热耦合精馏的适应性及其热力学效率
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
精馏过程广泛地用于石油、化工和天然气加工工业中,是当代工业应用最广的分离技术,同时也是能量密集型单元操作之一。在当今能源紧缺的情况下,对精馏过程的节能研究,就显得十分重要。
     热偶精馏是用主塔和副塔组成的复杂塔代替常规精馏塔序,由于其可逆混合特性,它可以降低过程中的不可逆有效能损失,可提高热力学效率,在热力学上是较理想的系统结构。即可节省设备投资,又可节省能耗,具有极为诱人的发展前景,因此吸引了许多来自学术界和工业界的目光。
     对于三元以上混合物系的多组分分离,热耦合精馏塔较传统分离序列有较显著的节能优势。本文通过模拟热耦合精馏塔,获得了不同进料条件对中间组分在预分馏塔塔顶产品流股中的分配比参数最优值的影响规律,进而为热耦合精馏塔的设计和操作提供了依据。文章采用Aspen Plus软件中RadFrac模型,在三塔模型的简洁法计算提供的初值基础上,对三组元混合物的热耦合分离作了严格的模拟研究。
     本文以三元混合物系分离过程为例,对两种常规分离序列与三种热耦合精馏序列进行了对比研究,考察了不同分离指数和不同进料组成条件下常规分离序列和热耦合精馏过程的热能消耗及其热力学效率。
     结果表明,热耦合精馏序列较常规精馏序列节能10%—50%,且具有更高的热力学效率,完全热耦合精馏过程具有最高的热力学效率。而且当分离指数接近1和分离指数小于1时,热耦合分离序列精馏过序列的节能效果更为显著,三元混合物的中间组分含量越高,热耦合精馏的节能效果越显著。
Distillation, which is presently being applied to the industrial level in crude oil refine, chemical engineering and natural gas processing, is one of the most widely used separation technology in present industry and almost the largest energy consumption unit operation. Therefore, it is very important to have the investigation of the energy saving in the distillation process under the circumstance of energy source deficiency.
     Thermally coupled distillation column consists of two towers, and it is a kind of complex columns. It has much less irreversible energy loss and higher Thermodynamic Efficiency in distillation process because of the reversible mixed property. It both conserves energy and saves the equipment investment, but also has other merits, thus it has the extremely attractive prospects for development. Therefore, it attracts many eyes from academic and industry circles.
     Thermally coupled distillation columns can reduce energy consumption and capital investment comparing to conventional distillation consequences for separation of ternary and multi components mixtures with the application of Aspen Plus software, rigorous simulations were firstly performed to the thermally coupled distillation columns for ternary hydrocarbon mixture separation, focusing on how middle component fractional recovery influences overall expense under the conditions of different feed compositions and diverse relative volatilities.
     Thermodynamic efficiency calculations and energy requirements have been performed for the separation of ternary mixtures of hydrocarbons in both 2 kinds of conventional and 3 kinds of thermally coupled distillation sequences.
     When ternary mixtures were considered, energy savings achieved in the thermally coupled distillation sequences were between 10 and 50% in comparison to the two conventional distillation sequences. Regarding thermodynamic efficiency, thermally coupled distillation sequences presented the highest values in almost all of the cases considered. When the Ease of Separation Index is around 1 or less than 1, When the Ease of Separation Index is around 1 or less than 1, thermally coupled distillation columns are better. And when the middle component composition is higher, thermally coupled distillation columns is better.
引文
[1]Bravo J L,Fair J R,Humphrey J L,et al,Fluid mixture separation technologies for cost reduction and process improvement[M]1 NJ:Noyes Publications,Park Ridge,19861
    [2]Humphrey J L,Seibert A F1Separation technologies:an op2 portunity for energy savings Chem Eng Prog,1992,88(3):32.411
    [3]《现代塔器技术》,中国石化出版社,2003
    [4]王梦华,精馏过程节能技术探讨,齐鲁石油化工,2003,31(4),324-326
    [5]边习棉,朱银惠,李辉,精馏过程的节能途径,广东化工,2007,34(11)
    [6]秦正龙,孟庆华.精馏过程的节能技术[J].节能,1997,(4):16.19.
    [7]曹正芳,浦伟光1 采用中间再沸器的精馏塔热力学分析[J]1 金山油化纤,2001,4:46.481
    [8]冯霄,李勤凌.化工节能原理与技术[M].北京:化学工业出版社.1998.34.36.
    [9]BrugrnaAJ.,Dutch Pate Nt NL 41,850,1937
    [10]CahnR P.E.& MiceliAG.Di.,U.S.Patent No.3 058 893,1962
    [11]PetlyukF.B.,PlatonovV.M.&AvetvanV.S.,Khim.Prom.,1966,42,No.11.865
    [12]Fidkowski Z.T.& Krolikowski L.,Thermally Coupled System of of istillation Columns:Optimization Procedure.AIChE J.,1986,32(4),537.546
    [13]Fidkowski Z.T.& Krolikowski L.,Minimum Energy Requirements of Thermally Coupled Distillation Systems.AIChEJ.,1987,33(4),643.653
    [14]钱宏义.分隔塔装置的最小能耗分析及优化设计,硕士论文,2004
    [15]Petlyuk F.B.,Platonov V.M.&Slavinskii D.M.,Thermodynamically OptirnalMethod for Separating Multi Component Mixtures,Int.Chem.Eng.,1965,5(3),555-561
    [16]Kaibel G.,Distillation Columns with Vertical Partitions.Chem.Eng.Technol.,1987,10,92.98
    [17]BASF AG.Innovation award 1995:Split wall for the environment.PressRelease available on the World Wide Web at URL http://www.Basf/htem/e/entwidK/innol/trenn 95.htm,1997
    [18]M.W.Kellogg Limited Press release,1998,September,11
    [19]Parkinson,G.Chementator,Chem.Eng.,1998,July,21
    [20]Hairston,D.,The divide in distillation.Chem.Eng.,1999,4,32
    [21]Lestak F.&Smith R.The control of a dividing wall column.Chem Eng ResDes,1993,71,307
    [22]Wolff E.A.,&Skogestad S.,Operation of integrated three.product(Petlyuk)distillation columns.ind.Eng.Chem.Res.,1995,34,2094-2103
    [23]Yong Hart Kim,Rigorous Design of Extended Fully Thermally Coupled Distillation Columns,Chem.EngJ.,2002,89,89.99
    [24]Yong,Han Kim,Structural design and operation of a fully thermally coupled distillation column.Chem.EngJ.,2002,85,289.301
    [25] Agrawal R.&Fidkowski Z.T., More operable arrangements of fully thermally coupled distillation columns., AIChE Journal, 1998, 44, 2565.2568
    [26] AgrawalR.&FidkowskiZT., New Thermally Coupled Schemes for TernaryDistillation., AIChE Journal, 1999, 45(3), 485.496
    [27] Agrawal R., More operable fully thermally coupled distillation column configurations for multicomponent distillation, Trans Ichem E, 1999, 77(A), 543
    [28] Caballero J.A.&Grossmann I.E., Thermodynamically Equivalent Configurations for Thermally Coupled Distillation, AIChE J., 2003, 49(11), 2864.2884
    [29] Triantafyllou C.&Smith R., The Design and Optimization of Fully Thermally Coupled Distillation Columns, Trans.Inst.Chem. 1992, 70, 118.132
    
