塔段透热能量集成精馏塔模拟及研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文提出了一种新型精馏节能技术一塔段透热能量集成精馏技术。它是利用精馏塔精馏段作为热源,提馏段作为热阱,相互之间进行透热,在完成各自分离任务的同时,减少塔顶、塔底能耗。本文以苯-甲苯、乙醇-水体系为例,对塔段透热全回流实验装置进行了模拟;同时对苯-甲苯体系的普通双塔塔段透热精馏和乙醇-苯共沸物系的塔段透热变压精馏工艺进行了模拟研究,并与双效精馏工艺进行了用能对比。
     本文用表示透热能力大小的塔板透热系数UA建立模型的透热关系,分析了不同UA和塔段压力差下塔段透热精馏的流体特性和节能效果。结果表明塔段透热改变了塔内负荷分布,应该采用更为合适的变直径精馏塔;塔段透热系数UA和两塔段压力差显著影响透热过程,对于全回流实验装置,如果UA基本不发生变化,两塔段压力差是透热量决定因素。将模型的UA与文献中总传热系数U进行了比较换算,结果与之相符。
     能量分析表明,透热能量集成会减小精馏塔段冷凝负荷和提馏塔段塔釜负荷。与双效精馏节能相比,由于透热能量集成减少了精馏操作不可逆性,所需公用工程品位有所降低,但总用能有所增加。在合适的UA之下,操作费用与双效精馏相比可减少13%左右。乙醇-苯共沸物系变压透热精馏的分离模拟计算表明,与高浓度比乙醇进料相比,低浓度比乙醇进料工艺更适合选用塔段透热精馏工艺方式。
As a new and energy-saving distillation technology, a diabatic distillation with heat integration between column sections is studied by means of simulation. This technique uses rectifying section of a column as a heat source and stripping section of another column as a heat sink, for the heat integration between columns. Two binary mixtures, benzene-toluene, ethanol-water, are taken as base case for the simulation of a total reflux diabatic heat integration experimental setup. Simulation of diabatic distillation with heat integration for two conventional columns and azeotropic pressure-swing distillation are also conducted using benzene-toluene and ethanol-benzene systems. Energy costs are compared with those of double effect distillation.
     The stage diabatic coefficient, UA, which represents the capacity of heat transfer, is proposed to characterize the diabatic heat transfer. Fluid dynamics and energy-saving performance at different UA and different column pressure difference are analyzed. Simulation results shows that diabatic distillation process changes the column loading distribution in the column and a column with changing diameter should be used for diabatic heat integrated distillation. UA and pressure difference between the two column sections influence effectively diabatic distillation with heat integration. For a constant UA, pressure difference is the most important factor determining the amount of diabatic heat transfer. UA proposed for the experimental setup is found to be consistent with heat transfer coefficient U in previous literature after conversion.
     Heat balance analysis shows that diabatic heat integration reduces the condensing and reboiling load in the overhead of the heat source column and on the bottom of the sink column. Compared with the double effect distillation, diabatic heat integration reduces the irreversibility of distillation and utility grade has lowered, but total energy input is a little higher. Economical analysis shows thatwith appropriate UA, operating cost can be saved up to 13% compared with double effect distillation. In azeotropic pressure-swing distillation lower ethanol-benzene concentration ratio feed is more suitable for using the proposed diabatic heat integration technology than higher concentration ratio one.
引文
[1]宋海华,精馏模拟,天津大学出版社,2005
    [2]冯宵,化工节能原理与技术,北京:化学工业出版社,2004
    [3]陈洪钫,刘家祺,化工分离过程,北京:化学工业出版社,1995
    [4]王文堂等,石油和化工行业能源管理师教程,北京:化学工业出版社,2007
    [5]刘兴高,精馏过程的建模、优化与控制,北京,科学出版社,2007
    [6]徐株宏,傅良,化工节能实例选编,北京:化学工业出版社,1989
    [7]秦正龙孟庆华,精馏过程节能技术,节能,1997,4
    [8]朱玉琴,高效节能的热泵精馏技术,发电设备,2003,3
    [9]朱平,冯宵,分割式热泵精馏的研究及其分割点的确定,西安交通大学学报,1998,32(1)
    [10]李群生,叶泳恒,多效精馏的原理及其应用,化工进展,1992,11
    [11]张鹏,高维平,王琨,进料组成对双效精馏节能效果的影响,化学工程,2006,34(11)
    [12]王桂云,双效精馏节能影响因素的研究,节能技术,2007,2
    [13]冯权莉,乙醇-水双效精馏模拟研究,云南工业大学学报,1999,3
    [14]Brugma A.J., Dutch Patent NL41,850,1937
    [15]Petlyuk F.B., Platonov V.M.& Slavinskii DM., Thermodynamically Optimal Method for Separating Multi Component Mixtures, Int. Chem. Eng.,1965,5(3)
    [16]Kaibel G, Distillation Columns with Vertical Partitions. Chem. Eng. Technol.,1987,10
    [17]Agrawal R, More operable arrangements of fully thermally coupled distillation columns., AIChE Journal,1998,44
    [18]Caballero J., Thermodynamically Equivalent configurations for Thermally Coupled Distillation, AIChE J.,2003,49(11)
    [19]Stupin WJ., PhD Thesis, University of Southern California, USA,1970
    [20]BASF. Innovation award 1995:Split wall for the environment. Press Release available on the World Wide Web at URL http://www. Basf/htem/e/entwidk/innol/trenn95.tm,1997
    [21]Hairston,D., The divide in distillation. Chem. Eng.,1999,4,32
    [22]M.W., Kellogg Limited Press release,1998, Septembr,11
    [23]许锡恩等,三相热耦和精馏过程的模拟,化工学报,1989,1
    [24]曲平等,丁二烯分离装置热耦精馏的操作特性,高校化学工程学报,1996,10(2)
    [25]平田光穗等,实用化工节能技术,北京:化学工业出版社,1988
    [26]Z.Fonyo. Thermodynamic analysis of rectification, Int. Chemical Engng., 14(1)
    [27]Z.Fonyo. Thermodynamic analysis of rectification, Int. Chemical Engng., 14(2)
    [28]Mah Jr., R.J.N., Distillation with secondary reflux and vaporization:A comparative evaluation. AIChE.Jounal,23(5)
    [29]Rivero R. Exergy simulation an optimization of adiabatic and diabatic binary distillation. Energy 2001,26
    [30]Schaller M, Hoffmann KH, Rivero R, Andresen B, Salamon P., The influence of heat transfer irreversibilities on the optimal performance of diabatic distillation columns. Journal of Non-equilibrium Thermodynamics, 2002;27(3):257-69.
