外部热耦合式复合精馏塔的综合与设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了降低石油化工分离过程中的能耗,热耦合技术得到了广泛的发展。与常规精馏塔相比,热耦合精馏技术在能耗及投资成本方面有着显著的优势。本文在热耦合精馏技术的基础上提出了一种新型的外部热耦合式复合精馏塔(简称EHIDDiC)。发掘外部热耦合式复合精馏塔在化工分离应用过程中的潜在优势是本文的主要目的。
     外部热耦合复合精馏塔由一个高压精馏塔和一个低压精馏塔构成,高压精馏塔的精馏段与低压精馏塔的提馏段进行外部热耦合。每一对耦合的塔板之间都有一个外部换热器。这样的外部热耦合方式避免了塔内换热面积的局限性以及换热结构的复杂性。本文以系统的年均投资成本TAC最优为设计目标,提出了一种外部热耦合复合精馏塔的系统性综合与设计的方法。
     考虑到EHIDDiC需要采用较多的外部换热器,不利于其在实际过程中的实现,因此本文在EHIDDiC结构的基础上,提出了一种外部热耦合复合精馏塔的简化构型,SEHIDDiC。该简化构型仅仅采用三个外部换热器来实现外部热耦合复合精馏塔中高压精馏塔精馏段与低压精馏塔提馏段之间的外部热耦合。一个外部换热器置于外部热耦合段的顶部,一个外部换热器置于外部热耦合段的中间,第三个外部换热器置于外部热耦合段的底部。通过对三个外部换热器的位置及换热面积的优化,来进一步提高SEHIDDiC的热力学效率。从而给出了外部热耦合式复合精馏塔的综合简化与设计方法。
     本文通过乙烯/乙烷和苯/甲苯两个二元物系的分离,应用文中提出的系统综合与设计的方法来研究外部热耦合复合精馏塔及其简化构型的性能。研究结果证实外部热耦合式复合精馏塔能够大大降低分离系统所需的能耗。与常规精馏塔相比,EHIDDiC的热力学效率更高,且所需投资成本更低。此外EHIDDiC经简化及优化以后,其所需的能耗及设备投资得到了进一步的降低,证实SEHIDDiC不但能够很好的近似EHIDDiC,而且为EHIDDiC这一个概念在实际分离过程中的设计及实施提供了一种更为简洁的方法。
Heat-integration has been widely used to reduce the utility consumption in the separation operation in the chemical and petrochemical process industries. Compared with the conventional distillation column, the heat-integrated distillation process can lead to high thermodynamic efficiency and low total annual cost (TAC). A novel scheme of external heat-integrated double distillation columns, termed the EHIDDiC, is proposed in this thesis. The major purpose of this study is to explore the potential advantage of the EHIDDiC in the chemical and petrochemical process industries.
     The EHIDDiC have a high-pressure distillation column and a low-pressure distillation column. The rectifying section of the high-pressure distillation column is heat integrated with the stripping section of the low-pressure distillation column. There is an external heat exchanger between each pair of heat-integrated stages. The external type heat integration can avoid the problems of the internal heat integration and the complexity of heat transfer structure. With the minimum total annual cost as an objective function, a systematic method is proposed for the synthesis and design of the EHIDDiC.
     As the EHIDDiC needs a lot of external heat exchangers, it makes the EHIDDiC difficult to be designed and implemented in the practical situation. Thus, a simplified scheme of the EHIDDiC, termed as SEHIDDiC, should be derived, using only three external heat exchangers to approximate the external heat integration in the EHIDDiC. One external heat exchanger is placed between the tops of the heat-integrated sections; one is placed between the middles of the heat-integrated sections; the third one is placed between the bottoms of the heat-integrated sections. The locations and sizes of the three external heat exchangers are considered deliberately to maximize thermodynamic efficiency. A systematic method is derived for the SEHIDDiC.
