多孔介质热流固耦合的有限元分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多孔介质的流体流动问题广泛存在于许多工程问题中,如地面沉降、水库诱发地震、堤坝稳定性、煤层瓦斯渗流等,同样也广泛存在于石油工业中,如注采过程中的油藏渗流、井壁稳定、油井和套管的损坏、产层出砂、水力压裂、地层失稳等。
     在回顾多孔介质热流固耦合理论的基础上,分析了双向相互作用耦合计算方法、热流固耦合的两种有限元模型以及作用模式等内容,探讨了应用有限元分析软件ADINA进行多孔介质热流固耦合分析的建模过程与方法。以石油生产中的热力采油为例,应用有限元分析软件ADINA对多孔介质热流固耦合问题进行数值模拟。分析了在热力采油过程中由于注蒸汽以及流体流动等因素对储油层的影响。在利用ADINA进行三维有限元建模时,有结构模型和流体模型两种,在建立结构模型时,土体采用Parasolid的方法建立,中间地层采用多孔介质材料,其余两层采用各项同性线弹性材料,分别赋予砂岩、泥岩等几种岩石材料,荷载分别考虑重力荷载和外力荷载。在建立流体模型时,土体和流体同样也采用Parasolid的方法建立,与结构模型不同的是在中间地层四周和井口处有流体,荷载分别考虑流体压力荷载和温度荷载。
     通过对多孔介质的材料、流体压力、温度以及外力荷载等参数影响情况分析之后得出结论:外力荷载对多孔介质地层的影响是最大的,所以在进行石油开采选址时应尽量避开地质不稳定的区域;温度和多孔介质的渗透系数对流体的流量影响较大,可以通过调整温度和选择合适的开采区域来达到提高产量的目的,一味的提高流体压力的方法是不可取的。
Porous media fluid flow problems exist in many engineering problems, such as ground subsidence, reservoir-induced earthquakes, dam stability, coal seam gas seepage, etc. They are also widely distributed in the oil industry, such as the injection and production in the process of reservoir flow, wall stability, oil wells and casing damage, producing layers of sand, hydraulic fracturing, formation instability, etc.
     Two-way interaction coupling calculation method, the two kinds of finite element models of thermal fluid-structural interaction and other content are analysised on the basis of recalling the theory of porous media on thermal fluid-structural interaction. The modeling process and methods of porous media on thermal fluid-structural interaction are discussed using finite element analysis software ADINA. The article uses finite element analysis software ADINA for porous media on thermal fluid-structural interaction to numerical simulation, and analyses the impact of the reservoir due to steam injection and fluid flow in the process of thermal oil. There exists structural model and fluid model, when we establish three-dimensional finite element model using ADINA. Soil is established by parasolid in structural model, intermediate formation uses porous, the remaining two use Isotropic linear elastic material that are sandstone, shale and other rock materials. The load should consider gravity load and external load. Soil and fluid models were also established by parasolid in fluid model. The difference between structural model and fluid model is fluid around the middle stratum and the well-head. The load should consider fluid pressure load and temperature load.
     Through analysis of porous material, fluid pressure, temperature and external load, it is concluded that, firstly, the influence of external load on the formation of porous media is the largest, therefore, the choosing of the oil exploration site should try to avoid areas of geological instability; secondly, temperature and permeability of porous has more influence on the flow of fluid, so we can achieve the purpose of increasing production through adjusting the temperature and selecting the appropriate exploitation of the region.
引文
[1]刘善利.饱和岩土热流固耦合模型研究[D].南京:河海大学,2007.
    [2]李波,李宁,糕瑞花.多孔介质的变形场-渗流场-温度场耦合有限元分析[J].岩土力学与工程学报,2001,20(4):468-471.
    [3] Guvanasen V, Chan T. A three-dimensional numerical model for thermo-hydro-mechanical deformation with hysteresis in a fractured rock mass[J]. Int.J.Rock. 2000, 37(2): 89-106.
    [4] Lewis R W, Sehrefler B A. The finite element method in the static and dynamic deformation and consolidation of porous media[M]. Chieheste: Wiley, 1998: 308-312.
    [5] Oda M. An equivalet conitnuum model for coupled stress and fluid flow analysis in jointed rock masses[J]. Water Resources Research. 1986, 22(13): 1854-1865.
    [6]王仲勋.热流固耦合在煤层渗流过程中的应用[D].淮南:安徽理工大学,2006.
    [7]刘晓旭.三场耦合的数学模型研究及有限元解法[D].成都:西南石油学院,2005.
    [8]刘伟.特大断面地下洞室开挖的热流固耦合有限元分析[D].天津:天津大学,2006.
    [9]王自明.油藏热流固耦合模型研究及应用初探[D].成都:西南石油学院,2002.
    [10]张钟鼎,王维斌.变形多孔介质中多相流问题的数值方法[J].安徽建筑工业学院学报(自然科学版),2001,9(1):30-34.
    [11]王元妹.多孔介质传热传质及热湿应力分析[D].南京:南京航空航天大学,2008.
    [12] Gigliotti M, Vautrin A. Assessment of approximate models to evaluate transient and cyclical hygrothermoelastic stress in composite plates[J]. International Journal of Solids and Structures. 2007, 9(1): 733–759.
    [13] Tounsi A, Bedia E A, Verchery G. Influence of anisotropy on the transient hygroscopic stresses in polymer matrix composites with cyclic environmental conditions[J]. Composite Structures. 2002, 11(13): 393–405.