    [31]Salamon P., Nulton J.D., The geometry of separation processes:A horse-carrot theorem for steady flow processes. Euro phys. Lett.,1998(42)
    [32]Gelein de Koeijer. Distribution of heat exchange in optimum diabatic distillation columns. Energy,2004,29
    [33]Sauar E., Siragusa G., Andresen B., Equal thermodynamic distance and equipartition of forces principles applied to binary distillation., J. Phys. Chem. A 2001,105
    [34]M. Nakaiwa, K. Huang, Internally heat integrated distillation columns, a review, Trans. IChemE, Part A Chem. Eng. Res. Des.2003(81)
    [35]Takamatsu, I,ueprasitsakul, V, Nakaiwa, M, Modeling and design method for internal heat-integrated packed distillation column, J Chem Eng Japan,1988,21
    [36]Nakaiwa, M., Fundamental research on energy savings of distillation processes, Ph.D. Thesis, Kyoto University, Japan.,1988
    [37]K.Naito,M.Nakaiwa,K.Huang,et al. Operation of a bench-scale ideal integrated distillation column(HIDiC):an experimental study, Computers and Chemical Engineering,2000,24
    [38]Z.Olujic,F.Fakhri,et al.Internal heat integrated-the key to an energy-conserving distillation column Journal of Chemical Technology and Biotechnology,78(2003),241-248.
    [39]Z.Olujic,L.Sun,et al.Conceptual design of an internally heat integrated propylene-propane splitter.ENERGY,31(2006),3083-3096.
    [40]M.Gadalla, L.Jimenez, Z.Olujic, P.J.Jansens, A thermo-hydraulic approach to conceptual design of an internally heat-integrated distillation columns (i-HIDiC). Computers and Chemical Engineering,31(2007),1346-1354.
    [41]Mamdouh A. Gadalla, Zarko Olujic, Peter J. Jansens, Megan Jobson, Robin Smith, Reducing CO2 Emissions and Energy Consumption of Heat-Integrated Distillation Systems, Environ. Sci. Technol.2005,39,6860-6870
    [42]M.Nakaiwa, K.Huang, K.Naito, A.Endo, M.Owa, T.Akiya, T.Nakane, T.Takamsu, A new configuration of ideal heat integrated distillation columns (HIDiC). Computers and Chemical Engineering,24 (2000),239-245.
    [43]T.FUKUSHIMA,M.KANO,et al.Dynamics and Control of Heat integrated Distillation column(HIDiC). Journal of Chemical Engineering of Japan,2006 39(10),1096-1103
    [44]Koichi Iwakabe,Masaru Nakaiwa,.Energy saving in multicomponent seperation using an internally heat-integrated distillation column(HIDiC), Applied Thermal Engineering,2006,26,1362-1368
    [45]孙兰义,扎寇.奥鲁秩驰,内部热耦合精馏塔构型研究.,化学工程,2006,34(11),4-7
    [46]Xingao Liu, Jixin Qian, Modeling, Control, and Optimization of Ideal Internal Thermally Coupled Distillation Columns. Chem. Eng.& Technol.,2000,23(3), 235-241
    [47]《化学工程手册》编辑委员会,化学工程手册,第26篇,化工系统工程,化学工业出版社,1986,34-67
    [48]Dhole VR, Linnhoff B, Distillation column targets, Computers chem. Engine. 1993,17(5)
    [49]Kataoka, K., H. Noda, M. Kaneda, H. Yamaji, and M. Nakaiwa, "Heat and Mass Transfer in A Heat Transfer Tube of A Heat-Integrated Distillation Column", The 36 Autumn Meeting of The Sociate of Chemical Engineers, Japan(SCEJ), Sendai, Japan(2003)
    [50]Kejin Huang, Adding rectifying/stripping section type heat integration to a pressure-swing distillation(PSD)process, Applied Thermal Engineering,2008,28, 923-932

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700