用户名: 密码: 验证码:
膜吸收和化学吸收分离CO_2特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
众所周知,人类活动而产生的温室气体的大量排放导致了越来越严重的温室效应。作为最主要的温室气体,CO2对温室效应的贡献率超过了60%。因此,必须控制CO2的排放,尤其是控制燃煤电厂烟气中的CO2排放。CO2排放控制技术众多,包括燃烧后脱除、燃烧前分离和富氧燃烧技术等。但在短期内,基于气液化学反应的常规化学吸收法和新型膜吸收法CO2分离技术可能成为较优的选择。目前这两种技术均采用热再生工艺,因而均将受制于热再生能耗高这一现实。因此,本文主要从新型混合吸收剂研究和减压再生工艺开发两个角度出发对再生能耗降低可行性及降耗潜能进行探索。主要研究结论如下:
     在单一吸收剂的CO2吸收和再生性能研究中,提出了采用合适吸收时间内的CO2吸收能力、CO2吸收能力被完全利用程度和初始CO2吸收速率三个指标来评价吸收剂的CO2综合吸收性能,用吸收剂的再生恢复能力、初始再生程度和再生能耗三个影响因素作为吸收剂再生性能优劣的评价指标。9种常规单一吸收剂的CO2综合吸收性能排序为:PZ>MEA>PG(?)PT>DEA>DIPA>AMP>TEA>MDEA。综合再生性能排序为:TEA(?)MDEA>PT>DEA>AMP>DIPA>PG>PZ>MEA。在此基础上,提出了将高CO2吸收速率和高再生性能的两类吸收剂进行适当混合的混合吸收剂配比方式。对MEA/MDEA(主体/添加剂)混合吸收剂的CO2吸收和再生实验表明,MDEA相对质量浓度β为0.2的MEA/MDEA混合吸收剂在吸收和再生综合性能方面表现较优。同样,PZ相对浓度β为0.4可能为MDEA/PZ混合吸收剂的较优混合配比。
     对所筛选的混合吸收剂进行了CO2膜吸收和化学吸收特性研究,结果表明,MEA/MDEA (β=0.2)和MDEA/PZ (β=0.4)混合吸收剂均具有较优的CO2吸收特性,且对关键操作参数的变化均具有良好的适应性。同时,与单一MEA相比,设计良好的系统中,MEA/MDEA (β=0.2)和MDEA/PZ (β=0.4)可将再生能耗降低10%以上。
     针对热再生工艺能耗高的问题,在固定式减压再生装置上进行了富CO2溶液的减压再生机理研究。研究表明,减压再生效果依赖于CO2在液相内的传质距离及液相所携带的CO2量。因此,要获得更好的再生效果,必须在再生前将大体积富液分割成厚度更小的薄层富液,并对每层富液进行再生。
     采用疏水性中空纤维膜接触器实现了大体积富液的厚度分割和较低温度下的连续减压再生,并对再生压力、再生温度、吸收剂浓度、初始CO2负荷、吸收液流量等关键操作参数影响进行了分析。同时,也对减压再生工艺与传统热再生工艺进行了对比分析。结果表明,相对于传统MEA热再生工艺,膜减压再生工艺将具备50%以上的再生能耗降低潜能。另外,也建立了减压再生传质数学模型,并对计算结果进行了验证。结果显示,当富液液面水蒸汽分压高于再生压力时,可使用忽略了气相阻力的简化再生传质数学模型对减压再生性能进行预测,且误差基本控制在士10%以内。同时,采用传质模型对膜孔浸润的影响进行了预测,发现随着膜孔浸润率的增加,再生性能急剧恶化,且传质过程将由液相控制逐渐转变为膜相控制。
     基于膜减压再生实验,分析了吸收剂分子结构对再生性能的影响。研究发现,分子结构中氨基上活泼氢原子数越多,再生性能越差。但氨基上链结的碳链长度、分子结构中羟基和活性氮原子数的增加将会改善再生性能。同时,分子结构中存在具有空间位阻作用的大官能团或羧酸盐基团,也将有助于再生性能的提高。
     化学吸收法(CAS)和膜吸收法(MAS)CO2脱除技术的对比分析表明,当膜未被浸润和堵塞时,MAS将具备C02脱除优势。但当膜孔被完全浸润或被堵塞50%以上时,MAS的技术优势将完全消失。以840 MWe超超临界新建燃煤电站为基础,分析了常规化学吸收+热再生技术(CAS+HRS)、新型膜吸收+热再生(MAS+HRS)和膜吸收+膜减压再生技术(MAS+MVR)三种C02脱除技术对电厂性能的影响,并进行了对比分析。结果表明,膜价格和寿命成为MAS+HRS与MAS+MVR两种工艺的重要影响因素。当膜价低于35元/m2及膜寿命高于5年时,与CAS+HRS相比,MAS+HRS和MAS+MVR技术可将C02回避成本降低约40元/tC02和96元/tC02,分别达到217元/tCO2和158元/tCO2。但当膜价过高或膜实际寿命偏低时,CO2回避成本排序如下:CAS+HRS     研究结果表明,本文所提出的混合吸收剂和膜减压再生工艺可望大幅降低现有化学吸收CO2分离技术能耗。
It is well accepted that the gradually increased atmospheric concentration of greenhouse gases caused by human activities have resulted in the serious greenhouse effect and climate change. As the major greenhouse gas, carbon dioxide (CO2) is currently responsible for over 60% of the enhanced greenhouse effect. So, in order to restrain the continued deterioration of climate and environment, emissions of carbon dioxide in the coal-fired flue gases must be controlled. Several technologies can be selected to control CO2 emissions, such as post-combustion CO2 capture, pre-combustion CO2 separation and oxy-fuel combustion. But in the short-term, the conventional chemical absorption or novel membrane gas absorption technology is considered as the most promising technology. However, when heating regeneration system is adopted, the industrial applications of these technologies will be restricted due to their gigantic regeneration energy consumption. Based on it, new blended solvents and novel vacuum regeneration process will be developed and explored in this paper to reduce the regeneration energy consumption.
     During the course of CO2 absorption and regeneration experiments of the single absorbents, three key factors such as CO2 absorption capacity, the utilization percent of CO2 absorption capacity and the initial CO2 absorption rate were selected to evaluate the comprehensive CO2 absorption performance of solvents. In addition, the regeneration capacity, initial regeneration extent and regeneration energy consumption were adopted to evaluate the regeneration performance. The CO2 absorption performance of nine typical absorbents was ranked as the following:PZ>MEA> PG≈PT>DEA> DIPA>AMP>TEA>MDEA. The regeneration performance was also ranked as:TEA≈MDEA> PT>DEA>AMP>DIPA>PG>PZ>MEA. Based on these results, the mixing method to form the blended absorbents with higher CO2 absorption and regeneration performance was put forward, which is that using the absorbents with higher CO2 absorption performance and the absorbents with higher regeneration performance to form the blended absorbents may get the comprehensive CO2 absorption and regeneration performance, like MEA/MDEA or MDEA/PZ blended absorbents. When MEA/MDEA (main absorbent/additive) blended absorbents were used to absorb CO2 and then regenerated, the relative mass concentration ratio of MDEA to MEA (β) can be determined to 0.2 in order to get the optimal CO2 absorption and regeneration performance. As for MDEA/PZ solvents, the relatively optimal mass concentration ratio of PZ to MDEA (β) is about 0.4.
     MEA/MDEA and MDEA/PZ blended solvents were selected to capture CO2 using the hollow fiber membrane contactors and packed column. The results show that whatever operating conditions were selected, the blended solvents with the optimal concentration ratio have the higher CO2 absorption performance than others. In addition, it is worthy to be noticed that compared to the single MEA solution, MEA/MDEA (β=0.2) and MDEA/PZ (β=0.4) can reduce the regeneration energy consumption by above 10% in the well-designed system.
     In order to get the lower regeneration energy consumption, the novel regeneration technology using vacuum technology was put forward. Firstly, the vacuum regeneration feasibility and mechanism of CO2-rich solution were investigated in a fixed experimental device. The results show that vacuum regeneration may be viable if the bulky CO2-rich solution can be easily partitioned into the continuous single thin-layer solutions with an appropriate thickness. In addition, the regeneration performance is also strongly depended on the CO2 amount contained in the rich solution.
     The hydrophobic hollow fiber membrane contactors were adopted to regenerate the rich solution. Additionally, the effects of regeneration pressure, temperature, absorbent concentration, flow rate and CO2 loading of rich solution on vacuum regeneration performance were experimented. After the estimation of regeneration energy consumption, it is interesting to find that vacuum regeneration can reduce the regeneration energy consumption by above 50% compared to the conventional MEA heating regeneration process. Two mathematical models were developed to simulate the mass transfer coefficient of membrane vacuum regeneration. The predicted results show that when the regeneration pressure is less than the water vapor pressure over the rich solution at the regeneration temperature, the simplified model where gas phase resistance can be ignored can be recommended to predict the mass transfer coefficient, and the deviation was found to be within±10%. In addition, the effect of wetting ratio of membrane pores on the total liquid phase mass transfer coefficient was predicted by using the model. The theoretically predicted results show that the regeneration performance decreases considerably with the increase of wetting ratio, and the regeneration mass transfer will be finally controlled by membrane phase mass transfer.
     Effect of molecular structure of absorbent on the regeneration performance was experimented by using membrane vacuum regeneration. It can be founded that the increase of the active hydrogen atom numbers in the amino group will decrease the regeneration performance, but the increase of carbon chain length, numbers of hydroxyl group (OH) and amine group will contribute to improve the regeneration performance. In addition, the gigantic groups having the steric hindrance effect or carboxylate group around the amine group will also improve the vacuum regeneration performance.