    [14] Pavankiran V, Nakamura T, Raman P S. Transient hygrothermal stresses in fiber reinforced composites [M]. 2003(34): 719–730.
    [15] Benkhedda A, Tounsi G. Effect of temperature and humidity on transient hygrothermal stresses during moisture desorption in laminated composite plates[J]. Composite Structures. 2007,15(23): 1-7.
    [16]苏东辉.多层多孔结构内湿热耦合迁移特性研究[D].南京:南京航空航天大学,2003.
    [17]武红岭,王小凤,马寅生.多孔介质构造力驱油的固流耦合分析[J].石油勘探与开发,2006,33(1):76-80.
    [18]王自明.多孔介质流-固-热三场耦合数学模型及数值模拟[J].岩土力学及工程学报,2006,25(1):29-35.
    [19]朱庆霞,胡国林.多孔介质内部热质传递的等效耦合扩散模型的推导及其应用[J].陶瓷学报,2002,23(3):163-169.
    [20]吕立华,李明华,苏岳丽.稠油开采方法综述[J].内蒙古石油化工,2005,25(2):110-113.
    [21]侯志杰.稠油区热采注汽管网优化与注烟道工艺技术研究[D].大连:大连理工大学,2002.
    [22]于桂杰,刘艳玲.热力采油热能影响区域的确定[J].石油天然学报,2007,29(3):154-157.
    [23]邱德友,刘春枚.特低渗油藏驱后热采研究[J].石油天然学报,2005,27(5):805-808.
    [24] Sereir N. Damage of hybrid composites under long term hygrothermal loading and stacking sequence[J]. Theoretical and Applied Fracture Mechanics. 2007,4(7): 145–163.
    [25] Chang R C, Chao C K. General solution to the hygrothermoelastic interface problem with discontinuity between dissimilar anisotropic media[J]. Appl Phys. 1993, 74(3): 7085-7093.
    [26] Changa W G, Weng C I. An analytical solution to coupled heat and moisture diffusion transfer in porous materials.International[J]. Journal of Heat and Mass Transfer. 2000, 43(12): 3621-3632.
    [27] Gerson H, Santos D, Nathan M. Simultaneous heat and moisture transfer in soils combined with building simulation[J]. Energy and Buildings. 2006, 38(1): 303–314.
    [28] Wu B, Yang W. A three-dimensional numerical simulation of transient heat and mass transfer inside a single rice kernel during the drying process[J]. Biosystems Engineering. 2004, 87(2): 191–200.
    [29] Basirat H, Tabrizi1 F. Mathematical modelling of drying based on a surface evaporation source term for coupled energy and mass transfer[J]. International journal of energy research. 2005, 98(5): 1305-1308.
    [30] Younsi R, Kocaefe D, Poncsak S. Computational modelling of heat and mass transfer during the high-temperature heat treatment of wood[J]. Applied Thermal Engineering. 2007, 27(2): 1424–1431.
    [31] Younsi R, Kocaefe D, Kocaefe Y. Three-dimensional simulation of heat and moisture transferin wood[J]. Applied Thermal Engineering. 2006, 26(2): 1274–1285.
    [32]高树生,熊伟,李建伟.多孔介质中蒸汽泡沫渗流影响因素分析[J].特种油藏,2004,11(3):82-86.
    [33]李淑霞,陈明月,郝永卯.多孔介质中天然水合物降压开采影响因素实验研究[J].中国石油大学学报,2007,31(4):56-60.
    [34]代平.低渗透应力敏感油藏实验研究及数值模拟研究[D].成都:西南石油大学,2006.
    [35]卢涛,姜培学.多孔介质融化相变自然对流数值模拟[J].工程热物理学报,2005,26(2):168-172.
    [36]杨彩红.水对深部工程软岩蠕变规律的影响[D].阜新:辽宁工程技术大学,2005.
    [37]石颖.油井井下温度场的数值模拟[D].大庆:大庆石油学院,2004.
    [38]杜平安.有限元法原理、建模及应用[M].北京:国防工业出版社,2004.
    [39]任冬梅.考虑井眼周围应力变化的油藏-井筒耦合的一体化模拟研究[D].成都:西南石油学院,2004.
    [40]竹内洋一郎.热应力[M].北京:科学出版社,1977:265-289.
    [41] ADINA培训手册[M]. ADINA北京:北京代表处,2005:263-298.
    [42]孔祥谦.热应力有限单元法分析[M].上海:上海交通大学出版社,1999:132-156.
    [43]李维特,黄保海,毕仲波.热应力理论分析及应用[M].北京:中国电力出版社,2004:385-395.
    [44] Yu C Y , Shao S C, Haw L L. Hybrid numerical method applied to transient hygrothermal analysis in an annular cylinder[J]. International Communications in Heat and Mass Transfer. 2006, 33(1): 102–111.
    [45] Jeny L, Shun C. Solutions of Luikov equations of heat and mass transfer in capillary-porous bodies[J]. Heat Mass Transfer. 1991 (34): 747-1754.
    [46] Kulasiri D, Woodhead I. On modelling the drying of porous materials:analytical solutions to coupled partial differential equations governing heat and mass transfer[J]. Mathematical Problems in Engineering. 2005, 3(11): 275–291.
    [47] Parhi P K, Bhattacharyya S K, Sinha P K. Hygrothermal effects on the dynamic behavior of multiple delaminated composite plates and shells[J]. Journal of Sound and Vibration. 2001, 248(2): 95-214.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700