R, Noack D, Geuther R. Beta-1,3-1,4-glucanase in spore-forming microorganisms. VI. Geneticinstability of beta-glucanase production in a high-producer strain of Bacillus amyloliquefaciens grown in achemostat [J]. Z Allg Mikrobiol,1982,22(5):293-298
    41. Wolf M, Geczi A, Simon O, etc. Genes encoding xylan and β-glucan hydrolysing enzymes in Bacillus subtilis:characterization, mapping and construction of strains deficient in lichenase, cellulase and xylanase [J].Microbiology,1995,141(2):281-290
    42. Hinchliffe, E, Box, WG. Expression of the cloned endo-1,3-1,4-β-glucanase gene of Bacillus subtilis inSaccharomyces cerevisiae [J]. Curr Genet,1984,8(6):471-475
    43. Cantwell BA, Brazil G, Murphy N, etc. Comparison of expression of the endo-beta-1,3-1,4-glucanase genefrom Bacillus subtilis in Saccharomyces cerevisiae from the CYC1and ADH1promoters [J]. Curr Genet,1986,11:65-70
    44. Meldgaard M, Harthill J, Petersen B, etc. Glycan modification of a thermostable recombinant(1-3,1-4)-beta-glucanase secreted from Saccharomyces cerevisiae is determined by strain and culture conditions[J]. Glycoconjugate J,1995,12:380-390
    45. Huang HQ, Yang PL, Luo HY, etc. High-level expression of a truncated1,3-1,4-β-D-glucanase fromFibrobacter succinogenes in Pichia pastoris by optimization of codons and fermentation [J]. Appl MicrobiolBiotechnol,2008,78:95-103
    46. Hovarth H, Huang J, Wong O, etc. The production of recombinant proteins in transgenic barley grains [J].Proc Natl Acad Sci USA,2000,97:1914-1919
    47. Piruzian ES, Monzavi-Karbassi B, Darbinian NS, et al. The use of a thermostable β-glucanase gene fromClostridium thermocellum as a reporter gene in plants [J]. Mol Gen Genet,1998,257:561-567
    48.李永仙,谢焱,朱林江,等.淀粉液化芽孢杆菌β-1,3-1,4-葡聚糖酶基因的克隆及表达[J].生物工程学报,2009,25(4):542-548
    49. Akita M, Kayatama K, Hatada Y, etc. A novel β-glucanase gene from Bacillus halodurans C-125[J]. FEMSMicrobiol Lett,2005,248:9-15
    50. Teng D, Wang JH, FanY, etc. Cloning of β-1,3-1,4-glucanase gene from Bacillus licheniformis EGW039(CGMCC0635) and its expression in E. coli BL21(DE3)[J]. Appl Micro Biotechnol,2006,72:705-712
    51. Furtado GP, Ribeiro LF, Santos CR, etc. Biochemical and structural characterization of a β-1,3-1,4-glucanasefrom Bacillus subtilis168[J]. Process Biochem,2011,46:1202-1206
    52. Erfle JD, Teather RM, Wood PJ, etc. Purification and properties of a1,3-1,4-β-D-glucanase (lichenase1,3-1,4-β-D-glucan4-glucanohydrolase, EC3.2.1.73) from Bacteroides succinogenes cloned in E. coli [J].Biochem J,1988,255:833-841
    53. Chen H, Li XL, Ljungdahl, LG. Sequencing of a1,3-1,4-beta-D-glucanase (lichenase) from the anaerobicfungus Orpinomyces strain PC-2: Properties of the enzyme expressed in E. coli and evidence that the gene has abacterial origin [J]. J Bacteriol,1997,179:6028-6034
    54. Kim SA, Cheng KJ, Liu JH. A variant of Orpinomyces joyonii1,3-1,4-β-glucanases with increased thermalstability obtained by random mutagenesis and screening [J]. Biosci Biotechnol Biochem,2002,66(1):171-174
    55. Ekinci MS, Flint HJ. Expression of bifunctional genes encoding xylanase and β (1,3-1,4)-glucanase inGram-positive bacteria [J]. Turk J Vet Anim Sci,2001,25:771-775
