理想内部热耦合精馏塔双温度控制系统的综合与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前世界能源形势不容乐观,越来越多的研究人员因此开始致力于化工过程的节能研究。作为化工生产过程中最为耗能的单元操作之一,精馏过程的节能研究一直是广大研究人员关注的热点之一。基于内部热耦合技术开发的内部热耦合精馏塔(heat-integrated distillationcolumn,HIDiC)是这些研究中比较引人注目的一个研究成果。
     HIDiC控制方案研究是其转化到实际应用中的关键。温度控制因为其可靠性高,维护成本低廉,响应快等优点已经被广泛应用于化工过程的控制中。但是,在对HIDiC控制方案的研究文献中却鲜有其温度控制方面的讨论。除此之外,常规的温度控制方案在抑制非平稳扰动(如进料流量或进料成分)方面的表现不是很令人满意,因为此时塔顶和塔底产品成分中都存在较大的稳态余差。
     为此,本文提出了两种用于减小HIDiC双温度控制时产品质量中存在的稳态余差的方法:温度推断补偿器和浓度推断补偿器。减小稳态余差的关键在于如何准确地感应操作条件的变化,然后适当地调节每个温度控制回路的设定值。在第一种方法中,推断信号是从塔板温度中获得;而在第二种方法中,推断信号是从产品成分中获得。根据来自不同的塔板,第二种方法又可分为推断信号来自进料板的温度和来自两端塔板的温度(也就是两端产品的温度)两种。
     文中以分离二元等摩尔苯和甲苯混合物的理想HIDiC为研究对象,分别对提出的两种改进方法进行了深入的研究。结果表明它们都能有效地减小产品质量中存在的稳态余差,与此同时第一种方法还能在一定程度上改善双温度控制系统的动态特性。文中还对推断信息来自两端塔板的温度这一方法推广到常规精馏塔中的应用进行了探索,得到了良好结果。这两种方法原理简单、效果明显,且在过程建模方面只需相对较小的改动即可实现。这些特点都为这两种方法在不同类型的双温度控制精馏塔中得到广泛应用创造了良好的条件。
In the current world energy situation, more and more researchers have been focusing their attention on the development of energy-saving related technologies. As one of the most energy-consuming unit operations in the chemical process industry, distillation process has always been the target for such kind of studies. Heat-integrated distillation column (HIDiC) is one of the most attractive apparatus that can offer great potentials of energy savings.
     Effective control of the HIDiC is a key for its practical applications. Temperature control (i.e., indirect composition control) is generally preferred to direct composition control because temperature measurements offer more advantages than composition measurements in aspects of reliability, immediacy and maintenance cost. However, the research about the temperature control of the HIDiC is relatively rare. In addition, conventional temperature control fails to suppress the non-stationary disturbances from feed flow rate and composition as there are large static offsets occurring in the top and bottom product qualities.
     In this paper, two kinds of methods are proposed for the reduction of the static offsets in the composition of both top and bottom products. They are called as temperature-based inferential compensator and composition-based inferential compensator respectively. The key to achieve this purpose is to sense the non-stationary changes in operation conditions and make corresponding adjustments to the set-points of the dual-temperature control loops effectively. The first method is based on the inferential signals extracted from the stage temperatures and the second method from the composition of products. The temperature inferential signals can be obtained through two ways. One is from the feed stage and the other from the two end stages (i.e., the temperature of products).
     All the above philosophies are intensively studied through the operation of an ideal HIDiC separating a binary equi-molar mixture of benzene and toluene. It is found that they could work effectively to decrease the static offsets in the product qualities. Moreover, the temperature-based inferential compensator could also improve the dynamic performances of the dual-point temperature control system. Applications of the first method to conventional distillation columns are also explored in this work and similar results have been achieved. The two methods are characterized by simplicity in principle, definite effect in implementation, and relatively small effort in process modeling, thereby allowing wide applications in the operation of various distillation columns with a dual-point temperature control scheme.
引文
[1] Engelien H K, Skogestad S. Selecting appropriate control variables for a heat-integrated distillation system with prefractionator [J]. Computer. Chem. Eng. 2004, 28 (5): 683-690.