     Finally, the comparative analysis of CO2 separation from coal-fired flue gas by membrane gas absorption technology (MAS) and chemical absorption technology (CAS) was carried out in this paper. Results show that when fresh membranes were used, MAS can be considered as the promising alternative to CAS to capture CO2 from flue gas because of its higher CO2 absorption performance. But, when all the membrane pores were wetted or 50% of pores were plugged, the experimental results inversely imply that the superiorities of MAS over CAS disappear. In addition, a newly-built ultra supercritical PC power plant with 840-MWe-gross-output was selected to act as the reference base to evaluate the effect of CO2 separation and compression on the power plant performance. Three CO2 separation technologies were adopted, such as conventional chemical absorption and heating regeneration technology (CAS+HRS), novel membrane absorption combined with heating regeneration technology (MAS+HRS) and novel membrane absorption combined with membrane vacuum regeneration technology (MAS+MVR). The results show that if the membrane price is less than RMB (?) 35/m2 and membrane real lifetime is longer than 5 years, the cost of CO2 avoided using MAS+MVR (about RMB Y158/tCO2) can be reduced by about RMB(?)96/tCO2 compared to CAS+HRS, and the cost of CO2 avoided using MAS+HRS (about RMB(?)217/tCO2) can be reduced by about RMB (?)40/tCO2. However, when the membrane is more expensive or membrane real lifetime is very shorter, the cost of CO2 avoided of CAS+HRS will be lowest among the three technologies, which suggests that CAS+HRS may be more suitable for this condition. It can be concluded that MAS may be more suitable for the larger-scale CO2 separation projects or the future projects in which membrane has the very lower price and longer lifetime. So, the statement that MAS is prior to CAS will be somewhat arbitrary unless the membrane wetting and plugging prevention technologies are very mature and low-cost in the future. In addition, using the blended solvents developed in this paper to replace the conventional single MEA can lead to the reduction of the cost of CO2 avoided by about 5%~10%:
     So, it can be concluded that the energy consumption of CO2 chemical absorption process may be considerably decreased when the new blended solvents and membrane vacuum regeneration process are adopted.
引文
[1]Aaron D., Tsouris C., Separation of CO2 from flue gas:A review [J]. Sep. Sci. Technol., 2005,40:321-348.
    [2]Abu-Zahra M.R.M., Niederer J.P.M., Feron P.H.M., Versteeg G.F., CO2 capture from power plants Part Ⅱ. A parametric study of the economical performance based on mono-ethanolamine[J]. Int. J. Greenhouse Gas Control,2007,1:135-142.
    [3]Alie C., Backham L., Croiset E., Douglas P.L., Simulation of CO2 capture using MEA scrubbing:a flowsheet decompression method [J]. Energ. Convers. Mange.,2005,46: 475-487.
    [4]Alie C., Simulation and optimisation of a coal-fired power plant with integrated CO2 capture using MEA scrubbing [Master Thesis]. Canada:University de Waterloo,2004.
    [5]Al-Marzouqi M., El-Naas M., Marzouk S., Abdullatif N., Modeling of chemical absorption of CO2 in membrane contactors [J]. Sep. Purif. Technol.,2008,62:501-508.
    [6]Andrew S.P.S., A rapid method of measuring absorption rates and its application to CO2 adsorption into partially carbonated ammonia liquor [J]. Chem. Eng. Sci.,1954,3:279-286.
    [7]Anthony J.L., Anderson J.L., Maginn E.J., Brennecke J.F., Anion effects on gas solubility in ionic liquids [J]. J. Phys. Chem. B.,2005,109:6366-6374.
    [8]Anthony J.L., KAki S.N.V., Maginn E.J., Brennecke J.F., Feasibility of using ionic liquids for carbon dioxide capture [J]. Int. J. Environ. Technol. Manage.,2004,4:105-115.
    [9]Arcis H., Rodier L., Ballerat-Busserolles K., Coxam J.Y., Enthalpy of solution of CO2 in aqueous solutions of methyldiethanolamine at T=322.5 K and pressure up to 5 MPa [J]. J. Chem. Thermodyn.,2008,40:1022-1029.
    [101 Aroonwilas A., Tontiwachwuthikul P., Mass transfer coefficients and correlation for CO2 absorption into 2-amino-2-methyl-l-propanol (AMP) using structured packing [J]. Ind. Eng. Chem. Res.,1998,37:569-575.
    [11]Aroonwilas A., Veawab A., Integration of CO2 capture unit using single-and blended-amines into supercritical coal-fired power plants:implications for emission and energy management [J]. Int. J. Greenhouse Gas Control,2007,1:143-150.
    [12]Aroua M.K., Haji-Sulaiman M.Z., Ramasamy K., Modelling of carbon dioxide absorption in aqueous solutions of AMP and MDEA and their blends using Aspenplus [J]. Sep. Purif. Technol.,2002,29:153-162.
    [13]Atchariyawut S., Jiraratananon R., Wang R., Mass transfer study and modeling of gas-liquid membrane contacting process by multistage cascade model for CO2 absorption [J]. Sep. Purif. Technol.,2008,63:15-22.
    [14]Bae B., Chun B.H., Kim D., Surface characterization of microporous polypropylene membranes modified by plasma treatment [J]. Polymer,2001,42:7879-7885.
    [15]Bai H., Yeh A.C., Removal of CO2 greenhouse gas by ammonia scrubbing [J]. Ind. Eng. Chem. Res.,1997,36:2490-2493.
    [16]Banerjee R., Phan A., Wang B., Knobler C., Furukawa H., O'Keeffe M., Yaghi O.M., High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture [J]. Science,2008,319:939-943.
    [17]Barbe A.M., Hogan P.A., Johnson R.A., Surface morphology changes during initial usage of hydrophobic, microporous polypropylene membranes [J]. J. Membr. Sci.,2000,172: 149-156.
    [18]Bates E.D., Mayton R.D., Ntai I., Davis J.H., CO2 capture by a task-specific ionic liquid [J]. J. Am. Chem. Soc.,2002,124:926-927.
    [19]Benamor A., Aroua M.K., Modeling of CO2 solubility and carbamate concentration in DEA, MDEA and their mixtures using the Deshmukh-Mather model [J]. Fluid Phase Equilibr.,2005,231:150-162.
    [20]Benson S.M., Geologic sequestration of Carbon Dioxide in gas reservoirs and brine formations [C].1st U.S.-China symposium on CO2 emission control science & technology. Hangzhou, China,2001,8,22-24.
    [21]Bhaumik S., Majumdar S., Sirkar K.K., Hollow-fiber membrane-based rapid pressure swing absorption [J]. AIChE J.,1996,42 (2):409-421.
    [22]Bishnoi S., Rochelle G.T., Absorption of carbon dioxide into aqueous piperazine:reaction kinetics, mass transfer and solubility [J]. Chem. Eng. Sci.,2000,55:5531-5543.
    [23]Blanchard L.A., Hancu D., Bechman E.J., Brennecke J.F., Greenhouse processing using ionic liquids and CO2 [J]. Nature,1999,399:28-29.
    [24]Blauwhoff P.M.M., Versteeg G.F., Van Swaaij W.P.M., A study on the reaction between CO2 and alkanolamines in aqueous solutions [J]. Chem. Eng. Sci.,1984,39:207-225.
    [25]Bonenfant D., Kharoune L., Sauve S., Hausler R., Niquette P., Mimeault M., Kharoune M., Molecular analysis of carbon dioxide adsorption processes on steel slag oxides [J]. Int. J. Greenhouse Gas Control.,2009,3:20-28.
    [26]Bonenfant D., Mimeault M., Hausler R., Estimation of the CO2 absorption capacities in aqueous 2-(2-aminoethylamino)ethanol and its blends and its blends with MDEA and TEA in the presence of SO2 [J]. Ind. Eng. Chem. Res.,2007,46:8698-8971.
    [27]Bottino A., Capannelli G., Comite A., Di Felice R., Firpo R., CO2 removal from a gas stream by membrane contactor [J]. Sep. Purif. Technol.,2008,59:85-90.
    [28]Bougie F., Iliuta M., Kinetics of absorption of carbon dioxide into aqueous solutions of 2-amino-2-hydroxymethyl-1,3-propanediol [J]. Chem. Eng. Sci.,2009,64:153-162.
    [29]Brandvoll Φ., Bolland O., Inherent CO2 capture using chemical looping combustion in a natural gas fired power cycle [J]. J. Eng. Gas Turbines Power,2004,126:316-321.
    [30]Burchell T.D., Judkins R.R., Rogers M.R., Williams A.M., A novel process and material for the separation of carbon dioxide and hydrogen sulfide gas mixtures [J]. Carbon,1997, 35:1279-1294.
    [31]Cadours R., Bouallou C., Gaunand A., Kinetics of CO2 desorption from highly concentrated and CO2-loading methyldiethanolamine aqueous solutions in the range 312-383 K [J]. Ind. Eng. Chem. Res.,1997,36:5384-5391.
    [32]Camacho F., Sanchez S., Pacheco R., Sanchez A., La Rubia M.D., Absorption of carbon dioxide at high partial pressures in aqueous solutions of di-isopropanolamine [J]. Ind. Eng. Chem. Res.,2005,44:7451-7457.
    [33]Chaffee A.L., Knowles G.P., Liang Z.J., Zhang J., Xiao P., Webley P.A., CO2 capture by adsorption:materials and process development [J]. Int. J. Greenhouse Gas Control.,2007,1: 11-18.
    [34]Chaffee A.L., Molecular modeling of HMS hybrid materials for CO2 adsorption [J]. Fuel Process. Technol.,2005,86:1473-1486.
    [35]Chakma A., Formulated solvents:new opportunities for energy efficient separation of acid gases [J]. Energ. Source.,1999,21:51-62.
    [36]Chakraborty A.K., Bischoff K.B., Astarita G., Damewood J.R., Molecular orbital approach to substituent effects in amine-CO2 interactions [J]. J. Am. Chem. Soc.,1988,110: 6974-6954.
    [37]Chakravarti S., Gupta A., Hunek B., Advanced technology for the capture of carbon dioxide from flue gases [C]. First National Conference on Carbon Sequestration, Washington, DC, May 15-17,2001.
    [38]Chandel M.K., Hoteit A., Delebarre A., Experimental investigation of some metal oxides for chemical looping combustion in a fluidized bed reactor [J]. Fuel,2009,88:898-908.
    [39]Chang H., Shih C.M., Simulation and optimization for power plant flue gas CO2 absorption-stripping system [J]. Sep. Sci. Technol.,2005,40:877-909.