    56. Ma YF, Evans DE, Loque SJ, etc. Mutations of barley beta-amylase that improve substrate-binding affinityand thermostability [J]. Mol Genet Genomics,2001,266(3):345-352
    57. Addington T, Calisto B, Alfonso-Prieto M, etc. Re-engineering specificity in1,3-1,4-β-glucanase to acceptbranched xyloglucan substrates [J]. Proteins,2011,79(2):365-375
    58. Nakazawa H, Okada K, Onodera T, etc. Directed evolution of endoglucanase III (Cel12A) from Trichodermareesei [J]. Appl Microbiol Biotechnol,2009,83:649-657
    59.严萍,梁海秋,杨辉,等.分子酶工程的研究进展[J].生物技术通讯,2004,15(3):275-277
    60. Pons J, Querol E, Planas A. Mutational analysis of the major loop of Bacillus1,3-1,4-beta-D-Glucan4-Glucanohydrolases [J]. J Biol Chem,1997,272:13006-13012
    61. Chen JL, Tsai LC, Wen TN, etc. Directed mutagenesis of specific active site residues on Fibrobactersuccinogenes1,3–1,4-β-D-Glucanase Significantly Affects Catalysis and Enzyme Structural Stability [J]. J BiolChem,2001,276(21):17895-17901
    62. Cheng HL, Tsai LC, Lin SS, etc. Mutagenesis of Trp54and Trp203residues on Fibrobacter Succinogenes1,3-1,4-β-D-glucanase significantly affects catalytic activities of the enzyme [J]. Biochemistry,2002,41:8759-8766
    63. Hakamada Y, Hatada Y, Ozawa T, etc. Identification of thermostabilizing residues in a Bacillus alkalinecellulase by construction of chimeras from mesophilic and thermostable enzymes and site-directed mutagenesis[J]. FEMS Microbiol Lett,2001,195:67-72
    64. Stewart RJ, Varghese JN, Garrett T, etc. Mutant barley (1→3,1→4)-β-glucan endohydrolases with enhancedthermostability [J]. Protein Eng,2001,14(4):245-253
    65. Wang YJ, Yuan H, Wang J, etc. Truncation of the cellulose binding domain improved thermal stability ofendo-β-1,4-glucanase from Bacillus subtilis JA18[J]. Bioresource Technol,2009,100:345-349
    66. Telke AA, Ghatge SS, Kang SH, etc. Construction and characterization of chimeric cellulases with enhancedcatalytic activity towards insoluble cellulosic substrates [J]. Bioresource Technol,2012, doi:
    10.1016/j.biortech.2012.02.066
    67. He J, Yu B, Zhang KY, etc. Thermostable carbohydrate binding module increases the thermostability andsubstrate-binding capacity of Trichoderma reesei xylanase2[J]. New Biotechnol,2009,26:53-59
    68. Thongekkaew J, Ikeda H, Iefuji H. Increase thermal stability and cellulose-binding capacity of Cryptococcussp. S-2lipase by fusion of cellulose binding domain derived from Trichoderma reesei [J]. Biochem Bioph Res Co,2012, doi:10.1016/j.bbrc.2012.02.139
    69. Wang JH, Tsai MY, Lee GC, etc. Construction of a recombinant thermostable β-amylase-trehalose synthasebifunctional enzyme for facilitating the conversion of starch to trehalose [J]. J Agric Food Chem,2007,55:1256-1263
    70. Politz O, Simon O, Olsen O, etc. Determinants for the enhanced thermostability of hybrid(1-3,1-4)-beta-glucanases [J]. Eur J Biochem,1993,216:829-834
    71. Borriss R, Olsen O, Thomsen KK, etc. Hybrid Bacillus endo-(1-3,1-4)-β-glucanases: construction ofrecombinant genes and molecular properties of the gene products [J]. Carlsberg Res Commun,1989,54:41-54
    72. Fu LL, Xu ZR, Shuai JB, etc. High-level secretion of a chimeric thermostable lichenase from Bacillus subtilisby screening of site-mutated signal peptides with structural alterations [J]. Curr Microbiol,2008,56:287-292
