简化设计对理想热耦合精馏塔(HIDiC)性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以内部热耦合技术为基础的理想热耦合精馏塔(ideal heat-integrated distillation column, HIDiC)作为精馏塔的一个前沿发展,近年来高效率低能耗的特性备受研究学者的青睐。尽管理想HIDiC的概念上世纪就被提出,但对其的研究都停留在理论阶段没有实际应用到化工过程。究其原因是在精馏塔内部设计和应用热耦合技术时,管壳内部狭小的空间造成了障碍。因此,对于更易设计与应用的HIDiC简化结构的研究有其必要性。
     从实际的观点考虑,用三个外部换热器近似代替HIDiC精馏段和提馏段之间的耦合部分在理论上是可行的。为此本文提出了理想HIDiC(简称S-0)的三种简化设计。一种是精馏段和提馏段的顶部,中间和底部分别设置换热器的设计(简称S-1);一种是顶部和中间换热器都设置在精馏段顶部塔板,提馏段顶部蒸汽经压缩与提馏段底部换热构成底部换热器的设计(简称S-2);另一种是顶部、中间和底部换热器都设置在精馏段顶部塔板的设计(S-3)。
     对理想HIDiC以及三种简化设计分别建立相对应的稳态数学模型和动态数学模型,进行综合与设计,并以乙烯乙烷二元理想物系分离为例,从固定传热面积和精馏段顶部压力两个方面对三种简化设计进行模拟仿真,研究简化设计对理想HIDiC性能的影响。结果表明S-1的静态性质不如S-0,但动态特性得到了改善。S-2和S-3设计可以减小操作费用和操作费用,但相比于S-1的动态可控性变差。尽管通过增加换热器的面积能够减少操作费用,但简化设计加强了顶部回路和底部回路的交互性,恶化了系统的动态特性和可控性。为了得到更有效的HIDiC的简化设计,应该合理考虑过程综合与设计和系统动态特性与可控性的均衡。
As one of most advanced schemes for distillation columns, ideal heat-integrated distillation column (Ideal HIDiC), which is characterized by internal heat integration between rectifying section and stripping section, features highly thermodynamic efficiency and great potentials of energy saving. Although its invention is dated back to 1990s, it still remains at the stage of theoretical studies and is not yet put into applications in the chemical and petrochemical process industries. The reason can be partially attributed to the extreme difficulties and great complexities encountered in the design and implementation of this kind of internal heat integration into a conventional distillation column, due to the quite limited space within the column shell. Therefore, it is necessary to study the philosophy for the synthesis and design of the ideal HIDiC.
     According to the viewpoint of structural and functional equivalence, it is topologically feasible to approximate internal heat integration between the rectifying section and the stripping section with three heat exchangers. In this thesis, three process simplifications are derived and studied for an ideal heat-integrated distillation column (S-0). These include one with the heat exchangers located in the tops, middles, and bottoms of the heat-integrated sections respectively (S-1), one with the vapor flows from the top of the rectifying section and compressor as hot flows in the top, intermediate, and bottom heat exchangers respectively (S-2), and one with the vapor flow from the top of the rectifying section as hot flows in the top, intermediate, and bottom heat exchangers respectively (S-3).
     With the established static and dynamic models of the ideal HIDiC and its simplifications, the impacts of process simplifications on the static and dynamic behaviors are examined based on the separation of an ethylene/ethane binary mixture. It is found that the S-1 is inferior to the S-0 in static performance but with comparable dynamic behaviors. The S-2 and S-3 show smaller capital investment and operating cost than the S-1 but with a sharp degradation in process controllability. Although the augment of total heat transfer areas of the three internal heat exchangers could lead to a reduction in operating cost, almost no favorable effect is identified on process operation. In order to derive a feasible simplification of the ideal HIDiC, one has therefore to exercise a careful trade-off between process synthesis and design and process dynamics and controllability.
引文
[1]边习棉,朱银惠,李辉.精馏过程的节能途径[J].广东化工.,2007,11(34):88-91.
