精馏节能过程的wave非线性动态建模与非线性控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
精馏节能控制一直是国际节能控制研究的重点和热点。内部热耦合精馏塔节能潜力可达常规精馏塔的30%以上,具有极大的应有前景。由于内部热耦合精馏过程具有强耦合、强病态、强不对称性、强反向响应等复杂非线性动态特性,其控制设计一直是阻碍该高效节能技术商业化的瓶颈问题。目前常规控制方案如PID,内模控制等即使能够控稳热耦精馏节能过程,但控制质量不好,特别是在高纯时目前已报道的各种控制方案难以适用,究其原因可能在于近似线性模型、基于数据辨识的统计模型等不能有效描述热耦合精馏过程的复杂动态特性,导致基于传统模型的各种先控方案对于控制效果的改善也有限。因此本文首先从内部热耦合精馏过程的非线性动态建模工作做起,然后建立内部热耦合精馏塔和内部热耦合空分塔的非线性控制策略。
     论文主要工作与贡献如下:
     1.首次对内部热耦合精馏塔(ITCDIC)的Wave传播现象进行研究,推导出内部热耦合精馏塔的非恒摩尔流自然波速、激波波速、波形描述函数等。结合热耦合关系,建立内部热耦合精馏塔的完整Wave非线性动态模型。在Wave分析的基础上,首次分析研究内部热耦合精馏塔的干扰脉冲传播特性,并综合分析内部热耦合精馏塔的不对称动态特性、反向响应等独特动态特性。
     2.基于内部热耦合精馏塔Wave非线性动态模型以及Wave传播特性,建立了三种一般模型控制、两种广义一般模型控制策略。五种控制策略有效地克服了内部热耦合精馏塔各种传统控制方案体现出来的控制品质不高、鲁棒性不强等弊端。五种控制方案都结合了Wave模型,很好地解决了控制变量之间的耦合关联问题,实现了自然解耦。其中,基于振荡波速的改进广义一般模型控制方案在不牺牲塔底产品纯度的情况下,突破性地将塔顶纯度控制设定值提高到超高纯领域(99.999%)。
     3.首次研究了内部热耦合空分塔(ITCASC)的Wave传播现象,推导出了内部热耦合空分塔的非恒摩尔流自然波速、激波波速公式。并以液氮液氧的浓度波形为例,分析了内部热耦合空分塔的波形相干性、干扰脉冲传播等特征。同时,结合Wave理论,对内部热耦合空分塔的非线性动态特性进行了研究,首次发现了内部热耦合空分塔强烈的反向响应等动态特性。
     4.基于内部热耦合空分塔的开环响应特性研究,设计出了两种不同控制变量组合下的PI控制方案,并进一步设计出了有效的ITCASC一般模型控制方案和非线性模型预测控制方案。研究结果表明,一般模型控制方案因为模型失配问题,干扰控制效果反而较PI控制效果差;两种PI控制方案的对比证明采用侧提流量作为控制变量,虽然能减弱控制回路之间的耦合关系,但是对塔顶控制效果不是很好;而非线性模型预测控制方案有效地解决了模型失配的问题,并避免了控制解耦问题,在设定值控制、干扰控制方面都体现了不错的效果。
Energy saving technology has become a key point in the energy saving research area. Internal thermally coupled distillation has very high energy saving potential. Compared with conventional distillation columns it could save more than 30% energy. However, the complex nonlinear dynamic performance of internal thermally coupled distillation processes brings a great challenge to the control design. Traditional control strategies, like PID, internal model control and so on, could hardly control internal thermally coupled distillation processes, the control performance need more improvement. The strong asymmetric character, inverse response dynamic and ill condition performance make the efficiency of those ITCDiC control strategies reported in literature decreased seriously under high-purity control conditions, which is mainly because of the model mismatch of those models. As a result, many advanced control strategies could hardly improve the control performance. In the present work, Wave theory is exploited to low-order nonlinear modeling and nonlinear controller design of ITCDIC and ITCASC.
     The main work and contributions are summarized as follows:
     1. Pioneered in the Wave traveling disturbance pulse traveling analysis of ITCDIC, the development of natural wave velocity, shock wave velocity with varied molar flow rate and profile description function are carried out; a complete nonlinear wave dynamical model is then established; based on wave traveling analysis, the nonlinear dynamic performance like asymmetric and inverse response character are futher explored;
     2. Based on wave model of ITCDIC, three generic model control strategies, two improved general generic model control strategies are proposed, which well improve the model mismatch problem and robust performance, realize the multivariable decoupling function automatically. Specially, the proposed XGGMC control strategy realize the super high-purity control of ITCDIC with 99.999% product purity;
     3. The wave traveling phenomena and disturbance pulse traveling in ITCASC are explored, the natural wave velocity, shock wave velocity of ITCASC with varied molar flow rate are then developed, combined with which, the distinct nonlinear dynamic behavior like asymmetric and inverse response performance are explored for the first time;
     4. Based on the open-loop response analysis, PI control strategies, generic control strategy (GMC) and nonlinear model predictive control strategy (NMPC) of ITCASC are futher established. Detailed comparison research results show that NMPC present the best control performance, the control quality of generic model control deteriorate seriously in the regulatory control because of the model mismatch of the polynomial model. The two PI control strategies show that employing side extraction flow rate as a control variable could decrease the coupling relationship between the control loops efficiently, however the control quality of the Nitrogen concentration deteriorates seriously compared with the PI controller employing the pressure of rectifying section as a control variable.