    73.周烈.耐热、高活性杂合内切葡聚糖酶基因的设计、表达及其酶学性质研究[D]:[博士学位论文].杭州:浙江大学动物科学学院,2011
    74.李卫芬.热纤梭菌β-葡聚糖酶热稳定性机制的研究[D]:[博士学位论文].杭州:浙江大学动物科学学院,2005
    75. Lee HL, Chang CK, Teng KH, etc. Construction and characterization of different fusion proteins betweencellulases and β-glucosidase to improve glucose production and thermostability [J]. Bioresource Technol,2011,102:3973-3976
    76. Guo Q, Zhang W, Ma LL, etc. A food-grade industrial arming yeast expressing β-1,3-1,4-glucanase withenhanced thermal stability [J]. Journal of Zhejiang University-Science B (Biomedicine and Biotechnology),2010,11(1):41-51
    77.李相前,邵蔚蓝.海栖热袍菌内切葡聚糖酶Cell2B与木聚糖酶XynA CBD结构域融合基因的构建、表达及融合酶性质分析[J].微生物学报,2006,46(5):726-729
    78.何玮璇,张永亮. β-葡聚糖酶的特性、功能及应用研究[J].广东饲料,2010,19(8):19-21
    79. Newman P. Phytate content is reduced and β-glucanase activity suppressed in malted barley steeped with lacticat high temperature [J]. J Sci Food Agr,2004,84(7):653-655
    80.华卫东,徐子伟. β-葡聚糖酶在猪的大麦基础日粮中的应用研究进展[J].饲料研究,1999,(5):18-21
    81.姜毅,王元春,雷光鸿,等.酶在制糖工业应用的研究进展[J].广西轻工业,2011,9:7-8
    82. Pauh JS, Cuddihy JA, Falgout RN. Analysing dextran in the sugar industry: A review of dextran in the factoryand a new analytical technique [J]. Proc Sug Ind Technol Ass,1999,58:747-748
    83. Efrain RJ, Division QF, Centro IGB. The dextranase along sugar-marking industry [J]. BiotechnologyAplicada,2005,22:20-27
    84.文凤云,林健荣,廖富蘋,等. β-1,3-1,4-葡聚糖酶基因克隆表达及其抗菌活性与机理研究进展[J].生物技术通报,2007,2:58-60
    85.姚乌兰,王云山,韩继刚,等.水稻生防菌株多粘类芽孢杆菌WY110抗菌蛋白的纯化及其基因克隆[J].遗传学报,2004,31(9):878-887
    86. Jin Z, Zhou W, Wang Y, etc. Antibacterial effect and cytotoxicity of β-1,3-1,4-glucanase from endophyticBacillus subtilis SWB8[J]. Acta Microbiologica Sinica,2011,51(11):1527-1537
    87.李一男,贾会勇,严巧娟,等.定向进化提高嗜热拟青霉J18耐热β-1,3-1,4-葡聚糖酶在酸性条件下的催化能力[J].生物工程学报,2011,27(12):1797-1804
    1. Qiao JY, Zhang B, Chen YQ, etc. Codon optimization, expression and characterization of Bacillus subtilisMA139beta-1,3-1,4-glucanase in Pichia pastoris [J]. Biologia,2010,65:191-196
    2. Hofemeister J, Kurtz A, Borriss R, etc. The β-glucanase gene from Bacillus amyloliquefaciens shows extensivehomology with that of Bacillus subtilis [J]. Gene,1986,49(2):177-187
    3. Borriss R, Buettner K, Maentsaelae P. Structure of the beta-1,3-1,4-glucanase gene of Bacillus macerans:homologies to other beta-glucanases [J]. Mol Gen Genet,1990,222:278-283
    4. Kim KH, Kim YO, Ko BS, etc. Over-expression of the gene (bglBC1) from Bacillus circulans encoding anendo-β-1,3-1,4-glucanase useful for the preparation of oligosaccharides from barley β-glucan [J]. Biotechnol Lett,2004,26:1749-1755
    5. Gosalbes MJ, Perez-Gonzalez JA, Gonzalez R, etc. Two beta-glycanase genes are clustered in Bacilluspolymyxa: molecular cloning, expression and sequence analysis of genes encoding a xylanase and anendo-beta-(1,3)-(1,4)-glucanase [J]. J Bacteriol,1991,173(23):7705-7710
    6. Teng D, Fan Y, Yang YL, etc. Codon optimization of Bacillus licheniformis β-1,3-1,4-glucanase gene and itsexpression in Pichia pastoris [J]. Appl Microbiol Biotechnol,2007,74:1074-1083