     Two examples, i.e., the separations of an ethylene/ethane and benzene/toluene binary mixtures are employed to study the EHIDDiC and its simplified schemes. The results obtained indicate that the EHIDDiC is more thermodynamic efficient and needs less TAC in comparison with the conventional distillation column. Furthermore, the SEHIDDiC could be an excellent candidate to approximate the EHIDDiC with even a greater reduction in utility consumption and a less degree of capital investment. The SEHIDDiC offers essentially a much simple way to design and implement the concept of the EHIDDiC in the chemical and petrochemical process industries.
引文
[1]王建忠,马文婵,王鹏辉.精馏过程的节能现状与对策[J].河北化工.2006,29(4),27-30.
    [2]马庆元.精馏过程的节能方法[J].冶金能源.2004,23(5):13-15.
    [3]王梦华.精馏过程节能技术探讨[J].齐鲁石油化工.2003,31(4):324-326.
    [4]邓修,吴俊生.化工分离工程[M].北京,科学出版社,2000,135-213.
    [5]秦正龙,孟庆华.精馏过程的节能技术[J].节能.1997,4,16-19.
    [6]许世兵,余晖.精馏分离与节能[J].精细化工中间体.2001,31(6),38-40.
    [7]管斌.精馏节能技术的讨论[J].山东轻工业学院院报.1991,5(2),37-42.
    [8]刘运权.精馏过程的节能途径[J].现代节能.1992,2,8-13.
    [9]倪进方.化工过程设计[M].北京,化学工业出版社,1999,182-248.
    [10]袁一.过程热力学分析方法[B].北京,化学工业出版社,1986,43-70.
    [11]赵贤广,饶骏.国内催化精馏技术研究进展及应用[J].化学工业与工程技术.2002,23(5),24-26.
    [12]刘劲松,白鹏.反应精馏过程的研究进展[J].化学工业与工程.2002,19(1),101-106.
    [13]肖剑,张志炳.反应精馏研究进展及应用前景[J].江苏化工.2002,30(2),21-25.
    [14]刘雪暖,李玉秋.反应精馏技术的研究现状及其应用[J].化学工业与工程.2000,17(3),164-168.
    [15]郭继志.石油化工新技术反应精馏[J].石油知识.1997,3,17-18.
    [16]郎玉成.反应精馏技术及其应用[J].南化科技信息.1995(1),47-50.
    [17]盖旭东,孙锦昌.反应精馏过程模拟研究进展[J].化学工程.1996,24(1),8-14.
    [18]张澍源.连续反应精馏技术及其应用[J].现代化工.1990,10(4),51-54.
    [19]成弘,余国琮.蒸馏技术现状与发展方向[J].化学工程.2001,29(1),52-55.
    [20]陈砺,张宇安.操作压力与精馏节能[J].节能.1996,2,25-27.
    [21]秦正龙,朱平.高效节能的热泵技术[J].节能.2001,5,15-17.
    [22]刘其真.中间再沸器在萃取精馏中的应用[J].合成橡胶工业.1982,5,358-363.
    [23]王以清.非绝热精馏节能[J].节能技术.2000,18(6),43-45.
    [24]Petlyuk, F.B., Platonov, V.M., Slavinskii, D.M. T hermodynaically Optimal Method for Separating Multicompnent Separation Systems with Energy Integration[J]. AICHE J.1974,20, 940-947.
    [25]King, C. J. Separation Processes. McGraw-Hill, New York, U.S.A.1980.
    [26]Chiang, T. P.; Luyben, W. L. Comparison of Energy Consumption in Five Heat-Integrated Distillation Configurations[J]. Ind. Eng. Chem. Res.1983,22,175-181.
    [27]Malinen, I.; Tanskanen, J. Thermally Coupled Side-Column Configurations Enabling Distillation Boundary Crossing.2. Effects of Intermediate Heat Exchangers[J]. Ind. Eng. Chem. Res.2009,48,6372-6378.
    [28]Rong, B.; Turunen, I. Synthesis of New Distillation Systems by Simultaneous Thermal Coupling and Heat Integration[J]. Ind. Eng. Chem. Res.2006,45,3830-3841.
    [29]Annakou, O.; Mizsey, P. Rigorous Comparative Study of Energy-Integrate Distillation Schemes[J]. Ind. Eng. Chem. Res.1996,35,1877-1886.