    [40]Chapel D.G., Mariz C.L., Ernest J., Recovery of CO2 from flue gases:commercial trends. 1999, Available at http://www.netl.doe.gov/publications/proceedings/01/carbon_seq /2b3.pdf.
    [41]Chen H.P., Zhang M., Yang H.P., Wang X.H., Zhang S.H., The study on the removal of CO2 using ammonia scrubbing [C]. Proceedings of the 6th International Symposium on Coal Combustion,2008:767-771.
    [42]Chen J.P., Chiang Y.P., Surface modification of no-woven fabric by DC pulsed plasama treatment and graft polymerization with acrylic acid [J]. J. Membr. Sci.,2006,270:212-220.
    [43]Chen Y., Zhao Z.Q., Dai J.F., Liu Y.M., Topological and chemical investigation on super-hydrophobicity of PTFE surface caused by ion irradiation [J]. Appl. Surf. Sci.,2007, 254:464-467.
    [44]Chen Y.J., Shih T.W., Li M.H., Heat capacity of aqueous mixtures of monoethanolamine with N-methyldiethanolamine [J]. J. Chem. Eng. Data,2001,46:51-55.
    [45]Chiu L.F., Li M.H., Heat capacity of alkanolamine aqueous solutions [J]. J. Chem. Eng. Data,1999,44:1396-1401.
    [46]Chiu L.F., Liu H.F., Li M.H., Heat capacity of alkanolamines by differential scanning calorimetry [J]. J. Chem. Eng. Data,1999,44:631-636.
    [47]Cho P., Mattisson T., Lyngfelt A., Comparison of iron-, nickel-, copper-and manganese-based oxygen carriers for chemical-looping combustion [J]. Fuel,2004,83: 1215-1225.
    [48]Choi W.J., Min B.M., Seo J.B., Park S.W., Oh K.J., Effect of ammonia on the absorption kinetics of carbon dioxide into aqueous 2-amino-2-methyl-l-propanol solutions [J]. Ind. Eng. Chem. Res.,2009, in press.
    [49]Ciferno J.P., DiPietro P., Tarka T., An economic scoping study for CO2 capture using aqueous ammonia [R]. DOE/NETL Report,2005,2.
    [50]Cifre P.G., Brechtel K., Hoch S., Garcia H., Asprion N., Hasse H., Scheffknecht G, Integration of a chemical process model in a power plant modeling tool for the simulation of an amine based CO2 scrubber [J]. Fuel,2009, in press.
    [51]Clarke J.K.A., Kinetics of absorption of carbon dioxide in monoethanolamine solutions at short contact times [J]. Ind. Eng. Chem. Fundam.,1964,3:239.
    [52]Cullinane J.T., Rochelle G.T., Carbon dioxide absorption with aqueous potassium carbonate promoted by piperazine [J]. Chem. Eng. Sci.,2004,59:3619-3630.
    [53]Curnow O.J., Krumdieck S.P., Jenkins E.M., Regeneration of carbon dioxide saturated monoethanolamine-glycol aqueous solutions at atmospheric pressure in a packed bubble reactor [J]. Ind. Eng. Chem. Res.,2005,44:1085-1089.
    [54]Dawodu O.F., Meisen A., Solubility of carbon dioxide in aqueous mixtures of alkanolamines [J]. J. Chem. Eng. Data,1994,39:548-552.
    [55]deMontigny D., Comparing packed columns and membrane absorber for CO2 capture [Ph.D. thesis]. Canada:University of Regnia,2004.
    [56]deMontigny D., Tontiwachwuthikul P., Chakma A., Comparing the absorption performance of packed columns and membrane contactors [J]. Ind. Eng. Chem. Res.,2005, 44:5726-5732.
    [57]deMontigny D., Tontiwachwuthikul P., Chakma A., Using polypropylene and polytetrafluoroethylene membranes in a membrane contactor for CO2 absorption [J]. J. Membr. Sci.,2006,277:99-107.
    [58]Derks P.W.J., Dijkstra H.B.S., Hogendoorn J.A., Versteeg G.F., Solubility of carbon dioxide in aqueous piperazine solutions [J]. AIChE J.,51 (2005):2311-2327.
    [59]Desideri U., Paolucci A., Performance modelling of a carbon dioxide removal system for power plants [J]. Energ. Convers. Mange.,1999,40:1899-1915.
    [60]Diban N., Voinea O.C., Urtiaga A., Ortiz I., Vacuum membrane distillation of the main pear aroma compoud:experimental study and mass transfer modeling [J]. J. Membr. Sci., 2009,326:64-75.
    [61]Diego L.F.de, Garcia-Labiano F., Adanez J., Gayan P., Abad A., Corbella B.M., Palacios J.M., Development of Cu-based oxygen carriers for chemical-looping combustion [J]. Fuel, 2004,84:1749-1757.
    [62]Dijkstra J.W., Jansen D., Novel concepts for CO2 capture [J]. Energy,2004,29:1249-1257.
    [63]DOE/NETL, Carbon capture and sequestration systems analysis guidelines [R].2005, http://www.netl.doe.gov/technologies/carbon_seq/Resources/Analysis/pubs/CO2CaptureGu idelines.pdf.
    [64]EIA Report. International Energy Outlook,2008. www.eia.doe.gov/oiaf/ieo/index.html.
    [65]EL-Bourawi M.S., Khayet M., Ma R., Ding Z., Li Z., Zhang X., Application of vacuum membrane distillation for ammonia removal [J]. J. Membr. Sci.,2007,301:200-209.
    [66]Falk-Pedersen O., Dannstrom H., Separation of carbon dioxide from offshore gas turbine exhaust [J]. Energ. Convers. Manage.,1997,38:S81-S86.
    [67]Favre E., Carbon dioxide recovery from post-combustion processes:can gas permeation membranes compete with absorption? [J]. J. Membr. Sci.,2007,294:50-59.
    [68]Feron P.H.M., Jansen A.E., Capture of carbon dioxide using membrane gas absorption and reuse in the horticultural industry [J]. Energ. Convers. Mange.,1995,36:411-414.
    [69]Feron P.H.M., ten Asbroek N., New solvents based on amino-acid salts for CO2 capture from flue gases [C].7th International Conference on Greenhouse Gas Control Technologies (GHGT-7),2004, Vancouver, Canada.
    [70]Figueroa J.D., Fout T., Plasynski S., McIlvried H., Srivastava R.D., Advances in CO2 capture technology — The U.S. Department of Energy's carbon sequestration program [J]. Int. J. Greenhouse Gas Control,2008,2:9-20.
    [71]Fisher K.S., Beitler C., Rueter C., Searcy K., Rochelle G.T., Jassim M., Integrating MEA regeneration with CO2 compression and peaking to reduce CO2 capture costs [R]. U.S. Final Report of Work Performed Under Grant No.:DE-FG02-04ER84111, June 09,2005.
    [72]Franken A.C.M., Nolten J.A.N., Mulder M.H.V., Barrgeman D., Smolders C.A., Wetting criteria for the applicability of membrane distillation [J]. J. Membr. Sci.,1987,33:315-328.
    [73]Gabelman A., Hwang S.T., Hollow fiber membrane contactors [J]. J. Membr. Sci.,1999, 159:61-106.
    [74]Gabelman A., Hwang S.T., Krantz W.B., Dense gas extraction using a hollow fiber membrane contactor:experimental results versus model predictions [J]. J. Membr. Sci., 2005,257:11-36.
    [75]Gal E., Olson S., Chilled ammonium process (CAP) for post combustion CO2 capture [C]. 2nd Annual Carbon Capture and Transportation Working Group Workshop, California, 2006,3.
    [76]Gambini M., Vellini M., CO2 emission abatement from fossil fuel power plants by exhaust gas treatment [C]. Proceedings of International Joint Power Generation Conference, USA. 2000:1-11.
    [77]Gayan P., Dueso C., Abad A., Adanez J., Diego L.F.de., Garcia-Labiano F., NiO/Al2O3 oxygen carriers for chemical-looping combustion prepared by impregnation and deposition-precipitation methods [J]. Fuel,2009,88:1016-1023.
    [78]Ghaemi A., Shahhosseini S., Nonequilibrium dynamic modeling of carbon dioxide absorption by partially carbonated ammonia solutions [J]. Chem. Eng. J.,2009,149(1-3): 110-117.
    [79]Gibbins J., Chalmers H., Carbon capture and storage [J]. Energ. Policy,2008,36: 4317-4322.
    [80]Glasscock D.A., Critchfield J.E., Rochelle G.T., CO2 absorption/desorption in mixtures of methyldiethanolamine with monoethanolamine or diethanolamine [J]. Chem. Eng. Sci., 1991,46:2829-2845.
    [81]Gomez-Diaz D., Navaza J.M., Kinetics of carbon dioxide absorption into aqueous glucosamine solutions [J]. AIChE J.,2008,54:321-.326.
    [82]Gong Y.W., Wang Z., Wang S.C., Experiments and simulation of CO2 removal by mixed amines in a hollow fiber membrane module [J]. Chem. Eng. Process.,2006,45:652-660.
    [83]Grande C.A., Rodrigues A.E., Electric swing adsorption for CO2 removal from flue gases [J]. Int. J. Greenhouse Gas Control,2008,2:194-202.
    [84]Granite E.J., O'Brien T., Review of novel methods for carbon dioxide separation from flue and fuel gases [J]. Fuel Process. Technol.,2005,86:1423-1434.
    [85]Gray M.L., Soong y., Champagne K.J., Pennline H., Baltrus J.P., Stevens R.W., Jr., Khatri R., Chuang S.S.C., Filburn T., Improved immobilized carbon dioxide capture sorbents [J]. Fuel Process. Technol.,2005,86:1449-1455.
    [86]Hagewiesche D.P., Ashour S.S., Al-Ghawas H.A., Sandall O.C., Absorption of carbon dioxide into aqueous blends of monoethanolamine and N-methyldiethanolamine [J]. Chem. Eng. Sci.,1995,50:1071-1079.
    [87]Harris F., Kurnia K.A., Mutalib M.I.A., Thanapalan M., Solubilities of carbon dioxide an densities of aqueous sodium glycinate solutions before and after CO2 absorption [J]. J. Chem. Eng. Data.,2009,54:144-147.