    7. Akita M, Kayatama K, Hatada Y, etc. A novel β-glucanase gene from Bacillus halodurans C-125[J]. FEMSMicrobiol Lett,2005,248:9-5
    8. Furtado GP, Ribeiro LF, Santos CR, etc. Biochemical and structural characterization of a β-1,3-1,4-glucanasefrom Bacillus subtilis168[J]. Process Biochem,2011,46:1202-1206
    9. Miyanishi N, Hamada N, Kobayashi T, etc. Purification and characterization of a novel extracellularβ-1,3-glucanase produced by Bacillus clausii NM-1isolated from Ezo Abalone Haliotis discus hannai [J]. JBiosci Bioeng,2003,95(1):45-51
    10. Planas A. Bacterial1,3-1,4-β-glucanases: structure, function and protein engineering [J]. Biochimica etBiophysica Acta,2000,1543:361-382
    11. Schimming S, Schwarz WH, Staudenbauer WL. Structure of the Clostridium thermocellum gene LicB and theencoded beta-1,3-1,4-glucanase. A catalytic region homologous to Bacillus lichenases joined to the reiterateddomain of clostridial cellulases [J]. Eur J Biochem,1992,204:13-19
    12. Tokatlidis KS, Salamitou P, Beguin P, etc. Interaction of the duplicated segment carried by Clostridiumthermocellum cellulases with cellulosome components [J]. FEBS Lett,1991,291:185-188
    13.李卫芬.热纤梭菌β-葡聚糖酶热稳定性机制的研究[D]:[博士学位论文].杭州:浙江大学动物科学学院,2005
    14.吕文平.耐热β-葡聚糖酶的构建及其分子机理[D]:[博士学位论文].杭州:浙江大学动物科学学院,2004
    15. Niu D, Zhou XX, Yuan TY, etc. Effect of the C-terminal domains and terminal residues of catalytic domain onenzymatic activity and thermostability of lichenase from Clostridium thermocellum [J]. Biotechnol Lett,2010,32:963-967
    16. Teng D, Wang JH, FanY, etc. Cloning of β-1,3-1,4-glucanase gene from Bacillus licheniformis EGW039(CGMCC0635) and its expression in Escherichia coli BL21(DE3)[J]. Appl Micro Biotechnol,2006,72:705-712
    17. Bradford MM. Rapid and sensitive method for quantitation of microgram quantities of protein utilizingprinciple of protein-dye binding [J]. Anal Biochem,1976,72(1-2):248-254
    18. LaemmLi UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4[J]. Nature(London),1970,227:680-685
    19. Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar [J]. Anal Chem,1959,31:426-428
    20. Lee MK, Jeya M, Joo AR, etc. Purification and characterization of a thermostable endo-β-1,4-glucanase froma novel strain of Penicillium purpurogenum [J]. Enzyme Microb Tech,2010,46:206-211
    21. Luo HY, Yang J, Yang PL, etc. Gene cloning and expression of a new acidic family7endo-β-1,3-1,4-glucanase from the acidophilic fungus Bispora sp. MEY-1[J]. Appl Microbiol Biot,2010,85:1015-1023
    22. Lineweaver H, Burk D. The determination of enzyme dissociation constants [J]. J Am Chem Soc,1934,56:658-666
    23. Marbach A, Bettenbrock K. lac operon induction in Escherichia coli: Systematic comparison of IPTG andTMG induction and influence of the transacetylase LacA [J]. J Biotechnol,2012,157:82-88
    24. Fernandez-Castane A, Vine CE, Caminal G, etc. Evidencing the role of lactose permease in IPTG uptake byEscherichia coli in fed-batch high cell density cultures [J]. J Biotechnol,2012,157:391-398
    25.杜济良,赵洪亮,薛冲,等.不同信号肽对胞外β-1,3-葡聚糖酶在巴斯德毕赤酵母中表达的影响[J].生物技术通讯,2010,21(6):798-802
    26.李彬,吴静,陈坚.信号肽对浸麻类芽孢杆菌a-环糊精葡萄糖基转移酶在大肠杆菌中胞外表达的影响[J].工业微生物,2011,41(3):54-59
    27.吕文平,许梓荣,孙建义,等.一株嗜热梭菌β-葡聚糖酶基因的克隆和表达[J].科技通报,2005,21(1):45-49