    [30]Mah, RSH., Nicholas, JJ., Wodnik RB. Distillation with Secondary Reflux and Vaporization:A Comparative Evaluation[J]. AICHE J.1977,23,651-658.
    [31]Shimizu, K., Mah, RSH. Dynamic Characteristic of Binary SRV Distillation Systems. Comp. & Chem. Eng.1983,7,105-112.
    [32]Fitzmorris,R.E, Mah RSH. Improving Distillation Column Design Using Thermodynamic Availability Analysis[J]. AICHE.1980,20,265-271.
    [33]Takamatsu, T., Nakaiw, M. Modeling, Design Method for Internal Heat Integrated Packed Distillation Column[J]. Journal of Chemical Engineering of Japan.1988,21(6),595-601.
    [34]Huang, K., Nakaiwa, M., Akiya, T. A Numerical Consideration on Dynamic Modeling and Control of Ideal Heat Integrated Distillation Columns[J]. Chem. Eng. Japan.1996,29(2), 344-351.
    [35]黄克谨,钱积新.理想热耦合精馏塔及其稳态特性[J].石油炼制与化工.1997,28(11),55-58.
    [36]Nakaiwa, M., Huang K., Endo T., Ohmori T., Akiya T., Takamatsu T., Beggs S., Pritchard, C. Contributing to reduction of CO2 Emissions Through Development of a Heat-Integrated Distillation Column Green House Gas Control Technologies[J]. The 6th International Conference,2003,975-980.
    [37]Huang, K., Nakaiwa, M., Akiya, T., Owa, M. Dynamics of Ideal Heat Integrated Distillation Columns[J]. Chem. Eng. Japan.1996,29(4),108-114.
    [38]Huang, K., Nakaiwa, M., Owa, M., Akiya, T. Determining Appropriate Configuration of Ideal Heat Integrated Distillation Columns (HIDiC)[J]. J. Chem. Eng. Japan.1997,30(3),575-580.
    [39]Huang, K., Nakaiwa, M., Owa, M., Akiya, T., Nakane, T., Sato, M., Takamatsu, T. Identification and Internal Model Control of an Ideal Heat Integrated Distillation Column[J]. J. Chem. Eng. Japan.1998,31(1),159-164.
    [40]Nakaiwa, M., Huang, K., Owa, M., Akiya, T., Nakane, T. Operating an Ideal Heat Integrated Distillation Column with Different Control Algorithns[J]. Comput. Chem. Eng.1998,22, 389-394.
    [41]Nakaiwa, M.; Huang, K.; Endo, T.; Ohmori, T.; Akiya T.; Takamatsu, T. Internally Heat-Integrated Distillation Column:A Review[J]. Chem. Eng. Res. Des.2003,81,162-167.
    [42]Gadalla, M., Jimenez, L., Olujic, Z., Jansens, P.J. A Thermo-Hydraulic Approach to Conceptual Design of an Internally Heat-Integrated Distillation Column (i-HIDIC)[J]. Computers and Chemical Engineering.2007,31,346-354.
    [43]Huang, K.; Matsuda, K.; Iwakabe, K.; Takamatsu, T.; Nakaiwa, M. Graphical Synthesis of an Internally Heat-Integrated Distillation Column[J]. J. Chem. Eng. Jpn.2006,39,703-708.
    [44]Huang, K.; Matsuda, K.; Iwakabe, K.; Takamatsu, T.; Nakaiwa, M. Interpreting Design of an Ideal Heat-Integrated Distillation Column through Exergy Analysis[J]. J. Chem. Eng. Jpan. 2006,39,963-968.
    [45]Huang, K.; Wang, S.; Iwakabe, K.; Shan, L.; Zhu, Q. Temperature Control of an Ideal Heat-Integrated Distillation Column (HIDiC) [J]. Chem. Eng. Sci.2007,63,6486-6493.
    [46]Huang, K.; Shan, L.; Zhu, Q.; Qian, J. A Totally Heat-Integrated Distillation Column (THIDiC)-The Effect of Feed Pre-heating by Distillate[J]. Appl. Therm. Eng.2008,28, 856-863.