    [88]Herzog H. J., Drake E. M., Carbon dioxide recovery and disposal from large energy systems [J]. Annual Review Energy Environment,1996,21:145-166.
    [89]Herzog H., Falk-Pedersen O., The Kvaerner membrane contactor:lessons from a case study in how to reduce capture costs [C].5th International Greenhouse Gas Control Technologies,2000, Austrila.
    [90]Herzog H.J., What future for carbon capture and sequestration [J]. Environ. Sci. Technol., 2001,35:148A-153A.
    [91]Ho M.T., Allinson G.W., Wiley D.E., Reducing the cost of CO2 from flue gases using membrane technology [J]. Ind. Eng. Chem. Res.,2008,47:1562-1568.
    [92]Ho M.T., Leanmon G, Allinson G.W., Wiley D.E., Economics of CO2 and mixed gas geosequestration of flue gas using gas separation membranes [J]. Ind. Eng. Chem. Res., 2006,45:2546-2552.
    [93]Hoff K.A., Juliussen O., Falk-Pedersen O., Svendsen H.F., Modeling and experimental study of carbon dioxide absorption in aqueous alkanolamine solutions using a membrane contactor [J]. Ind. Eng. Chem. Res.,2004,43:4908-4921.
    [94]Hoist J. van., Versteeg G.F., Brilman D.W.F., Hogendoorn J.A., Kinetic study of CO2 with various amino acid salts in aqueous solution [J]. Chem. Eng. Sci.,2009,64:59-68.
    [95]Hook R. J., An investigation of some sterically hindered amines as potential carbon dioxide scrubbing compounds [J]. Ind. Eng. Chem. Res.,1997,36:1779-1790.
    [96]Horng S.Y., Li M.H., Kinetics of absorption of carbon dioxide into aqueous solutions of monoethanolamine+triethanolamine [J]. Ind. Eng. Chem. Res.,2002,41:257-266.
    [97]Hossain M.M., Lasa H.I.de, Chemical-looping combustion (CLC) for inherent CO2 separations-a review [J]. Chem. Eng. Sci.,2008,63:4433-4451.
    [98]Huang H.P., Chang S., Method to regenerate ammonia for the capture of carbon dioxide [J]. Energ. Fuel,2002,16:904-910.
    [99]Huntzinger D.N., Gierke J.S., Sutler L.L., Kawatra S.K., Eisele T.C., Mineral carbonation for carbon sequestration in cement kiln dust from waste piles [J]. J. Hazard. Mater.,2009, 168:31-37..
    [100]Idem R., Wilson M., Tontiwachwuthikul P., Chakma A., Pilot plant studies of the CO2 capture performance of aqueous MEA and mixed MEA/MDEA solvents at the University of Regina CO2 capture technology development plant and the boundary dam CO2 capture demonstration plant [J]. Ind. Eng. Chem. Res.,2006,45:2414-2420.
    [101]IEA Report, Improvement in power generation with post-combustion capture of CO2 [R]. Report No. PH4/33,2004.
    [102]International Energy Outlook 2008, http://www.eia.doe.gov/.
    [103]IPCC Climate Change 2007:Synthesis Report,2007 b. http://www.ipcc.ch.
    [104]IPCC Fourth Assessment Report, Working Group Ⅲ2007a. http://www.ipcc.ch.
    [105]IPCC Special Report on Carbon Dioxide Capture and Storage,2005. Available at http://www.ipcc.ch.
    [106]Ishibashi M., Ota H., Akutsu N., Umeda S., Tajika M., Izumi J., Yasutake A., Kabata T., Kageyama Y., Technology for removing carbon dioxide from power plant flue gas by the physical adsorption method [J]. Energy Convers. Manage.,1996,37:929-933.
    [107]Jamal A., Meisen A., Lim C.J., Kinetics of carbon dioxide absorption and desorption in aqueous alkanolamine solutions using a novel hemispherical contactor— Ⅱ:Experimental results and parameter estimation [J]. Chem. Eng. Sci.,2006,61:6590-6603.
    [108]Jassim M.S., Rochelle G.T., Innovative absorber/stripper configurations for CO2 capture by aqueous monoethanolamine [J]. Ind. Eng. Res.,2006,45:2465-2472.
    [109]Jaud P., Gros-Bonnivard R., Kanniche M., Amantini E., Manai T., Bouallou C., Descamps C., Technico-economic feasibility study of CO2 capture, transport and geo-sequestration:a case study for France.2005. Available at http://uregina.ca/ghgt7.
    [110]Jin Z., Yang D.L., Zhang S.H., Jian X.G., Hydrophobic modification of poly(phthalazinone ther sulfone ketone) hollow fiber membrane for vacuum membrane distillation [J]. J. Membr. Sci.,2008,310:20-27.
    [111]Johansson E., Lyngfelt A., Mattisson T., et al., A circulating fluidized bed combustor system with inherent CO2 separation-application of chemical looping combustion. Proceedings of the 7th International Conference on Circulating Fluidized Beds [C]. Canadian Society for Chemical Engineering, Ottaea, Canada,2002.
    [112]Jordal K., Anheden M., Yan J.Y., Stromberg L., Oxyfuel combustion for coal-fired power generation with CO2 capture-opportunities and challenges.2004, Available at http://uregina.ca/ghgt7/PDF/papers/peer/054.pdf.
    [113]Kang M.S., Moon S.H., Park Y.I., Lee K.H., Development of carbon dioxide separation process using continuous hollow-fiber membrane contactor and water-splitting electrodialysis [J]. Sep. Sci. Technol.,2002,37:1789-1806.
    [114]Kerr R.A. Climate change:Yes, it's been getting warmer in here since the CO2 began to rise [J]. Science,2006,312:1854.
    [115]Kerr R.A. Climate change:scientists tell policymakers we're all warming the world [J]. Science,2007,315:754-757.
    [116]Keshavarz P., Ayatollahi S., Fathikalajahi J., Mathematical modeling of gas-liquid membrane contactors using random distribution of fibers [J]. J. Membr. Sci.,2008,325: 98-108.
    [117]Klara S.M., Figueroa J.D., Maginn E J., Design and evaluation of ionic liquids as novel absorbents.2004, Available at http://www.osti.gov/bridge/servlets.
    [118]Knowles G.P., Graham J.V., Delaney S.W., Chaffee A.L., Aminopropyl-functionalized mesoporous silicas as CO2 adsorbents [J]. Fuel Process. Technol.,2005,86:1435-1448.
    [119]Ko J., Tsai T., Lin C., Li M., Diffusivity of nitrous oxide in aqueous alkanolamine solutions [J]. J. Chem. Eng. Data,2001,46:160-165.
    [120]Koonaphapdeelert S., Li K., Preparation and characterization of hydrophobic ceramic hollow fibre membrane [J]. J. Membr. Sci.,2007,291:70-76.
    [121]Koonaphapdeelert S., Wu Z.T., Li K., Carbon dioxide stripping in ceramic hollow fiber membrane contactors [J]. Chem. Eng. Sci.,2009,64:1-8.
    [122]Kosaraju P., Kovvali A.S., Korikov A., Sirkar K.K., Hollow fiber membrane contactor based CO2 absorption-stripping using novel solvents and membranes [J]. Ind. Eng. Chem. Res.,2005,44:1250-1258.
    [123]Kumar P.S., Hogendoorn J.A., Feron P.H.M., Versteeg G.F., Density, viscosity, solubility, and diffusivity of N2O in aqueous amino acid salt solutions [J]. J. Chem. Eng. Data.,2001,46:1357-1361.
    [124]Kumar P.S., Hogendoom J.A., Feron P.H.M., Versteeg G.F., New absorption liquids for the removal of CO2 from dilute gas streams using membrane contactors [J]. Chem. Eng. Sci.,2002,57:1639-1651.
    [125]Kumar P.S., Hogendoorn J.A., Feron P.H.M., Versteeg G.F., Equilibrium solubility of CO2 in aqueous potassium taurate solutions:Part 1. Crystallization in carbon dioxide loaded aqueous salt solutions of amino acids [J]. Ind. Eng. Chem. Res.,2003a,42: 2832-2840.
    [126]Kumar P.S., Hogendoorn J.A., Timmer S.J., Feron P.H.M., Versteeg G.F., Equilibrium solubility of CO2 in aqueous potassium taurate solutions:Part 2. Experimental VLE data and model [J]. Ind. Eng. Chem. Res.,2003b,42:2841-2852.
    [127]Kumar P.S., Hogendoorn J.A., Versteeg G.F., Kinetics of the reaction of CO2 with aqueous potassium salt of taurine and glycine [J]. AIChE J.,2003c,49:203-.213.
    [128]Lee J.W., Li R.F., Integration of fossil energy systems with CO2 sequestration through NH4HCO3 production [J]. Energy Convers. Mange.,2003,44:1535-1546.
    [129]Lee K.B., Sircar S., Removal and recovery of compressed CO2 from flue gas by a novel thermal swing chemisorption process [J]. AIChE J.,54 (2008):2293-2302.
    [130]Lee S., Choi S.I., Maken S., Song H.J., Shin H.C., Park J.W., Jang K.R., Kim J.H., Physical properties of aqueous sodium glycinate solution as an absorbent for carbon dioxide removal[J]. J. Chem. Eng. Data.,2005,50:1773-1776.
    [131]Lee S., Maken S., Park J.W., Song H.J., Park J.J., Shim J.G, Kim J.H., Eum H.M., A study on the carbon dioxide recovery 2 ton-CO2/day pilot plant at LNG based power plant [J]. Fuel,2008,87:1734-1739.
    [132]Lee S., Song H.J., Maken S., Park J.W., Kinetics of CO2 absorption in aqueous sodium glycinate solutions [J]. Ind. Eng. Chem. Res.,2007,46:1578-1583.
    [133]Li J.L., Chen B.H., Review of CO2 absorption using chemical solvents in hollow fiber membrane contactors [J]. Sep. Purif. Technol.,2005,41:109-122.
    [134]Li W.Z., Li B.Q., Bai Z.Q., Electrolysis and heat pretreatment methods to promote CO2 sequestration by mineral carbonation [J]. Chem. Eng. Res. Des.,2009,87:210-215.