    [2]岳金彩,闫飞,邹亮,杨霞.精馏过程节能技术[J].节能技术.,2008.1(26):64-67.
    [3]王建忠,马文婵,王鹏辉.精馏系统的节能措施[J].石油和化工节能.,2007.2:6-9.
    [4]冯霄,李勤凌.化工节能原理及技术[M].北京;化学工业出版社.1998.19-27.
    [5]Brousse E, Claudel B,Jallut C. Modeling and opeimization of the steady state operation for a vapor recompression distillation column[J]. Chem. Eng. Sci.,1978,40(11):2073-2078.
    [6]Pemberton R C, Mash C J. Thermodynamic properties of aqueous non-electrolyte mixtures-Ⅱ Vapour pressure and excess gibbs energies for water+ethanol at 303.15 to 363.15 K determined by an accurate static method [J]. J. Chem. Thermodynamics,1978,10:867-888.
    [7]Canales M F, Fernando E M. Operation and experimental results on a vapor recompression pilot plant distillation column [J]. Ind. Eng. Chem. Res.,1992,31(11):2547-2555.
    [8]Salim M A, Sadasivam M, Balakrishnan A R. Transient analysis of heat pump assisted distillation systems-2 column and system dynamics [J]. International J. of Energy Res.,1991,15:137-148.
    [9]Rathore R N S, Wormer K A V, Powers G J. Synthesis strategies for multicomponent separation systems with energy integration [J]. AIChE J.,1974,20(3):491-497.
    [10]Yee T F, Grossmann I E, Kravanja Z. Simultaneous optimization models for heat integration-Ⅲ Process and heat exchanger network optimization [J]. Comput. Chem. Engng,1990,14(11): 1185-1200.
    [11]Linnhoff B, Flower J R. Synthesis of heat Exchanger networks [J]. AIChE J.,1978,34(4):633-654.
    [12]Linnhoff B, Mason D R, Wardle I. Understanding heat exchanger networks [J]. Comput. Chem. Eng.,1979,3:295-302.
    [13]Morari M, Faith D C. The synthesis of distillation Trains with Heat Integration [J]. AIChE J.,1980, 26(6):916-928.
    [14]Linnhoff B, Dunford H, Smith R. Heat integration of distillation column into overall proesses[J]. Chem. Eng. Sci.,1983a,38(8):1175-1188.
    [15]Linnhoff B, Hindmarsh E. The pinch design method for heat exchanger networks[J].,1983b,38(5): 745-763.
    [16]Homsak M, Glavic P. Pressure exchangers in pinch tecnology [J]. Comp. Chem. Eng.,1996,20(6/7): 711-715.
    [17]Krajnc M, Glavic P. The influence of different temperature contributions on heat integrated process structure [J]. Trans IChemE,1995,73(Part A):880-888.
    [18]Fidkowski Z, Krolikowski L. Minimum energy requirements of thermally coupled distillation systems [J]. AIChE J.,1987,33(4):643-653.
    [19]Fidkowski Z, Krolikowski L. Energy requirements of nonconventional distillation systems [J]. AIChE J.,1990,36(8):1275-1278.
    [20]李凤华,樊希山,姚平经.热偶精馏塔在化工节能改造中的可行性[J].石油化工.,1995,24(11):783-796.
    [21]Mah R S H, Nicholes J J, Wodnik R B. Distillation with secondary reflux and vaporization:a comparative evaluation [J]. AIChE J.,1977,23(5):651-658.
    [22]Takamatsu T, Nakaiwa M, Huang K, Akiya T, Noda T, Nakanishi T, Aso K. Simulation oriented development of a new heat-integrated distillation column and its characteristics for energy saving[J]. Computers & Chemical Engineering.,1997,21 (13):243-247.
    [23]Nakaiwa M, Huang K, Endo A, Ohmori T, Akiya T, Takamatsu T. Internally heat-integrated distillation columns:a review[J]. Chem. Eng. Res. Des.,2003,81 (1):162-177.