引文
1. Aditya Kumar Prodromos Daoutidis, Nonlinear Model Reduction and Control of High-Purity Distillation Columns, Proceedings of the American Control Conference San Diego, California, 1999:2057-2061;
    2. Alejandro H.Gonzalez, Darci Odloak, A stable MPC with zone control, Jounal of Process Control, 2009,19(1): 110-122;
    3. Ashraf Alghazzawi, Barry Lennox, Model predictive control monitoring using multivariate statistics, Journal of Process Control, 2009, 19 (2): 314-327;
    4. Benallou, D. E. Seborg, D.A. Mellichamp, Dynamic Compartmental Models for Separation Processes, AIChE Journal, July 1986, Vol. 32, No. 7:1068-1078;
    5. Bian Shoujun, Michael A.Henson, Nonlinear State Estimation and Model predictive control of Nitrogen Purification Columns, Ind.Eng.Chem.Res. 2005,44:153-167;
    6. Bian Shoujun, Michael A. Henson, Measurement selection for on-line estimation of nonlinear wave models for high purity distillation columns, Chemical Engineering Science, 2006,61: 3210-3222;
    7. Chen H., F.Allgower, A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability, Automatica, 1998, 34(10): 1205-1217;
    8. Epple U., Model reduction for nonlinear systems with distributed parameters, IFAC Control of Distillation Columns and Chemical Reactors, Bournemouth. UK 1986: 279-284;
    9. Gilles E D., B. Retzbach, Reduced Models and Control of Distillation Columns with Sharp Temperature Profiles, IEEE Transactions on automatic control, 1983, AC-28(5): 628-630;
    10. Grüner S., A. Kienle , Equilibrium theory and nonlinear waves for reactive distillation columns and chromatographic reactors, Chemical Engineering Science, 1983,59:901-918;
    11. Gadalla M., L.jiménez, Z.Olujic, P.J.Jansens, A thermo-hydrolic approach to conceptual design of an internally hear-integrated distillation column(i-HIDiC), Computers and Chemical Engineering, 2007, 31: 1346-1354;
    12. Helfferich.F., G.Klein, Multicomponent chromatography-theory of interference, Marcel Dekker, New York, 1970;
    13. Huang Kejin, Lan Shan, Qunxiong Zhu, Jixin Qian, Design and control of an ideal heat-integrated distillation column (ideal HIDiC) system separating a close-boiling ternary mixture, Energy, 2007,32: 2148-2156;
    14. Huang Kejin, Lan Shan, Qunxiong Zhu, Jixin Qian, A totally heat-integrated distillation column (THIDiC)-the effect of feed pre-heating by distillate, Applied Thermal Engineering, 2008, 28: 856-864;
    15. Huang Rui, Victor M.Zavala, Lorenz T.Biegler, Advanced step nonlinear model predictive control for air separation units. Journal of Process Control, 2009,19: 678-685;
    16. Hankins,Nicholas P. Friedrich G Hellferich, On the concept and application of partial coherence in non-linear wave propagation, Chemical Engineering Science ,1999, 54:741-764;
    17. Iwakabe Koichi, Masaru Nakaiwa, Kejin Huang, Energy saving in multicomponent separation using an internally heat-integrated distillation column (HIDiC), Applied Thermal Engineering, 2006, 26: 1362-1368;
    18. Katebi M.R., M.A.Johnson, Predictive control design for large-scale systems, Automatica, 1997.33(3): 421-425;
    19. Khowinij Suabtragool, Michael A. Henson, Paul Belanger, Lawrence Megan, Dynamic compartmental modeling of nitrogen purification columns, Separation and Purification Technology, 2005.46: 95-109;
    20. Lalitha S.Balasubramhanya, Francis J.Doyle III , Nonlinear control of a high-purity distillation column using a traveling-wave model, AICHE Journal, 1997,43(3): 703-714;
    21. Lalitha S Balasubramhanya, Francis J Doyle HI, Low Order Modeling for Nonlinear process control, Proceedings of the American Control Conference Seattle. Washington. June 1995 :2683-2686;