    [135]Lila M.M., Finn J.E., Carbon dioxide adsorption on 5A Zeolite designed for CO2 removal in spacecraft cabins, NASA/TM-1998-208752,1998.
    [136]Lin C., Liu W., Tan C., Removal of carbon dioxide by absorption in a rotating packed bed [J]. Ind. Eng. Chem. Res.,2003,42:2381-2386.
    [137]Lin S.H., Chiang P.C., Hsieh C.F., Li M.H., Tung K.L., Absorption of carbon dioxide by the absorbent composed of piperazine and 2-amino-2-methyl-l-propanol in PVDF membrane contactor [J]. J. Chin. Inst. Chem. Eng.,2008,39:13-21.
    [138]Lin S.H., Shyu C.T., Performance characteristics and modeling of carbon dioxide absorption by amines in a packed column [J]. Waste Mange.,1999,19:255-262.
    [139]Linga P., Kumar R., Englezos P., The clathrate hydrate process for post and pre-combustion capture of carbon dioxide [J]. J. Hazard. Mater.,2005,149:625-629.
    [140]Littel R.J., van Swaaij W.P.M., Versteeg G.F., Kinetics of carbon dioxide with tertiary amines in aqueous solution [J]. AIChE J.,1990,36:1633.
    [141]Lu J.G, Zheng Y.F., Cheng M.D., Wetting mechanism in mass transfer process of hydrophobic membrane gas absorption [J]. J. Membr. Sci.,2008,308:180-190.
    [142]Lu J.G., Wang L.J., Sun X.Y., Li J.S., Liu X.D., Absorption of CO2 into aqueous solutions of methyldiethanolamine and activated methyldiethanolamine from a gas mixture in a hollow fiber contactor [J]. Ind. Eng. Chem. Res.,2005,44:9230-9238.
    [143]Lyngfelt A., Leckner B., Technologies for CO2 separation. Minisymposium on carbon dioxide capture and storage, school of environment sciences, Chalmers University of Technology and Goteborg University, Goteborg, October 22,1999.
    [144]Ma'mun S., Jakobsen J.P., Svendsen H.F., Experimental and modeling study of the solubility of carbon dioxide in aqueous 30 mass % 2-((2-aminoethyl)amino)ethanol solution [J]. Ind. Eng. Chem. Res.,2006,45:2505-2512.
    [145]Ma'mun S., Svendsen H.F., Hoff K. F., Hoff K.A., Selection of new absorbents for carbon dioxide capture [J]. Energy Convs. Manage.,2007,48:251-258.
    [146]Mandal B.P., Bandyopadhyay S.S., Simulation absorption of carbon dioxide and hydrogen sulfide into aqueous blends of 2-amino-2-methyl-l-propanol and diethanolamine [J], Chem. Eng. Sci.,2005,60:6438-6451.
    [147]Mandal B.P., Bandyopadhyay S.S., Absorption of carbon dioxide into aqueous blends of 2-amino-2-methyl-l-propanol and monoethanolamine [J]. Chem. Eng. Sci.,2006a,61: 5440-5447.
    [148]Mandal B.P., Bandyopadhyay S.S., Simultaneous absorption of CO2 and H2S into aqueous blends of N-methyldiethanolamine and diethanolamine [J]. Environ. Sci. Technol., 2006b,40:6076-6084.
    [149]Mandal B.P., Guba M., Biswas A.K., Bandyopadhyay S.S., Removal of carbon dioxide by absorption in mixed amines:modeling of absorption in aqueous MDEA/MEA and AMP/MEA solutions [J]. Chem. Eng. Sci.,2001,56:6217-6224.
    [150]Mandal B.P., Kundu M., Padhiyar N.U., Bandyopadhyay S.S., Physical solubility and diffusivity of N2O and CO2 into aqueous solutions of (2-amino-2-methyl-l-propanol+ diethanolamine) and (N-methyldiethanolamine+diethanolamine) [J]. J. Chem. Eng. Data, 2004,49:264-270.
    [151]Mathonat C., Majer V., Mather A.E., Grolier J.P.E., Use of flow calorimetry for determining enthalpies of absorption and the solubility of CO2 in aqueous monoethanolamine solutions [J]. Ind. Eng. Chem. Res.,1998,37:4136-4141.
    [152]Matsumiya N., Teramoto M., Kitada S., Matsuyama H., Evaluation of energy consumption for separation of CO2 in flue gas by hollow fiber facilitated transport membrane module with permeation of amine solution [J]. Sep. Purif. Technol.,2005,46: 26-32.
    [153]Mattisson T., Lyngfelt A., Applications of chemical-looping combustion with capture of CO2. Available at http://www.entek.chalmers.se/anly/symp/symp2001.htm.
    [154]Mattisson T., Lyngfelt A., Cho P., The use of iron oxide as an oxygen carrier in chemical-looping combustion of methane with inherent separation of CO2 [J]. Fuel,1993, 80:1953.
    [155]Mavroudi M., Kaldis S.P., Sakellaropoulos G.P., A study of mass transfer resistance in membrane gas-liquid contacting processes [J]. J. Membr. Sci.,2006,272:103-115.
    [156]Mavroudi M., Kaldis S.P., Sakellaropoulos G.P., Reduction of CO2 emission by a membrane contacting process [J]. Fuel,2003,82:2153-2159.
    [157]McCann N., Maeder M., Attalla M., Simulation of enthalpy and capacity of CO2 absorption by aqueous amine systems [J]. Ind. Eng. Chem. Res.,2008,47:2002-2009.
    [158]Meng L.Y., Burris S., Bui H., Pan W.P., Development of an analytical method for distinguishing ammonium bicarbonate from the products of an aqueous ammonia CO2 scrubber [J]. Anal. Chem.,2005,77:5947-5952.
    [159]Met office, http://www.metoffice.gov.uk/climatechange/science/monitoring/,2008.
    [160]Mimura T., Shimoji H., Suda T., Iijima M., Mitsuoka S., Research and development on energy saving technology for flue gas carbon dioxide recovery and steam system in power plant [J]. Energy Convers. Manage.,1995,36:397-400.
    [161]Mimura T., Suda T., Honda A., Kumazawa H., Kinetics of reaction between carbon dioxide and sterically hindered amines for carbon dioxide recovery from power plant flue gases [J]. Chem. Eng. Comm.,1998,170:245-260.
    [162]Montes-Hemandez G., Perez-Lopez R., Renard F., Nieto J.M., CharletL., Mineral sequestration of CO2 by aqueous carbonation of coal combustion fly-ash [J]. J. Hzard. Mater.,2009,161:1347-1354.
    [163]Naqvi R., Bolland O., Brandvoll Φ., Helle K., Chemical looping combustion-analysis of natural gas fired power cycles with inherent CO2 capture.2004, Available at http://folk.ntnu.no/obolland/pdf/GT2004-53359.pdf.
    [164]Narula R.G., Wen H., Himes K.L., Technical and economic comparison of CO2 reducing technologies for power plants.2004. Available at http://www.bechtel.com/ PDF/BIP/23093.pdf.
    [165]Nii S., Iwata Y., Takahashi K., Takeuchi H., Regeneration of CO2-loaded carbonate solution by reducing pressure [J]. J. Chem. Eng. Jpn.,1995,28:148-153.
    [166]Nishikawa N., Ishibashi M., Ohta H., Akutsu N., Matsumoto H., Kamata T., Kitamura H., CO2 removal by hollow-fiber gas-liquid contactor [J]. Energ. Convers. Mange.,1995, 36:415-418.
    [167]Oexmarin J., Hensel C., Kather A., Post-combustion CO2-capture from coal-fired power plants:preliminary evaluation of an integrated chemical absorption process with piperazine-promoted carbonate [J]. Int. J. Greenhouse Gas Control,2008,2:539-552.
    [168]Okabe K., Mano H., Fujioka Y., Separation and recovery of carbon dioxide by a membrane flash process [J]. Int. J. Greenhouse Gas Control,2008,2:485-491.
    [169]Oyenekan B.A., Rochelle G.T., Alternative stripper configurations for CO2 capture by aqueous amines [J]. AIChE J.,2007,53:3144-3154.
    [170]Oyenekan B.A., Rochelle G.T., Energy performance of stripper configurations for CO2 capture by aqueous amines [J]. Ind. Eng. Chem. Res.,2006,45:2457-2464.
    [171]Oyenekan B.A., Rochelle G.T., Rate modeling of CO2 stripping from potassium carbonate promoted by piperazine [J]. Int. J. Greenhouse Gas Control,2009,3:121-132.
    [172]Paul S., Ghoshal A.K., Mandal B., Kinetics of absorption of carbon dioxide into aqueous of 2-(1-piperazinyl)-ethylamine and N-methyldiethanolamine [J]. Chem. Eng. Sci., 2009,64:1618-1622.
    [173]Poddar T.K., Majumdar S., Sirkar K.K., Removal of VOCs from air by membrane-based absorption and stripping [J]. J. Membr. Sci.,1996,120:221-237.
    [174]Portugal A.F., Magalhaes, Mendes A., Carbon dioxide absorption kinetics in potassium threonate [J]. Chem. Eng. Sci.,2008,63:3493-3503.
    [175]Portugal A.F., Sousa J.M., Magalhaes F.D., Mendes A., Solubility of carbon dioxide in aqueous solutions of amino acid salts [J]. Chem. Eng. Sci.,2009,64:1993-2002.
    [176]Qi Z., Cussler E.L., Microporous hollow fibers for gas absorption:Ⅰ. Mass transfer in the liquid [J]. J. Membr. Sci.,1985a,23:321-332.
    [177]Qi Z., Cussler E.L., Microporous hollow fibers for gas absorption:Ⅱ. Mass transfer across the membrane [J]. J. Membr. Sci.,1985b,23:333-345.
    [178]Ramachandran N., Aboudheir A., Idem R., Tontiwachwuthikul P., Kinetics of the absorption of CO2 into mixed aqueous loaded solutions of monoethanolamine and methyldiethanolamine [J]. Ind. Eng. Chem. Res.,2006,45:2608-2616.
    [179]Ramshaw C., Mallinson R.H., M ass Transfer Process [P]. U.S. Patent,4283255,1981.