    [24]Olujic Z, Fakhri F, Rijke A D, Graauw J D, Jansens P J. Internal heat integration-the key to an energy-conserving distillation column [J]. Chem. Tech. Biotech.,2003,78 (2):241-248.
    [25]Schmal P J, Vanderkooi H J, Derijke A, Olujic Z, Jansens P J. Internal versus external heat integration:operational and economic analysis[J]. Chem. Eng. Res. Des.,2006,84 (5):374-380.
    [26]Wang Y, Huang K, Wang S, A Simplified scheme of externally heat-integrated double distillation columns (EHIDDiC) with Three External Heat Exchangers[J]. Ind. Eng. Chem. Res.,2010,49(7): 3349-3364.
    [27]Huang K, Liu W, Ma J, Wang S. Externally heat-Integrated double distillation column (EHIDiC)basic concept and general characteristics [J]. Ind. Eng. Chem. Res.,2010,49 (3):1333-1350.
    [28]Naito K, Nakaiwa M, Huang K, Endo A, Aso K, Nakanishi T, Nakamura T, Noda H, Takamatsu T. Operation of a bench-scale ideal heat-integrated distillation column (HIDiC):an experimental study[J]. Comp. Chem. Eng.,2000,24(2):495-499.
    [29]Huang K, Iwakabe K, Nakaiwa M, Matsuda K, Horiuchi K, Nakanishi T. Considering heat integration to improve separation performance:innovative approaches gain efficiency for distillation operations[J]. Hydrocarb. Proc.,2008,87():101-108.
    [30]Gadalla M, Jimenez L, Olujic Z, Jansens P J, A thermo-hydraulic approach to conceptual design of an internally heat-integrated distillation column (i-HIDiC) [J]. Comp. Chem. Eng.,2007,31(10): 1346-1354.
    [31]黄克谨,钱积新.理想热耦合精馏塔及其稳态特性[J].石油炼制与化工.1997,28(11):55-59.
    [32]Nakaiwa M, Huang K, Naito K, Endo A, Ohmori T, Akiya T, Nakane T, Takamatsu T. Parameter analysis and optimization of ideal heat-integrated distillation columns[J], Comp. Chem. Eng.,2001, 25(4):737-744.
    [33]Huang K, Shan L, Zhu Q, Qian J. A totally heat-integrated distillation column (THIDiC) - the effect of feed pre-heating by distillate[J]. Appl. Therm. Eng.,2008.28(8):856-864.
    [34]Olujic Z, Sun L, Rijke A D, Jansens P J. Conceptual design of an internally heat integrated propylene-propane splitter. Energ[J].,2006,31:3083-3096.
    [35]L. Sun, Z. Olujic, Study on configurations for a heat-integrated distillation column[J], Chin. J. Chem. Eng.,2006,34:4-8.
    [36]Huang K, Nakaiwa M, Owa M, Akiya T, Aso K, Takamatsu T. Determining appropriate configuration of ideal heat-integrated distillation columns (HIDiC) [J]. J. Chem. Eng. Jpn.,1997, 30(3):575-579.
    [37]Huang K, Nakaiwa M, Akiya T, Owa M, Aso K, Takamatsu T. Dynamics of ideal heat-integrated distillation columns[J]. J. Chem. Eng. Jpn.,1996,29:656-661.
    [38]Nakaiwa M, Huang K, Owa M, Akiya T, Nakane T. Operating an ideal heat-integrated distillation column with different control algorithms [J]. Comp Chem. Eng.,1998,22:S389-S393.
    [39]张盈啸,邵惠鹤.高纯度内部热耦合精馏塔的非线性过程模型优化控制方案[J].华东理工大学学报.,2006,32(7):856-859.
    [40]Zhu Y, Liu X. Dynamics and control of high purity heat-integrated distillation columns[J]. Ind. Eng. Chem. Res.,2005,44:8806-8814.
    [41]Liu X, Ma L, Qian J. Thermodynamic analysis, simulation and optimization on energy saving of ideal internal thermally coupled distillation columns[J]. Chinese J. of Chem. Eng.,2000,8(1):57-63.