    [47]Huang K., Matsuda K., Takamatsu, T., Nakaiwa M. The Influences of Pressure Distribution on an Ideal Heat-Integrated Distillation Column(HIDiC)[J]. Journal of Chemical Engineering of Japan.2006,39(6),652-660.
    [48]Tung, H.; Davis, J. F.; Mah, R. S. H. Fractionating Condensation and Evaporation in Plate-Fin Devices[J].AIChE J.1986,32,1116-1123.
    [49]Naito, K.; Nakaiwa, M.; Huang, K.; Endo, A.; Aso, K.; Nakanishi, T.; Nakamura, T.; Noda, H.; Takamatsu, T. Operation of a Bench-Scale Ideal Heat Integrated Distillation Column (HIDiC): An Experimental Study[J]. Comput. Chem. Eng.2000,24,495-502.
    [50]Huang, K.; Iwakabe, K.; Nakaiwa, M.; Matsuda, K.; Horiuchi, K.; Nakanishi, T. Considering Heat Integration to Improve Separation Performance:Innovative Approaches Gain Efficiency for Distillation Operations[J]. Hydrocarb. Proc.2008,87,101-109.
    [51]Olujic, Z.; Sun, L.; Rijke, A. De.; Jansens, P. J. Conceptual Design of an Internally Heat Integrated Propylene-Propane Splitter[J]. Energ.2006,31,3083-3089.
    [52]Kaeser, M.; Pritchard, C. L. Heat Transfer at the Surface of Sieve Trays[J]. Chem. Eng. Res. Des.2005,83,1038-1046.
    [53]Huang, K.; Liu, W.; Ma, J.; Wang, S. Externally Heat-Integrated Double Distillation Columns (EHIDDiC):Basic Concept and General Characteristic[J]. Ind. Eng. Chem. Res.2009,49, 1333-1342.
    [54]Olujic, Z.; Sun, L.; Gadalla, M.; Rijke, A. De.; Jansens, P. J. Enhancing Thermodynamic Efficiency of Energy Intensive Distillation Columns via Internal Heat Integration[J]. Chem. Biochem. Eng.2008,22,383-391.
    [55]Huang, K.; Wang, Y.; Zhang, X.; Chen, H.; Wu, G.; Wang, S. Apparatus of an External Heat-Integrated Double Distillation Column and its Control Technology[P]. Chinese Patent Application:200910084908.4,2009.
    [56]Kaymak, D. B.; Luyben, W. L. Quantitative Comparison of Reactive Distillation with Conventional Multiunit Reactor/Column/Recycle Systems for Different Chemical Equilibrium Constants[J]. Ind. Eng. Chem. Res.2004,43,2943-2953.
    [57]Luyben, W. L. Distillation Design and Control Using Aspen Simulation. John Wiley & Sons Inc:New Jersey, U.S.A.2006.
    [58]王松汉,何细藕主编.乙烯工艺与技术[B].中国石化出版社,2000,385-469.
    [59]郭天民等编著.多元-液平衡和精馏[B].石油工业出版社,2002,167-196.
    [60]王芸,黄克谨,陈海胜.外部热耦合复合精馏塔模型化研究[A].中国石油与化工自动化协会第八届技术年会论文集.2009,333-340.
    [61]Olujic, Z., Sun L., Rijke, A.de., Jansens, P.J.,2006. Conceptual Design of an Internally Heat-Integrated Propylene-Propane Splitter[J]. Energy.31,3083-3096.
    [62]Gadalla, M.; Olujic, Z.; Rijke, A. De.; Jansens, P. J. Pinch Analysis-Based Approach to Conceptual Design of Internally Heat-Integrated Distillation Columns[J]. Chem. Eng. Res. Des.2005,31,987-994.
    [63]Pohlmeier, J.; Rux, A. Interactive Plant and Control Design of a Double-Effect Distillation Column[J]. Comput. Chem. Eng.1996,20,395-403.
    [64]Han, M.; Park, S. Multivariable Control of Double-Effect Distillation Configurations[J]. J. Proc. Cont.1996,6,247-253.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700