    22. Le Feng, Jian Liang Wang, Eng Kee Poh, Improved robust model predictive control with structured uncertainty, Journal of Process Control, 2007, 17: 683-688;
    23. Luyben W.L., Control of Distillation Coulumns with Sharp Temperature Profiles, AICHE Journal, 1971,17(3): 713-717;
    24. Luyben W.L.. Profile position control of distillation columns with sharp temperature profiles, AICHE journal, 1972, 18(1):238-240;
    25. Liu Xinggao, Ma longhua, et al. Thermodynamic analysis simulation and Optimization on energy savings of ideal internal thermally coupled distillation columns, Chinese J. of Chem. Eng, 2000, 8(1): 57-63;
    26. Liu Xinggao, et al. Modeling Control and Optimization of Ideal Internal Thermally Coupled Distillation Columns, Chem. Eng. Technol., 2000,23(3): 235-241;
    27. Liu Xinggao, Mingguang Wu, Operation Cost Optimization of Heat Integrated Distillation Columns, Proceedings of the 6th World Congress on Intelligent Control and Automation, 2006, Dalian, China: 1866-1869;
    28. Long C.E., P.K.P.E., Nonlinear model predictive control using deterministic global optimization, Journal of Process Control, 2006. 16: 635-643;
    29. Mayuresh, V.Kothare, Venkataramanan Balakrishnan, Manfred Morari, Robust Constrained model predictive control using linear matrix inequalities, Automatica, 1996.32(10): 1361-1379;
    30. Mah R. S. H. , J. J. Nicholas Jr., R. B. Wodnik, Distillation with secondary reflux and vaporization: A comparative evaluation, AIChE Journal, 2004,.23: 651-658;
    31. Marquardt W, Nonlinear model reduction for binary distillation, IFAC Control of Distillation Columns and Chemical Reactors,Bournemouth.UK 1986: 123-128;
    32. Marquardt W., Michael Amrhein, Development of a linear distillation model from design data for process control, Computers chem. Engng, 1994, 18, Suppl: 349-S353;
    33. Mejdell Thor, Sigurd Skogestad, Estimation of Distillation Compositions from Multiple Temperature Measurements Using Partial-Least-Squares Regression, Ind. Eng. Chem. Res., 1991,30: 2543-2555;
    34. Mutha R.K., W.R.Cluett, A.Penlidis, Modifying the prediction equation for nonlinear model-based predictive control, Automatica, 1998.10: 1283-1287;
    35. Moshood J. Olanrewaju, Muhammad A. Al-Arfaj, Development and application of linear process model in estimation and control of reactive distillation, Computers and Chemical Engineering, 2005, 30: 147-157;
    36. Markowski Mariusz, Marian Trafczynski Krzysztof Urbaniec, Energy expenditure in the thermal separation of hydrocarbon mixtures using a sequence of heat-integrated distillation columns, Applied Thermal Engineering, 2007, 27: 1198-1204;
    37. Mohieddine Jelali, An overview of control performance assessment technology and industrial applications, Control Engineering Practice, 2006.14: 441-446;
    38. Nakaiwa Masaru a,* Kejin Huang, Kiyoshi Naito a, Akira Endo, Takaji Akiya, Takashi Nakane, akeichiro Takamatsub, Parameter analysis and optimization of ideal heat integrated distillation columns, Computers and Chemical Engineering, 2001,25:737-744;
    39. Nakaiwa M., Kejin Huang, M.Owa, Potential energy savings in ideal heat-integrated distillation column, Applied Thermal Engineering, 1998,18: 1077-1087;
    40. Nakaiwa M., K.Huang, A. Endo, T. Ohmori, T. Akiya, Internally Heat-Integrated distillation columns: A preview, Trans IChemE, 2003, 81, Part A: 162-177;
    41. Nakaiwa M., K Huang, M Owa, Considering Process Nonlinearity in Dual-Point Composition control of a High-Purity Ideal Heat Integrated distillation column. Chinese J. of Chem. Eng., 2001, 9: 58-64
    42. Nakaiwa M., K Huang, M.Owa, Operating an Ideal Heat Integrated Distillation Column with Different Control Algorithms, Computers Chem.Engng, 1998, 22,Suppl: 389-393.