    
    [2] Mamdouha A, Gadalla A, Zarko Olujic, et al. Reducing CO_2 Emissions and Energy Consumption of Heat-Integrated Distillation Systems [J]. Environ. Sci. Technol. 2005, 39:6860-6870.
    [3] Pemberton R C, Mash C J. Thermodynamic Properties of aqueous Non-electrolyte Mixtures— II Vapour Pressure and Excess Gibbs Energies for water + Ethanol at 303.15 to 363.15
    
    K Determined by an Accurate Static Method [J]. J. Chem. Thermodynamics, 1978, 10:867-888.
    [4] Brousse E, Claudel B, Jallut C. Modeling and Optimization of the Steady State Operation for a Vapor Recompression Distillation Column [J]. Chem. Eng. Sci., 1985, 40(11):2073-2078.
    [5] Salim M A, Sadasivam M, Balakrishnan A R. Transient Analysis of heat pump assisted distillation systems—1 the Heat Pump [J]. International J. of Energy Res., 1991, 15:123-135.
    [6] Salim M A, Sadasivam M, Balakrishnan A R. Transient Analysis of heat pump assisted distillation systems—2 Column and System Dynamics [J]. International J. of Energy Res.,1991,15: 137-148.
    [7] Canales M F, Fernando E M. Operation and Experimental Results on a Vapor Recompression Pilot Plant Distillation Column [J]. Ind. Eng. Chem. Res., 1992, 31(11):2547-2555.
    [8] Rathore R N S, Wormer K A V, Powers G J. Synthesis Strategies for Multicomponent Separation Systems with Energy Integration [J]. AIChE J., 1974, 20(3): 491-497.
    [9] Linnhoff B, Flower J R. Synthesis of Heat Exchanger Networks [J]. AIChE J., 1978, 34(4):633-654.
    [10] Linnhoff B, Mason D R, Wardle I. Understanding heat Exchanger Networks [J]. Comput.Chem. Eng., 1979, 3: 295-302.
    
    [11] Morari M, Faith D C. The synthesis of distillation Trains with Heat Integration [J]. AIChE J., 1980, 26(6): 916-928.
    
    [12] Smith R, Linnhoff B. the Design of Separators in the Context of Overall Processes [J].Chem. Eng. Res. Des., 1988, 66:195-228.
    [13] Yee T F, Grossmann I E, Kravanja Z. Simultaneous Optimization Models for Heat Integration—III Process and Heat Exchanger network Optimization [J]. Comput. Chem.Engng, 1990, 14(11): 1185-1200.
    [14] Linnhoff B, Dunford H, Smith R. Heat integration of Distillation Column into Overall Process [J]. Chem. Eng. Sci., 1983, 38(8): 1175-1188.
    [15] Linnhoff B, Hindmarsh E. The Pinch Design Method for Heat Exchanger Netmorks[J].Chem. Eng. Sci., 1983, 38(5): 745-763.
    [16] Rev E, Fonyo Z. Diverse Pinch concept for Heat Exchange Network Synthesis: The Case of Different heat Transfer Conditions. Chem. Eng. Sci., 1991, 46(7): 1623-1634.
    [17]Krajnc M,Glavic P.The Influence of Different Temperature Contributions on Heat Integrated Process Structure[J].Trans IChemE.1995,73(Part A):880-888.
    [18]Homsak M,Glavic P.Pressure Exchangers in Pinch Tecnology[J].Computers Chem.Engng.,1996,20(6/7):711-715.
    [19]Fidkowski Z,Krolikowski L.Minimum Energy Requirements of Thermally Coupled Distillation Systems[J].AIChE J.,1987,33(4):643-653.
    [20]Fidkowski Z,Krolikowski L.Energy Requirements of Nonconventional Distillation Systems[J].AIChE J.,1990,36(8):1275-1278.
    [21]李凤华,樊希山,姚平经.热偶精馏塔在化工节能改造中的可行性[J].石油化工.,1995,24(11):783-796.
    [22]Mah R S H,Nicholes J J,Wodnik R B.Distillation with Secondary Reflux and Vaporization:A Comparative Evaluation[J].AIChE J.,1977,23(5):651-658.