    [180]Rangwala H.A., Absorption of carbon dioxide into aqueous solutions using hollow fiber membrane contactors [J]. J. Membr. Sci.,1996,112:229-240.
    [181]Rao AB, Rubin ES. A technical, economical, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control [J]. Environ. Sci. Technol.,2002,36:4467-4475.
    [182]Rhudy R., Black S., Chilled Ammonia Process update. France,2007,5.
    [183]Riemer P.W.F., Ormerod W.G., International perspectives and the results of carbon dioxide capture disposal and utilization studies [J]. Energy Convers. Manage.,1995,36: 813-818.
    [184]Rinker E.B., Ashour S.S., Sandall O.C., Kinetics and modelling of carbon dioxide absorption into aqueous solutions of N-methyldiethanolamine [J]. Chem. Eng. Sci.,1995, 50:755-768.
    [185]Rinker E.B., Oelschlager D.W., Colussi A.T., Henry K.R., Sandal O.C., Viscosity, density, and surface tension of binary mixtures of water and N-methyldiethanolamine and water and diethanolamine and tertiary mixtures of these amines with water over the temperature range 20-100 ℃ [J]. J. Chem. Eng. Data,1994,39:392-395.
    [186]Romeo L.M., Espatolero S., Bolea I., Designing a supercritical steam cycle to integrate the energy requirements of CO2 amine scrubbing [J]. Int. J.Greenhouse Gas Control,2 (2008):563-570.
    [187]Rubin E.S., Rao A.B., Chen C., Comparative assessments of fossil fuel power plants with CO2 capture and storage [C]. Proceedings of 7th International Conference on Greenhouse Gas Control Technologies, Canada,2004.
    [188]Rubin E.S., Yeh S., Antes M., Berkenpas M., Davison J., Use of experience curves to estimate the future cost of power plants with CO2 capture [J]. Int. J. Greenhouse Gas Control,2007,1:188-197.
    [189]Sada E., Kumazawa H., Butt M.A., Gas absorption with consecutive chemical reaction: absorption of carbon dioxide into aqueous amine solutions [J]. Can. J. Chem. Eng.,1976, 54:421.
    [190]Sakwattanapong R., Aroonwilas A., Veawab A., Behavior of reboiler heat duty for CO2 capture plants using regenerable single and blended alkanolamine [J]. Ind. Eng. Chem. Res., 2005,44:4465-4473.
    [191]Samanta A., Bandyopadhyay S.S., Absorption of carbon dioxide into aqueous solutions of piperazine activated 2-amino-2-methyl-l-propanol [J]. Chem. Eng. Sci.,64 (2009): 1185-1194.
    [192]Sander R., Compilation of Henry's Law Constants for Inorganic and Organic Species of Potential Importance in Environmental Chemistry (Version 3).1999, http://www.henrys-law.org.
    [193]Sarkar S.C., Bose A., Role of activated carbon pellets in carbon dioxide removal [J]. Energy Convers. Manage.,1997,38:S105-S110.
    [194]Schilderman A.M., Raeissi S., Peters C.J., Solubility of carbon dioxide in the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [J]. Fluid Phase Equilibr.,2007,260:19-22.
    [195]Schmidt C., Beecy B., Overview of the U.S. carbon sequestration program [C].1st U.S.-China Symposium on CO2 Emission Control Science & Technology. Hangzhou, China, 2001,8,22-24.
    [196]Sedor K.E., Hossain M.M., Lasa H.I.de., Reactivity and stability of Ni/Al2O3 oxygen carrier for chemical-looping combustion (CLC) [J]. Chem. Eng. Sci.,2008,63:2294-3007.
    [197]Setameteekul A., Aroonwilas A., Veawab A., Statistical factorial design analysis for parametric interaction and empirical correlations of CO2 absorption performance in MEA and blended MEA/MDEA processes [J]. Sep. Purif. Technol.,2008,64:16-25.
    [198]Shen K.P., Li M.H., Solubility of carbon dioxide in aqueous mixtures of monoethanolamine with methyldiethanolamine [J]. J. Chem. Eng. Data,1992,37:96-100.
    [199]Shen L.H., Wu J.h., Xiao J., Experiments on chemical looping combustion of coal with a NiO based oxygen carrier [J]. Combust. Flame,2009,156:721-728.
    [200]Shih T.W., Li M.H., Heat capacity of aqueous mixtures of diethanolamine with 2-amino-2-methyl-1-propanol [J]. Fluid Phase Equilibr,2002,202:233-237.
    [201]Shirazian S., Moghadassi A., Moradi S., Numerical simulation of mass transfer in gas-liquid hollow fiber membrane contactors for laminar flow conditions [J]. Simul. Model. Pract.Th.,2009,17:708-718
    [202]Simbeck D.R., New power plant CO2 mitigation costs [R].2002, SFA Pacific, Inc., Mountain View, California.
    [203]Sina news, http://news.sina.com.cn/c/2005-11-18/07417471365s.shtml,2005.
    [204]Singh D., Croiset E., Douglas P.L., Douglas M.A., Economics of CO2 capture from a coal-fired power plant-a sensitivity analysis [C]. Proceedings of the Sixth Conference on Greenhouse Gas Control Technologies (GHGT-6), Kyoto, Japan,2002.
    [205]Singh D., Croiset E., Douglas P.L., Douglas M.A., Techno-economic study of CO2 capture from an existing coal-fired power plant:MEA scrubbing vs. O2/CO2 recycle combustion [J]. Energy Convers. Mange.,2003,44:3073-3091.
    [206]Singh P., Niederer J.P.M., Versteeg G.F., Structure and activity relationships for amine based CO2 absorbents— Ⅰ [J]. Int. J. Greenhouse Gas Control,2007,1:5-10.
    [207]Singh P., Niederer J.P.M., Versteeg G.F., Structure and activity relationships for amine-based CO2 absorbents-Ⅱ [J]. Chem. Eng. Res. Des.,2009,87:135-144.
    [208]Singh P., Versteeg G.F., Structure and activity relationships for CO2 regeneration from aqueous amine-based absorbents [J]. Process Saf. Environ.,2008,86:347-359.
    [209]Sircar S., Anand M., Carvill B.T., Hufton J., Mayorga S., Miller B., Sorption enhanced reaction process (SERP), Proc.1995 USDOE Hydrogen Program Rev.1 (1995):815-832.
    [210]Sng K.S., Seo Y.S., Yoon H.K., Characteristic of the NiO/Hexaaluminate for chemical looping combustion [J]. Korean J. Chem. Eng.,2003,20(3):471-475.
    [211]Snijder E.D., te Riele M.J.M., Versteeg G.F., van Swaaij W.P.M., Diffusion coefficients of several aqueous alkanolamine solutions [J]. J. Chem. Eng. Data,1998,38:475-480.
    [212]Song H.J., Lee S., Maken S., Park J.J., Park J.W., Solubilities of carbon dioxide in aqueous solutions of sodium glycinate [J]. Fluid Phase Equilibr.,2006,246:1-5.
    [213]Song H.J., Lee S., Park K., Lee J., Spah D.C., Park J.W., Filburn T.P., Simplified estimation of regeneration energy of 30 wt% sodium glycinate solution for carbon dioxide absorption [J]. Ind. Eng. Chem. Res.,2008,47:9925-9930.
    [214]Song Q.L., Xiao R., Deng Z.Y., Zhang H.Y., Shen L.H., Xiao J., Zhang M.Y., Chemical-looping combustion of methane with CaSO4 oxygen carrier in a fixed bed reactor [J]. Energy Convers. Manage.,2008,49:3178-3187.
    [215]Soni V, Abildskov J., Jonsson G., Gani R., Modeling and analysis of vacuum membrane distillation for the recovery of volatile aroma compounds from black currant juice [J]. J. Membr. Sci.,2008,320:442-455.
    [216]Supap T., Idem R., Tontiwachwuthikul P., Saiwan C., Kinetics of sulfur dioxide-and oxygen-induced degradation of aqueous monoethanolamine solutions during CO2 absorption from power plant flue gas streams [J]. Int. J. Greenhouse Gas Control,2009,3: 133-142.
    [217]Supap T., Idem R., Veawab A., Aroonwilas A., Tontiwachwuthikul P., Chakma A., Kybett B.D., Kinetics of the oxidative degradation of aqueous monoethanolamine in a flue gas treating unit [J]. Ind. Eng. Chem. Res.,2001,40:3445-3450.
    [218]Teramoto M., Kitada S., Ohnishi N., Matsuyama H., Matsumiya N., Separation and concentration of CO2 by capillary-type facilitated transport membrane module with permeation of carrier solution [J]. J. Membr. Sci.,2004,234:83-94.
    [219]Teramoto M., Ohnishi N., Takeuchi N., Kitada S., Matsuyama H., Matsumiya N., Mano H., Separation and enrichment of carbon dioxide by capillary membrane module with permeation of carrier solution [J]. Sep. Purif. Technol.,2003,30:215-217.
    [220]Thitakamol B., Veawab A., Aroonwilas A., Environmental impacts of absorption-based CO2 capture unit for post-combustion treatment of flue gas from coal-fired power plant [J]. Int. J. Greenhouse Gas Control,2007,1:318-342.
    [221]Tobiesen F. A., Juliussen O., Svenden H., Experimental validation of a rigorous desorber model for CO2 post-combustion capture [J]. Chem. Eng. Sci.,2008,63: 2641-2656.
    [222]Tobiesen F.A., Svendsen H.F., Study of a modified amine-based regeneration unit [J]. Ind. Eng. Chem. Res.,2006,45:2489-2496.
    [223]Tsai T., Ko J., Wang H., Lin C., Li M., Solubility of nitrous oxide in alkanolamine aqueous solutions [J]. J. Chem. Eng. Data,2000,45:341-347.
    [224]Urtiaga A.M., Ruiz G, Ortiz I., Kinetics analysis of the vacuum membrane distillation of chloroform from aqueous solutions [J]. J. Membr. Sci.,2000,165:99-110.
    [225]Usubharatana P., McMartin D., Veawab A., Tontiwachwuthikul P., Photocatyalytic process for CO2 emission reduction from industrial flue gas streams [J]. Ind. Eng. Chem. Res.,2006,45:2558-2568.