    28. Piruzian ES, Monzavi-Karbassi B, Darbinian NS, etc. The use of a thermostable beta-glucanase gene fromClostridium thermocellum as a reporter gene in plants [J]. Mol Gen Genet,1998,257(5):561-567
    29. Tsai LC, Shyur LF, Lee SH, etc. Crystal structure of a natural circularly permuted jellyroll protein:1,3-1,4-beta-D-glucanase from Fibrobacter succinogenes [J]. J Mol Biol,2003,330(3):607-620
    30. Wang YJ, Yuan H, Wang J, etc. Truncation of the cellulose binding domain improved thermal stability ofendo-β-1,4-glucanase from Bacillus subtilis JA18[J]. Bioresource Technol,2009,100:345-349
    31. Goodenough PW, Jenkins JA. Protein engineering to change thermal stability for food enzymes [J]. BiochemSoc Trans,1991,19(3):655-662
    1.李卫芬.热纤梭菌β-葡聚糖酶热稳定性机制的研究[D]:[博士学位论文].杭州:浙江大学动物科学学院,2005
    2. Mozo-Villarias A, Cedano J, Querol E. Hydrophobicity density profiles to predict thermal stabilityenhancement in proteins [J]. Protein J,2006,25:529-535
    3. Mozo-Villarias A, Querol E. Theoretical analysis and computational predictions of protein thermostability [J].Curr Bioinform,2006,1:25-32
    4. Hakamada Y, Hatada Y, Ozawa T, etc. Identification of thermostabilizing residues in a Bacillus alkalinecellulase by construction of chimeras from mesophilic and thermostable enzymes and site-directed mutagenesis[J]. FEMS Microbiol Lett,2001,195:67-72
    5. He J, Yu B, Zhang KY, etc. Thermostable carbohydrate binding module increases the thermostability andsubstrate-binding capacity of Trichoderma reesei xylanase2[J]. New Biotechnol,2009,26:53-59
    6. Din N, Gilkes NR, Tekant B, etc. Non-hydrolytic disruption of cellulose fibers by the binding domain of abacterial cellulose [J]. Nat Biotechnol,1991,9:1096-1099
    7. Hall M, Rubin J, Behrens SH, etc. The cellulose-binding domain of cellobiohydrolase Cel7A from Trichodermareesei is also a thermostabilizing domain [J]. J Biotechnol,2011,155:370-376
    8. Thongekkaew J, Ikeda H, Iefuji H. Increase thermal stability and cellulose-binding capacity of Cryptococcus sp.S-2lipase by fusion of cellulose binding domain derived from Trichoderma reesei [J]. Biochem Bioph Res Co,2012, doi:10.1016/j.bbrc.2012.02.139
    9. Chen JM and Stites WE. Replacement of Staphylococcal nuclease hydrophobic core residues with those fromthermophilic homologues indicates packing is improved in some thermostable proteins [J]. J Mol Biol,2004,344:271-280
    10. Pace CN, Fu H, Fryar KL, etc. Contribution of hydrophobic interactions to protein stability [J]. J Mol Biol,2011,408:514-528
    11. Davies GJ, Gambli SJ, Littlechild JA, etc. The structure of a thermally stable3-phosphoglycerate kinase and acomparison with its mesophilic equivalent [J]. Protein Struct Funct Genet,1993,15:283-289
    1. Inoue H, Nishida M, Takahashi K. Effects of Cys10mutation to Ala in glutathione transferase from Escherichiacoli [J]. J Organomet Chem,2000,611:593-595
    2. Fuchita N, Arita S, Ikuta J, etc. Gly or Ala substitutions for Pro210Thr211Asn212at the β8-β9turn of subtilisinCarlsberg increase the catalytic rate and decrease thermostability [J]. Biochimica et Biophysica Acta,2012,1824:620-626
    3. Akita M, Kayatama K, Hatada Y, etc. A novel beta-glucanase gene from Bacillus halodurans C-125[J]. FEMSMicrobiol Lett,2005,248:9-15