    [23]Batista E,Meirelles A.Simulation and Thermal Integration SRV in Extractive Distillation Column[J].Chem,Eng.Japan,1997,30(1):45-51.
    [24]Nakaiwa Masaru,Huang Kejin,Endo A,et al.Internally Heat-Integrated Distillation Columns:A Review[J].Chem.Eng.Res.Des.,2003,81:162-177.
    [25]Takamatsu T,Lueprasitsakul V,Nakaiwa M.Modeling and Design Method for Internal Heat Integrated Packed Distillation Column[J].J.Chem.Eng.Japan.,1988,21(6):595-601.
    [26]Liu Xinggao,et al.Modeling,Control and Optimization of Ideal Internal Thermally Coupled Distillation Column[J].Chem.Eng.& Technol.,2000,23(3):235-241.
    [27]Nakaiwa M,Huang K,Endo T,et al.Contributing to Reduction of CO_2 Emissions Through Development of a Heat-Integrated Distillation Column[J].Greenhouse Gas Control Technologies-6~(th) International Conference,2003:975-980.
    [28]Huang Kejin,Shan Lan,Zhu Qunxiong,et al.Design and control of an ideal HIDiC system separating a close-boiling ternary mixture[J].Energy,2007,doi:10.1016/j.energy.2007.04.007.
    [29]Iwakabe Koichi,Nakaiwa Masaru,Huang Kejin,et al.Energy Saving in multicomponent separation using an internally heat-integrated distillation Column(HIDiC)[J].Applied Thermal Engineering,2006,26:1362-1368.
    [30]Iwakabe Koichi,Nakaiwa Masaru,Huang Kejin,et al.Performance of an Internally Heat-Integrated Distillation Column(HIDiC) in Separation of Ternary Mixtures[J].J.Chem.Eng.Japan.,2006,39(4):417-425.
    [31]Olujic Z,Fakhri F,Rijke A,et al.Internal Heat Integration-The Key To An Energy-Conserving Distillation Column[J].J.Chem.Technol.Biotechnol,2003,78:241-248.
    [32]Olujic Z,Sun L,de Rijke A,et al.Conceptual design of an internally heat integrated propylene-propane splitter[J].Energy,2006,31:3083-3096.
    [33]祝育.高纯内部热耦合空气分离塔的概念设计、动态特性分析及控制研究[D].杭州:浙江大学,2006.
    [34]闫正兵,刘兴高,毛邵融等.内部热耦合空分塔的建模与操作分析[J].控制工程,2008,15(4):389-391.
    [35]Rosjorde A.Minimization of entropy production in separate and connected process unit [D].Norwegian:Norwegian University of Science and Technology,2004.
    [36]Natio K,Nakaiwa M,Huang K,et al.Operation of a bench-scale ideal heat integrated distillation column(HIDiC):an experiment study[J].Computer & Chemical Engineering,2000,S24:495-499.
    [37]Huang Kejin,Matsuda Keigo,Iwakabe Koichi,et al.Graphical Synthesis of an Internally Heat-Integrated Distillation Column[J].J.Chem.Eng.Japan.,2006,39(7):703-708.
    [38]Huang Kejin,Shan Lan,Zhu Qunxiong,et al.A total heat-integrated distillation column (THIDiC)—the effect of feed pre-heating by distillate[J].Applied Thermal Engineering,2008,28:856-864.
    [39]孙兰义,Olujic z.内部热耦合精馏塔构型研究[J].化学工程,2006,34(11):4-7.
    [40]Nakaiwa M,Huang K.,Natio K,et al.Parameter analysis and optimization of ideal heat integrated distillation column[J].Computer & Chemical Engineering,2001,25:737-744.
    [41]Huang Kejin,Matsuda Keigo,Takamastsu Takeichiro,et al.The Influences of Pressure Distribution on an Ideal Heat-Integrated Distillation Column(HIDiC)[J].J.Chem.Eng.Japan.,2006,39(6):652-660.
    [42]Huang Kejin,Matsuda Keigo,Iwakabe Koichi,et al.Interpreting Design of an Ideal Heat-Integrated Distillation Column through Exergy Analysis[J].J.Chem.Eng.Japan.,2006,39(9):963-970.