    [226]Uyanga I.J., Idem R.O., Studies of SO2-and O2-induced degradation of aqueous MEA during CO2 capture from power plant flue gas streams [J]. Ind Eng. Chem. Res.,2007,46: 2558-2566.
    [227]Vaidya P.D., Kenig E.Y., Absorption of CO2 into aqueous blends of alkanolamines prepared from renewable resources [J]. Chem. Eng. Sci.,2007,62:7344-7350.
    [228]Van Der Sluijs J.P., Hendriks C.A., Blok K., Feasibility of polymer membranes for carbon dioxide recovery from flue gases [J]. Energ. Convers. Mange.,1992,33:429-436.
    [229]Vazquez G., Alvarez E., Navaza J.M., Rendo R., Romero E., Surface tension of binary mixtures of water+monoethanolamine and water+2-amino-2-methyl-l-propanol and tertiary mixtures of these amines with water from 25 ℃ to 50 ℃ [J]. J. Chem. Eng. Data, 1997,42:57-59.
    [230]Veawab A., Aroonwhilas A., Chakma A., Tontiwachwuthikul P., Solvent Formulation for CO2 Separation from Flue Gas Streams [C]. First National Conference on Carbon Sequestration, Washington, DC, May 15-17,2001.
    [231]Verrecht B., Leysen R., Buekenhoudt A., Vandecasteele C., Van der Bruggen B., Chemical surface modification of γ-Al2O3 and TiO2 toplayer membranes for membranes for increased hydrophobicity [J]. Desalination,2006,200:385-386.
    [232]Versteeg G.F., van Swaaij W.P.M., On the kinetics between CO2 and alkanolamines both in aqueous and non-aqueous solutions. Part I:Primary and secondary amines [J]. Chem. Eng. Sci.,1988,43:573-585.
    [233]Wang L.F., Ma L., Wang A.Q., Liu Q., Zhang T., CO2 adsorption on SBA-15 modified by aminosilane [J]. Chinese J. Catal.,2007,28:805-810.
    [234]Wang R., Li D.F., Zhou C., Liu M., Liang D.T., Influence of DEA solutions with and without CO2 loading on porous polypropylene membranes intended for use as contactors [J]. J. Membr. Sci.,2004,229:147-157.
    [235]Wang R., Zhang H.Y., Feron P.H.M., Liang D.T., Influence of membrane wetting on CO2 capture in microporous hollow fiber membrane contactors [J]. Sep. Purif. Technol., 2005,46:33-40.
    [236]Wang Y.W., Xu S., Otto F.D., Solubility of N2O in alkanolamines both in mixed-solvents [J]. Chem. Eng. J.& Biochem. Eng. J.,1992,48:31-40.
    [237]Wappel D., Khan A., Shallcross D., Joswig S., Kentish S., Stevens G., The effect of SO2 on CO2 absorption in an aqueous potassium carbonate solvent [J]. Energy Procedia,2009,1: 125-131.
    [238]Wei J.W., Shi J.J., Pan H., Su Q.F., Zhu J.B., Shi Y., Thermal and hydrothermal stability of amino-functionalized SBA-16 and promotion of hydrophobicity by silylation [J]. Micropor. Mesopor. Mater.,2009,117:599-602.
    [239]Wei J.W., Shi J.J., Pan H., Zhao W., Ye Q., Shi Y, Adsorption of carbon dioxide on the organically functionalized SBA-16 [J]. Micropor. Mesopor. Mater.,2008,116:394-399.
    [240]Weiland R.H., Dingman J.C., Cronin D.B., Heat capacity of aqueous monoethanolamine, diethanolamine, N-methyldiethanolamine, and N-methyldiethanolamine-based blends with carbon dioxide[J]. J. Chem. Eng. Data,1997,42:1004-1006.
    [241]Weiland R.H., Rawal M., Rice R.G., Stripping of carbon dioxide from monoethanolamine solutions in a packed column [J]. AIChE J.,1982,28:963-973.
    [242]Weiland R.H., Sivasubramanian M.S., Ding Man J.C., Effective amine technology: Controlling selectivity, increasing slip, and reducing sulfur [C].53rd Annual Laurance Reid Gas Conditioning Conference, Norman,2003.
    [243]Wolsky A.M., Daniels E.J., Jody B.M.J., Recovering CO2 from large-and medium-size stationary combustors [J]. Air Waste Manage. Assoc.,1991,41:449-454.
    [244]Wong S., Bioletti R., Carbon dioxide separation technologies.2002, Available at http://www.aidis.org.br/span/ftp/CARBON%20DIOXIDE%20SEPARATION%20TECHN OLOGIES.pdf.
    [245]Woods M.C., Capicotto P.J., Haslbeck J.L., Pinkerton L.L., Rutkowski M.D., Schoff R.L., Vaysman V. Cost and performance baseline for fossil energy plants:Volume 1: Bituminous coal and natural gas to electricity final report [R]. DOE/NETL Report,2007,8.
    [246]www.esrl.noaa. gov/gmd/ccgg/trends.
    [247]Xiao J., Li C.W., Li M.H., Kinetics of absorption of carbon dioxide into aqueous solutions of 2-amino-2-methyl-l-propanol+monoethanolamine [J]. Chem. Eng. Sci.,2000, 55:161-175.
    [248]Xu G.W., Zhang C.F., Qin S.J., Wang Y.W., Kinetics study on absorption of carbon dioxide into solutions of activated methyldiethanolamine [J]. Ind. Eng. Chem. Res.,1992, 31:921-927.
    [249]Xu G.W., Zhang C.F., Qin S J., Zhu B.C., Desorption of CO2 from MDEA and activated MDEA solutions [J]. Ind. Eng. Chem. Res.,1995,34:874-880.
    [250]Xu S., Wang Y.W., Otto F., Mather A.E., Kinetics of the reaction of carbon dioxide with 2-amino-2-methyl-l-propanol solutions [J]. Chem. Eng. Sci.,1996,51:841-850.
    [251]Xu X.C., Song C.S., Miller B.G., Scaroni A.W., Adsorption separation of carbon dioxide from flue gas of natural gas-fired boiler by a novel nanoporous "molecular basket" adsorbent [J]. Fuel Process. Technol.,2005,86:1457-1472.
    [252]Yagi Y, Mimura T., Iijima M., Ishida K., Yoshiyama R., Kamijo T., Yonekawa T., Improvements of carbon dioxide capture technology from flue gas.2004, Available at http://uregina.ca/ghgt7/PDF/papers/nonpeer/183.pdf.
    [253]Yeh A.C., Bai H., Comparison of ammonia and monoethanolamine solvents to reduce CO2 greenhouse gas emission [J]. Sci. Total Environ.,1999,228:121-133.
    [254]Yeh J.T., Pennline H.W., Study of CO2 absorption and desorption in a packed column [J]. Energy Fuel,2001,15:274-278.
    [255]Yeh J.T., Resnik K.P., Rygle K., Pennline H.W., Semi-batch absorption and regeneration studies for CO2 capture by aqueous ammonia [J]. Fuel Process. Technol.,2005, 86:1533-1546.
    [256]Yeon S.H., Lee K.S., Sea B., Park Y.I., Lee K.H., Application of pilot-scale membrane contactor hybrid system for removal of carbon dioxide from flue gas [J]. J. Membr. Sci., 2005,257:156-160.
    [257]Yong Z., Mata V.G., Rodrigues A.E., Adsorption of carbon dioxide on chemically modified high surface area carbon-based adsorbents at high temperature [J]. Adsorption, 2001,7:41-50.
    [258]You J.K., Park H., Yang S.H., Hong W.H., Shin W., Kang J.K., Yi K.B., Kim J.N., Influence of additives including amine and hydroxyl groups on aqueous ammonia absorbent for CO2 capture [J]. J. Phys. Chem. B,2008,112:4323-4328.
    [259]Yuan X.L., Zhang S.J., Liu J., Lu X.M., Solubilities of CO2 in hydroxyl ammonium ionic liquids at elevated pressures [J]. Fluid Phase Equilibr.,2007,257:195-200.
    [260]Zhang J., Vebley P. A., Xiao P., Effect of process parameters on power requirements of vacuum swing adsorption technology for CO2 capture from flue gas [J]. Energy Convers. Manage.,2008,49:346-356.
    [261]Zhang P., Shi Y, Wei J.W., Kinetics region and model for mass transfer in carbon dioxide absorption into aqueous solution of 2-amino-2-methyl-l-propanol [J]. Sep. Purif. Technol.,2007,56:340-347.
    [262]Zhang X., Yang Y.H., Zhang C.F., Wang J., Absorption rate of CO2 into MDEA aqueous solution blended with piperazine and diethanolamine [J]. Chinese J. Chem. Eng.,2003,11: 408-413.
    [263]Zhang X., Zhang C.F., Qin S.J., Zheng Z.S., A kinetics study on the absorption of carbon dioxide into a mixed aqueous solution of methyldiethanolamine and piperazine [J]. Ind. Eng. Chem. Res.,2001,40:3785-3791.
    [264]Zhao H.B., Liu L.M., Xu D., Zheng C.G., Liu G.J., Jiang L.L., NiO/NiAl2O4 oxygen carriers prepared by sol-gel for chemical-looping combustion fueled by gas [J]. J. Fuel. Chem. Tech.,2008,36:261-266.
    [265]Zheng J.M., Xu Y.Y., Xu Z.K., Shell side mass transfer characteristics in a parallel flow fiber membrane module [J]. Sep. Sci. Technol,2003,38:1247-1267.
    [266]刁永发,郑显玉,陈昌和.氨水洗涤脱除C02温室气体的机理研究[J].环境科学学报,2003,23(6):753-757.
    [267]中国国家发展和改革委员会.中国应对气候国家方案 [R].2007,http://www.ndrc.gov.cn/xwfb/t20070604_139486.htm.
    [268]毛玉如,方梦祥,王勤辉,吴学成,骆仲泱,倪明江,岑可法.02/C02气氛下循环流化床燃煤燃烧污染物排放的试验研究[J].动力工程,2004,21(3):411-415.