    4.陆平.双功能β-葡聚糖酶-木糖酶与β-葡聚糖酶-植酸酶融合酶的优化构建及其酶学性质分析[D]:[博士学位论文].杭州:浙江大学生命科学学院,2008
    5. Lee HL, Chang CK, Teng KH, etc. Construction and characterization of different fusion proteins betweencellulases and β-glucosidase to improve glucose production and thermostability [J]. Bioresource Technol,2011,102:3973-3976
    6. An JM, Kim YK, Lim WJ, etc. Evaluation of a novel bifunctional xylanase-cellulase constructed by gene fusion[J]. Enzyme Microb Tech,2005,36:989-995
    7. Wang JH, Tsai MY, Lee GC, etc. Construction of a recombinant thermostable β-amylase-trehalose synthasebifunctional enzyme for facilitating the conversion of starch to trehalose [J]. J Agric Food Chem,2007,55:1256-1263
    8. Lu P, Feng M, Li W, etc. Construction and characterization of a bifunctional fusion enzyme of Bacillus-sourcedβ-glucanase and xylanase expressed in Escherichia coli [J]. FEMS Microbiol Lett,2006,261:224-230
    9.李相前,邵蔚蓝.海栖热袍菌内切葡聚糖酶Cell2B与木聚糖酶XynA CBD结构域融合基因的构建、表达及融合酶性质分析[J].微生物学报,2006,46(5):726-729
    10. Viladot JL, Ramon E, Durany O, etc. Probing the Mechanism of Bacillus1,3-1,4-β-D-Glucan4-Glucanohydrolases by Chemical Rescue of Inactive Mutants at Catalytically Essential Residues [J].Biochemistry,1998,37(32):11332-11342
    11. Planas A. Bacterial1,3-1,4-β-glucanases: structure, function and protein engineering [J]. Biochimica etBiophysica Acta,2000,1543:361-382
    12. Han ZL, Han SY, Zheng SP, etc. Enhancing thermostability of a Rhizomucor miehei lipase by engineering adisulfide bond and displaying on the yeast cell surface [J]. Appl Microbiol Biotechnol,2009,85:117-126
    13. Ikegaya K, Ishida Y, Murakami K, etc. Enhancement of the thermostability of the alkaline protease fromAspergillus oryzae by introduction of a disulfide bond [J]. Biosci Biotechnol Biochem,1992,56(2):326-327
    14. Li YX, Coutinhol PM, Ford C, etc. Effect on thermostability and catalytic activity of introducing disulfidebonds into Aspergillus awamori glucoamylase [J]. Protein Eng,1988,11(8):661-667
    15. Takagi H, Takahashis T, Momose H, etc. Enhancement of the Thermostability of Subtilisin E by Introductionof a Disulfide Bond Engineered on the Basis of Structural Comparison with a Thermophilic Serine Protease [J]. JBiol Chem,1990,265(12):6674-6676
    16. Pecher P, Arnold U. The effect of additional disulfide bonds on the stability and folding of ribonuclease A [J].Biophys Chem,2009,141:21-28
    17. Wang RL, Xue YM, Wu XX, etc. Enhancement of engineered trifunctional enzyme by optimizing linkerpeptides for degradation of agricultural by-products [J]. Enzyme Microb Tech,2010,47:194-199
    18. Arai R, Ueda H, Kitayama A, etc. Design of the linkers which effectively separate domains of a bifunctionalfusion protein [J]. Protein Eng,2001,14:529-532
    19. He HW, Feng S, Pang M, etc. Role of the linker between the N-and C-terminal domains in the stability andfolding of rabbit muscle creatine kinase[J]. Int J Biochem Cell B,2007,39:1816-1827
    20. Crawford IP, Clarke M, Cleemput MV, etc. Crucial role of the connecting region joining the two functionaldomains of yeast tryptophan synthetase [J]. J Biol Chem,1987,262(1):239-244