    [30] Stupin W.J., PhD Thesis, University of Southern California, USA, 1970
    [31] Cerda J.&Westerberg W., 72nd AIChE Annual Meeting, San Francisco, 1979
    [32] Carlberg N.A.&Westerberg, A.W., Temperature heat diagrams for complex columns.2:Underwood's method for side strippers and enrichers, Ind.Eng.Chem. Res., 1989, 28, 1379.1386
    [33] Carlberg N.A.&Westerberg A.W. , Temperature.Heat Diagrams for Complex Columns.3:Underwood's Method for the Petlyuk Configuration, Ind.Eng.Chem. Res., 1989, 28, 1386.1397
    
    [34] Stupin W.J.&Lockhart F.J.Chem.Eng.Progr.1972, 68 (10) : 71
    [35] Halvorsen I.J.&Skogestad S., Minimum Energy consumption in multicomponent Distillation, a:Vmin Diagram for a two.product column.2003, 42, 596.604
    [36] Halvorsen LJ.&Skogestad S., Minimum Energy consumption in multicomponent Distillation b:Three.product Peltyuk columns.2003, 42, 604.618
    [37] Halvorsen I.J.&Skogestad S.Minimum Energy consumption in multicomponent Distillation, c:More than three Products and Generalized Petlyuk arrangements.2003, 42, 618.634
    [38] Annakou O.&Mizsey P. , Rigorous Comparative Study of Energy.Integrated Distillation Schemes.Ind.Eng.Chem.Res., 1996, 35, 1877.1885
    [39] Dunnedier G.&Pentelides C.C.Optimal design of thermally coupled distillation columns , Ind.Eng.Chem.Res., 1999, 38, 162.176
    [40] 杨友麒,热耦精馏塔操作特性的模拟研究,化工学报,1990,4,491.497
    
    [41] Mansour Emtir, Endre Rev&Zsolt Fonyo, Rigorous simulation of energy integrated and thermally coupled distillation schemes for ternary mixture, Applied Thermal Engineering, 2001, 21, 1299.1317
    
    [42] Fidkowski Z.T.&Agrawal R., Multicomponent Thermally Coupled Systems of Distillation Columns at Minimum Reflux.AIChE J., 2001, 47 (12) , 2713.2724
    