    43. Hwang Yng-Long Nonlinear Wave Theory for Dynamics of Binary Distillation Columns. AICHE Journal, 1991. 37(5): 705-723;
    44. Hwang Yng-Long, Glenn K.Graham, George E.KellerII, Experimental study of wave propagation dynamics of binary distillation columns, AICHE Journal. 1996. 42(10): 2743-2760;
    45. Hwang Yng-Long, Friedrich G Helfferich, Nonlinear Waves and Asymmetric Dynamics of Countercurrent Separation Processes, AIChE Journal, 1989, 35(4): 691-693;
    46. Olujic Z., L.Sun, A.de Rijke, P.J.Jansens, Conceptual design of an internally heat integrated propylene-propane spliter, Energy, 2006, 31:3083-3096;
    47. Pannocchia Gabriele, Robust model predictive control with guaranteed setpoint tracking, Journal of Process Control, 2007,14: 927-937;
    48.Roffel Brian,Ben H.L.Betlem,R.M.de Blouw,A comparison of the performance of profile position and composition estimators for quality control in binary distillation,Computers and Chemical Engineering,2003,27:1999-210;
    49.Rodrigues M.A.,D.Odloak,Robust MPC for systems with output feedback and input saturation,Journal of Process Control,2005,15:837-846;
    50.Shin Joonho,Hodong Seo,Myungwan Han,Sunwon Park,A nonlinear profile observer using tray temperatures for high-purity binary distillation column control,Chemical Engineering science,2000,55:807-816;
    51.Shouche Manoj,Hasmet Genceli,Premkiran Vuthandam,Simultaneous constrained model predictive control and identification of DARX processes,Automatica,1998.34(12):1524-1530;
    52.Skogestad~* Sigurd,Manfred Morari,Understanding the Dynamic Behavior of Distillation Columns,Ind.Eng.Chem.Res.,1988,27:1848-1862;
    53.Skogestad Sigurd,Manfred Morari,Understanding the Dynamic Behavior of Distillation Columns,Ind.Eng.Chem.Res.,1988,27:1848-1862;
    54.Skogestad Sigurd,Manfred morari,LV-control of a high-purity distillation column,Chemical Engineering Science,1988,43(1):33-48;
    55.Takamatsu T.,M Nakaiwa K Huang,Simulation Oriented Development of a New Heat Integrated Distillation Column and its Characteristics for Energy Saving,Computer chem.Engng,1997,21 Suppl:243-247;
    56.Tao Hui,Xinggao Liu,An improved control parameterization method-od for chemical dynamic optimization problems,WCICA,2006;
    57.Wang Yiyang Jenny,James.B.Rawlings,A new robust model predictive control method Ⅰ theory and computation,Journal of Process Control,2004,14:131-247;
    58.Wang Yiyang Jenny,James.B.Rawlings,A new robust model predictive control method.Ⅱ examples.Journal of Process Control,2004,14:249-262;
    59.Wazwaz Abdul-Majid,The tanh method for traveling wave solutions of nonlinear equations,Applied Mathematics and Computation,2004,154:713-723;
    60.Yang Dae Ryook,Kwang Soon Leef,Monitoring a distillation column using a modified extended kalman filter and a reduced order model,Computers chem.Engng,1997,21,Suppl:565-570;
    61.Zhu Guang-Yan,Michel A.Henson,Lawrence Megan,Low-order dynamic modeling of cryogenic distillation columns based on nonlinear wave phenomenon,Seperation and Purification Technology,2001,24:467-487;
    62.Zhu Yu,Xinggao Liu,Investigating Control Schemes for an Ideal Thermally Coupled Distillation Column(ITCDIC),Chem.Eng.Technol.2005,28(9):1048-1055;
    63.Zhu Yu,Xinggao Liu,Dynamics and control of high purity heat integrated distillation columns,Ind.Eng.Chem.Res.2005,44:8806-8814:
    64.陈听宽,节能原理与技术,北京,机械工业出版社,1988;
    65.冯霄,化工节能原理与技术,北京,化学工业出版社,2009;
    66.郭丙君,陈成良,高惠明,一类高阶非线性系统的一般模型控制,石油化工高等学校学报,2002,15(2):76-78;
    67.刘兴高,精馏过程的建模、优化与控制,北京,科学出版社,2006;
    68.刘兴高等,内部热耦合精馏塔的初步设计(Ⅰ)模型化和操作分析,化工学报,2000a,51(3):421-424;
    69.刘兴高等,内部热耦合精馏塔的初步设计(Ⅱ)控制分析和参数优化,化工学报,2000b,5l(3):425-428;
    70.刘兴高,一种节能空分装置,国家授权发明专利,ZL200610053329,2008;
    71.王东,周东华,金以慧,自适应广义一般模型控制,化工学报,54(3):543-548;
    72.谢晓清,周东华,金以慧,一类复杂非线性过程的广义一般模型控制,清华大学学报(自然科学版),1998,38(9):77-81;
    73.张盈啸,邵惠鹤,高纯度内部热耦合精馏塔的非线性过程模型优化控制方案,华东理工大学学报(自然科学版),2006.7,32(7):856-859;
    74.祝育,刘兴高等,自适应预测PID控制在理想物系内部热耦合精馏塔上的应用,仪器仪表学报,2004.8,25(4)增刊:646-649;

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700