    21. Jagusztyn-Krynicka EK, Clark-Curtiss JE, Curtiss III R. Escherichia coli heat-labile toxin subunit B fusionswith Streptococcus sobrinus antigens expressed by Salmonella typhimurium oral vaccine strains: importance ofthe linker for antigenicity and biological activities of the hybrid proteins [J]. Infect Immun,1993,61(3):1004-1015
    1. Lu YH, Deng X, Cheng ZJ, etc. Enhanced production of hybrid extracellular β-glucanase by recombinantEscherichia coli using experimental design method [J]. Chin J Chem Eng,2007,15(2):172-177
    2. Giese EC, Dekker RFH, Scarminio IS, etc. Comparison of β-1,3-glucanase production by Botryosphaeriarhodina MAMB-05and Trichoderma harzianum Rifai and its optimization using a statistical mixture-design[J].Biochem Eng J,2011,53:239-243
    3. Chen XC, Bai JX, Cao JM, etc. Medium optimization for the production of cyclic adenosine3,5-monophosphate by Microbacterium sp. no.205using response surface methodology[J]. Bioresource Technol,2009,100:919-924
    4. Tang XJ, He GQ, Chen QH, etc. Medium optimization for the production of thermal stable beta-glucanase byBacillus subtilis ZJF-1A5using response surface methodology [J]. Bioresource Technol,2004,93:175-181
    5. Su JJ, Zhou Q, Zhang HY, etc. Medium optimization for phenazine-1-carboxylic acid production by a gacAqscR double mutant of Pseudomonas sp. M18using response surface methodology [J]. Bioresource Technol,2010,101:4089-4095
    6. Liu J, Luo JG, Ye H, etc. Medium optimization and structural characterization of exopolysaccharides fromendophytic bacterium Paenibacillus polymyxa EJS-3[J]. Carbohyd Polym,2010,79:206-213
    7. Anuradha Jabasingh S, ValliNachiyar C. Optimization of cellulose production by Aspergillus nidulans:application in the biosoftening of cotton fibers [J]. World J Microb Biot,2011,27:85-97
    8.程志敬,邓旭,卢英华,等.重组大肠杆菌生产β-1,3-1,4-葡聚糖酶培养基优化研究[J].工业微生物,2006,36(2):26-30
    9.汤兴俊.热稳定性β-葡聚糖酶发酵工艺及发酵动力学研究[D]:[博士学位论文].杭州:浙江大学生物系统工程与食品科学学院,2003
    10.郝秋娟,李永仙,李崎,等.淀粉液化芽孢杆菌5582产β-葡聚糖酶的发酵条件和酶学性质研究[J].食品工业科技,2006,27(8):149-153
    11.陈亚兰,黄伟强,周晓波,等.重组大肠杆菌产β-1,3-1,4-葡聚糖酶的培养基优化[J].厦门大学学报(自然科学版),2011,50(5):896-902
    12.周德庆.微生物学教程(第二版)[M].北京:高等教育出版社,2002.153-157
    13.黄静,史建明,霍文婷,等.氮源对L-色氨酸发酵的影响[J].食品与发酵工业,2011,37(5):21-25
    14.吕欣,段作营,毛忠贵.氮源与无机盐对高浓度酒精发酵的影响[J].西北农林科技大学学报(自然科学版),2003,31(4):159-162
    15. Beshay U, Enshasy HE, Ismail IMK, etc. β-glucanase production from genetically modified recombinant E.coli: Effect of growth substrates and development of a culture medium in shake flasks and stirred tank bioreactor[J]. Process Biochem,2003,39:307-313
    16. Ambati P, Ayyanna C. Optimizing medium constituents and fermentation conditions for citric acid productionfrom palmyra jaggery using response surface method [J]. World J Microb Biot,2011,17:331-335
    17.孙涛. Bacillus sp. SK13.002产环糊精葡萄糖基转移酶及其催化芦丁糖基化反应的研究[D]:[博士学位论文].无锡:江南大学食品学院,2011
    18. Wang YH, Li YP, Zhang Q, etc. Enhance antibiotic activity of Xenorhabdus nematophila by mediumoptimization [J]. Bioresource Technol,2008,99:1708-1715
    19.韩卫强,王芳,谭天伟,等.接种量和装样量对少根根霉直接发酵生木薯粉生产富马酸的影响[J].北京化工大学学报(自然科学版),2011,38(5):95-99
    20.孙玉英,王瑞明,刘庆军,等.局限曲霉产β-葡聚糖酶发酵培养基和发酵条件的优化[J].饲料工业,2004,25(1):28-32

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700