    [43] Amminudia K.A.&Smith R., Design and optimization of fully thermally coupled distillation columns.Part 1:Preliminary design and optimization methodology .Trans IchemE, 2001, 79, 701.715
    [44]Amminudia K.A.&Smith R.,Design and optimization of fully thermally coupled distillation columns.Part 2:Application of Dividing wall columns in retrofit.Trans IchemE,2001,79,715.726
    [45]Young Han Kim.,Rigorous design of fully thermally coupled distillation column.Chem.Eng.J.Japan,2001,34,236.243
    [46]Young Han Kim,Structural of Extended Fully Thermally Coupled Distillation Columns,Ind.Eng.Chem.Res.,2001,40,2460.2466
    [47]Muralikrishna K.,Madhavan K.P.&Shan S.S.Developrnent of dividing wall distillation column design space for a specified separation.Trans IchemE.2002,80(3):155-166
    [48]Young Han Kim,Structural Design and Operation of a Fully Thermally Coupled Distillation Column,Chem.EngJ.,2002,85,289.301
    [49]Young Han Kim,An Alternative Structure of a Fully Thermally Coupled Distillation Column for Improved Operability,Chem.Eng.J.,2003,36(12),1503.1509
    [50]许锡恩等,三相热偶和精馏过程的模拟,化工学报,1989,1:28.37
    [51]51.曲平等,丁二烯分离装置热耦精馏的操作特性,高校化学工程学报,1996,10(2):145.151
    [52]杨德明,烷烃分离热耦精馏的模拟研究,石油化工高等学校学报,2002,15(3),25.27,35
    [53]Agrawal R.,Synthesis of distillation column configurations for a mulitcomponent separation.Ind.Eng.Chem.Res.,1996,35,1059.1071
    [54]Sargent R.W.H.&Gaminibandara K.,Introduction:Approaches to chemical process synthesis.in Optimization in Action,Dixon,L.C.,Ed,.Academic Press:New York,1976
    [55]Christiansen A.,Skogestad S.&Lien K.Complex distillation arrangements:extending the Petlyuk ideas.Comput.Chem.Engng.,1997,21,S237.242
    [56]Agrawal R.,A method to draw fully thermally coupled distillation column configurations for multicomponentdistillation.TransIChemE,2000,78,454
    [57]Agrawal R.,Synthesis of mulitcomponent distillation column configurations,AIChE J,2003,49,379.401
    [58]荣本光,郭天明,分离五组分含复杂精馏塔流程的研究,化工学报.1996.47(4):410.420
    [59]荣本光,利梅,胡仰栋等,多组分复杂精馏流程的简捷设计法,化学工程,1998,26(1):18.24
    [60]Shah P.B.&Kokossis A.C.,Knowledge based models for the analysis of complex separation.processes,Comput.Chem.Engng.,2001,25,967.878
    [61]Shah P.B.&Kokossis A.C.,New synthesis Framework for the optimization of complex distillation systems,AIChEJ,2002,48,527.550
    [62]Hernandez S.&Jimenez A.,Design of Optimal Thermally.Coupled Distillation System Using a Dynamic Model,Chem.Eng.Res.Des.,1996,74(A3),357.362
    [63]Davis L.,Eds Genetic Algorithms and Simulated Annealing,Morgan Kauffinann,198
    [64]Biegler L.T.,Chemical process simulation,Chem.Eng.Prog.,1989,85(10),50.61
    [65] Perkins J.D. & Sargent R.W.H., SPEEDUP: A computer program for steady.state and dynamic simulation of chemical process, Selected Topics onComputer.aided process design and analysis, R. S. H. Mah and G. V. Reklaitis, Eds., AIChE Symp. Sen, 1982, Vol.78, 1
    [66] Panteledes C.C., SPEEDUP. Recent advances in process simulation, Paper at AIChE Aninual Conf.Miami, 1986
    [67] Westerberg A.W., Abbott K. & Allan B., Plant for ASCEND IV: Our next generation equational.based modeling environment, Paper presented at Aspen World'94, Boston, MA., 1994
    [68] Rosen E.M., A machine computation method for performing material balances, Chem. Eng. Prog., 1962, 58(10), 69.73
    [69] Mahalec V., Kauzik H. & Evans L.B., Simultaneous moduler algorithm for steady state floesheet simulation and design, 12th Eur. Sym. Computers in Chem.Eng., Montreux, Switzerland, 1979
    [70] Sood M.K. & Reklaitis G.V., Solution of material balances for flowsheets modeled with elementary modules, AIChE J., 1979, 25(2), 209.229
    [71] Metcalfe S.R. & Perkins J.D., Information flow in modular flowsheeting systems, Trans. I. Chem. Eng., 1978, 56, 210
    [72] Perkins J.D., Efficient solution of design problems using a sequential modular flowsheeting program, Comput. Chem. Engng., 1979, 3, 375.381

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700