    [269]毛玉如,方梦祥,骆仲泱,岑可法.富氧气氛下循环流化床煤燃烧试验研究[J].燃烧科学与技术,2005,11(2):188-191.
    [270]王宏,邱建荣,郑楚光.燃煤在02/C02方式下802生成特性的研究[J].华中科技大学学报(自然科学版),2002,30(1):100-102.
    [271]王金莲.吸收C02的新型化学吸收剂和工艺研究[硕士学位论文].杭州:浙江大学,2007.
    [272]史进渊,杨宇,孙庆,危奇,邓志成,张兆鹤.超临界和超超临界空冷汽轮机的技术方案及设计准则[J].动力工程,2007,27(6):825-830.
    [273]艾宁,陈健,费维扬.MDEA+2,3-丁二酮水溶液对CO2吸收速率的测定.天然气化工[J],2004,19:10-12.
    [274]仲伟龙.C02化学吸收技术研究[硕士学位论文].杭州:浙江大学,2008.
    [275]刘天齐主编,黄小林,邢连壁,耿其博副主编.三废处理工程技术手册-废气卷[M].北京:化学工业出版社,1999.
    [276]刘阳春.能吸收二氧化碳的陶瓷[J].现代科技译丛(哈尔滨),2002(1):14-15.
    [277]刘芳,王淑娟,陈昌和,徐旭常.电厂烟气氨法脱碳技术研究进展[J].化工学报,2009,60(2):269-278.
    [278]刘练波,黄斌,郜时旺,许世森.燃煤电站3000-5000t/a C02捕集示范装置工艺及关键设备[J].电力设备,2008,9(5):21-24.
    [279]刘彦丰,阎维平,宋之平.炭/碳粒在C02/02气氛中燃烧速率的研究[J].工程热物理学报,1999,20(11):769-772.
    [280]许家豪.以化学吸收法处理烟道气二氧化碳之研究[博士学位论文].台湾:国立成功大学,2003.
    [281]邢银全,刘有智,崔磊军.超重力旋转床强化吸收烟道气中 C02试验研究[J].现代化工,2007,27(增刊2):470-473.
    [282]张卫风,王秋华,方梦祥,骆仲泱,岑可法.膜吸收法与化学吸收法分离烟气中CO2的试验比较[J].动力工程,2008,28(5):759-763.
    [283]张卫风.中空纤维膜接触器分离燃煤烟气中二氧化碳的试验研究[博士学位论文].杭州:浙江大学,2006.
    [284]张军营,赵永椿,潘霞,徐俊,晏恒,王志亮,郑楚光.硅灰石碳酸化隔离二氧化碳的实验研究[J].自然科学进展,2008,18(7):836-840.
    [285]张成芳编.气液反应和气液反应器[M].北京:化学工业出版社,1985.
    [286]张旭,王军,张成芳,杨燕华.填料塔中活化MDEA吸收C02的模拟研究[J].化学工程,2004,32(5):74-77.
    [287]张昀,李振中,李成之,张经武.电站烟气中C02减排新技术双重效益的研究[J]. 现代电力,2002,19(3):1-7.
    [288]张茂,赛俊聪,吴少华,李振中.氨法脱除燃煤烟气中C02的实验研究[J].热能动力工程,2008,23(2):191-194.
    [289]张谋,陈汉平,赫俏,张世红,郑楚光.液氨法吸收烟气中C02的实验研究[J].能源与环境,2007,4:81-83.
    [290]张斌,倪维斗,李政.IGCC及煤气化-固体氧化物燃料电池混和循环的技术经济性分析[J].中国动力工程学报,2005b,25(1):141-146.
    [291]张斌,倪维斗,李政.火电厂和IGCC及煤气化SOFC混和循环减排C02的分析[J].煤炭转化,2005a,28(1):1-7.
    [292]时钧,袁权,高从增.膜技术手册[M].北京:化学工业出版社,2001.
    [293]李兰廷,解强.温室气体C02的分离技术[J].低温与特气,2005,23(4):1-6.
    [294]李春鞠,顾国维.温室效应与二氧化碳的控制[J].环境保护科学,1998,26:13-15.
    [295]杨旭中.电力工程经济评价和电价[M].北京:中国电力出版社,2002.
    [296]杨林军,张霞,张露娟,张宇,严金培.二氧化碳矿物碳酸化固定的技术进展[J].现代化工,2007,27(8):13-16.
    [297]杨家宝.混合醇胺TEA+PZ水溶液吸收二氧化碳反应动力学数据量测研[硕士学位论文].台湾,中原大学,2004.
    [298]沈平平,杨永智.温室气体在石油开采中资源化利用的科学问题[J].中国基础科学,2006,3:23-31.
    [299]沈来宏,肖军,肖睿,张辉.基于CaSO4载氧体的煤化学链燃烧分离C02研究[J].中国电机工程学报,2007,27(2):69-74.
    [300]陆建刚,李健生,孙秀云,王连军.脱碳活化剂哌嗪的合成及其应用性能评价[J].石油化工,2004,33(9):861-864.
    [301]陆建刚,郑有飞,陈敏东,连平,王连军.膜基活化溶液中活化剂在回收温室气体C02过程中的作用[J].环境工程学报,2008,2(10):1378-1382.
    [302]陈建峰.超重力技术及应用—新一代反应与分离技术[M].北京:化学工业出版社,2002.
    [303]陈明功,陈晶铃,Takashima T., Mizuno A.错流碟片旋转超重力场中液膜体积分率的实验研究[J].高校化学工程学报,2008,22(4):569-573.
    [304]陈昱如.混合有机溶剂与醇胺水溶液之比热量测:PZ/AMP/H2O, PZ/MDEA/H2O系 统[硕士学位论文].台湾,中原大学,2003.
    [305]陈健,郑碏,陈伟,费维扬.二氧化碳减排的紧迫性及其分离技术的发展[C].第十届中国科协年会第18分会场:二氧化碳减排和绿色化利用与发展研讨会,郑州,2008:10-13.
    [306]陈晓进.国外二氧化碳减排研究及对我国的启示[J].国际技术经济研究.2006,9(3):21-25.
    [307]周泽兴.火电厂排放C02的分离回收和固定技术的研究开发现状[J].环境科学进展.1993,9(3):19-24.
    [308]林而达,刘颖杰.温室气体排放和气候变化新情景研究的最新进展[J].中国农业科学,2008,41(6):1700-1707.
    [309]经济部工业局.以吸收法回收二氧化碳之技术手册[R].台湾,2002.
    [310]金红光.新颖化学链燃烧与空气湿化燃气轮机循环[J].工程热物理学报,2000,21(2):138-141.
    [311]费维扬,艾宁,陈健.温室气体C02的捕集和分离—分离技术面临的挑战与机遇[J].化工进展,2005,24(1):1-4.
    [312]赵伟,施耀,魏建文,叶青.甘氨酸钠溶液吸收C02及再生实验研究[J].高校化学工程学报,2008,22(4):690-696.
    [313]钟理,伍钦,曾朝霞主编.化工原理-下册[M].北京:化学工业出版社,2008.
    [314]项菲,施耀,李伟.混合有机胺吸收烟道气中C02的实验研究[J].环境污染与防治,2003,25(4):206-208.
    [315]骆仲泱,毛玉如,吴学成,方梦祥,王勤辉,倪明江,岑可法.O2/CO2气氛下煤燃烧特性试验研究与分析[J].热力发电,2004,(6):14-18.
    [316]唐莉,王宝林,陈健.应用变压吸附法分离回收CO2[J].低温与特气,1998(2):47-52.
    [317]秦大河,罗勇,陈振林,任贾文,沈永平.气候变化科学的最新进展:IPCC第四次评估综合报告解析[J].气候变化研究进展,2007,3(6):311-314.
    [318]聂会建,李政,张斌.整体煤气化联合循环(IGCC)全生命周期CO2排放计算及分析[J].动力工程,2004,24(1):132-137.
    [319]高正平,沈来宏,肖军.基于NiO载氧体的煤化学链燃烧实验[J].化工学报,2008,59(5):1242-1250.
    [320]阎维平.温室气体的排放以及烟气再循环煤粉燃烧技术的研究[J].中国电力,1997,30(6):59-62.
    [321]黄汉生.温室效应气体二氧化碳的回收与利用[J].现代化工,2001,219(9):53-57.
    [322]黄斌,刘练波,许世森,丰镇平.燃煤电站C02捕集与处理技术的现状与发展[J].电力设备,2008,9(5):3-6.
    [323]黄煜煜,李振山,蔡宁生.高温C02吸附/吸收剂的研究进展[J].热能动力工程,2005,20(6):557-561.
    [324]曾荣树,孙枢,陈代钊,段振豪.减少二氧化碳向大气层的排放—二氧化碳地下储存研究[J].中国科学基金,2004,4:196-200.
    [325]董建勋,张悦,张昀,贾萤光,李振中,李辰飞,李英伦.用氨水作为吸收剂脱除燃煤烟气中C02的实验研究[J].动力工程,2007,27(3):438-440.
    [326]谢苗诺娃T.A.,列伊捷斯 И.Л.著,南京化学工业公司研究院译.工艺气体的净化[M].北京:化学工业出版社,1982.
    [327]熊杰,赵海波,柳朝晖,郑楚光,陈猛.基于热经济学的O2/C02循环燃烧系统和MEA吸附系统的技术—经济评价[J].工程热物理学报,2008,29(10):1625-1629.
    [328]蔡平雄,张成芳,郑志胜,钦淑均.NH3和C02的选择性分离Ⅰ.间歇吸收机理及影响因素[J].华东理工大学学报,2001,27(1):24-29.
    [329]蔡平雄,张成芳,郑志胜,钦淑均.NH3和C02的选择性分离Ⅱ.连续吸收器研究和机理论证[J].华东理工大学学报,2002a,28(2):122-126.
    [330]蔡平雄,张成芳,郑志胜,钦淑均.NH3和C02的选择性分离Ⅲ.二级连串吸收分离的研究[J].华东理工大学学报,2002b,28(6):573-577.
    [331]谭大志,范文杰,张永春,吴浪,李一尘.DEA溶液吸收/再生C02的研究[J].化学工程师,2005,116(5):62-64.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700