    [42]Zhu Y, Liu X, Qian J. Control schemes of internal thermally coupled distillation column for non-ideal mixtures [A]. Proceedings of the 5th world congress on intelligent control and automation [C]. Hangzhou, China:IEEE,2004,3445-3449.
    [43]Liu X. Modeling, Control and optimization of ideal internal thermally coupled distillation columns[J]. Chem. Eng. Technol.,2000,23(3):235-241.
    [44]Huang K, Wang S, Iwakabe K, Shan L, Zhu Q. Temperature control of an ideal heat-integrated distillation column (HIDiC) [J]. Chem. Eng. Sci.,2007,63:6486-6491.
    [45]Huang K, Luo Xuan. Boosting the performance of temperature inferential control in distillation columns [J]. Hydrocarbon Processing,2009, accepted.
    [46]Huang K, Chen H, Wu G, Wang Y, Zhang X, Wang S. Apparatus of an internal heat-integrated distillation column and its control technology[P]. Chinese Patent,200910087709.9.
    [47]Chen H, Huang K, Wang S, A novel simplified configuration for an ideal heat-integrated distillation column (ideal HIDiC) [J]. Sep. Pur. Tech. (under second review,2010).
    [48]潘立登,潘仰东.系统辨识与建模[M].北京:化学工业出版社,2004,1-6.
    [49]刘兴高.精馏过程的建模、优化与控制[M].北京:科学出版社,2007,40-41.
    [50]刘兴高,钱积新.内部热耦合精馏塔的初步设计(Ⅰ):模型化与操作分析[J].化工学报,2000,51(3):421-424.
    [51]王骥成,祝和云.化工过程控制工程[M].北京:化学工业出版社,2003,303-306.
    [52]郭天民.多元—液平衡与精馏[M].北京:石油工业出版社,2002,227-229.
    [53]王松汉,何细藕.乙烯工艺与技术[M].北京:中国石化出版社,2000,551-555.
    [54]Douglas J, Conceptual design of chemical processes,1st ed., McGraw-Hill, New York, USA,1988.
    [55]刘兴高, 徐用懋.理想物系内部热耦合精馏塔操作费用的估计与优化.控制理论与应用[J].,2001,18:136-140.
    [56]Kaymak D B, Luyben W, Quantitative comparison of reactive distillation with conventional multiunit reactor/column/recycle systems for different chemical equilibrium constants [J], Industrial & Engineering Chemistry Research,2004,43(10):2943-2507.
    [57]Luyben W. Distillation design and control using aspen simulation[M], John Wiley & Sons Inc., New Jersey, USA,2006.
    [58]Suphanit B. Design of internally heat-integrated distillation column(HIDiC):uniform heat transfer area versus uniform heat distribution. Energy,2010,35:1505-1514.
    [59]黄克谨,钱积新.精馏塔动态数学模型—能量平衡方程对数学模型的影响[J].炼油设计,1995,25(3):43-48.
    [60]罗旋.理想内部热耦合精馏塔双温控制系统的综合与分析[D].北京:北京化工大学信息科学与技术学院,2009.
    [61]朱方红.强化内部热耦合—高纯度乙二醇反应精馏塔的综合、设计与控制[D].北京:北京化工大学信息科学与技术学院,2009.
    [62]Ho T, Huang C, Lin M, Lee L, Dynamic simulation for internally heat-integrated distillation columns (HIDiC) for propylene-propane system[J], Comp. Chem. Eng.2009,33:1187-1201.
    [63]Huang K, Qian J, Assessment of control configuration for a general heat-integrated distillation column[J], Chin. J. Chem. Eng.,2000,8:339-346.
    [64]Huang K, Matsuda K, Iwakabe K, Takamatsu T, Nakaiwa M, Choosing more controllable configuration for an internally heat-integrated distillation column[J], J. Chem. Eng. Jpn.,2006,39: 818-825.
    [65]Finco M, Luyben W, Control of distillation columns with low relative volatilities[J], Ind. Eng. Chem. Res.,1989,28:75-83..

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700