    [43]Huang K,Nakaiwa M,Akiya T,et al.A numerical consideration on dynamic modeling and control of ideal heat integrated distillation columns[J].J.Chem.Eng.Japan.,1996,29(2):344-351.
    [44]Nakaiwa M,Huang K,Owa M,et al.Operating an Ideal Heat Integrated Distillation Column with Different Control Algorithms[J].Computer Chem.Engng.,1998,22,Suppl.:S389-S393.
    [45]Huang K,Nakaiwa M,Akiya T,et al.Performance Evaluation of Ideal Heat-Integrated Distillation Column(HIDiC)[J].J.Chem.Eng.Japan.,1997,30:108-115.
    [46]Huang K,Nakaiwa M,Owa M,et al.Determining Appropriate Configuration of Ideal Heat-Integrated Distillation Column(HIDiC)[J].J.Chem.Eng.Japan.,1997,30:575-561.
    [47]Huang Kejin,Matsuda Keigo,Iwakabe Koichi,et al.Choosing More Controllable Configuration for an Internally Heat-Integrated Distillation Column[J].J.Chem.Eng.Japan.,2006,39(8):818-825.
    [48]Huang K,Wang S,Iwakabe K,et al.Temperature control of an ideal heat-integrated distillation column(HIDiC)[J].Chem.Eng.Sci.,2007,62(22):6486-6491.
    [49]Ho Tsung-Jen,Huang Chi-Tsung,Lin Jhih-Ming,et al.Dynamic simulation for internally heat-integrated distillation column(HIDiC) for propylene-propane system[J].Computer and Chemical Engineering,2009,doi:10.1016/j.compchemeng.2009.01.004.
    [50]Zhu Yu,Liu Xinggao.Dynamics and Control of High Purity Heat Integrated Distillation Columns[J].Ind.Eng.Chem.Res.,2005,44:8806-8814.
    [51]刘兴高,钱积新.内部热耦合精馏塔的初步设计(Ⅰ)模型化和操作分析[J].化工学报,2000,51(3):425-428.
    [52]刘兴高,钱积新.内部热耦合精馏塔的初步设计(Ⅱ)控制分析和参数优化[J].化工学报,2000,51(3):421-424.
    [53]王成裕,刘兴高,周叶翔.基于一般模型控制的高纯内部热耦合精馏策略[J].化工学报,2008,58(7):1824-1828.
    [54]Liu Xinggao,Qian Jixin.Modeling control and optimization of ideal internal thermally coupled distillation column[J].Chem.Eng.Technol.,2000,23(3):235-241.
    [55]Zhu Yu,Liu Xinggao,Qian Jixin.Control schemes of internal thermally coupled distillation column for non-ideal mixtures[A].Proceedings of the 5~(th) world congress on intelligent control and automation[C].Hangzhou,China:IEEE,2004,3445-3449.
    [56]张盈啸,邵惠鹤.高纯度内部热耦合精馏塔的非线性过程模型优化控制方案[J].华东理工大学学报(自然科学版),2006,32(7):856-859.
    [57]Radermark O,Rijinsdorp J E,Maarleveld A.Dynamics and Control of Continuous Distillation Units[M],first ed.Elsevier,Amsterdam,1975.404-410.
    [58]Shinsky F G.Process-Control Systems Application/Design/Adjustment[M].Second ed.McGraw-Hill,New York,1979.292-297.
    [59]Wang S,Wong D S H.Control of reactive distillation production of high-purity isopropanol [J].J.Proc.Contr.,2006,16:385-394.
    [60]Kaymak D B,Luyben W L.Evaluation of a two-temperature control structure for a two-reactant/two-product type of reactive distillation column[J].Chem.Eng.Sci.,2006,61:4432-4450.
    [61]Hori E S,Skogestad S.Selection of control structure and temperature location for two-product distillation columns[J].Chem.Eng.Res.Des.,2007,85:293-306.
    [62]Skogestad S.The dos and don'ts of distillation column control[J].Chem.Eng.Res.Des.,2007,85:13-23.
    [63]Wang San-Jang,Wong David S H.Controllability and energy efficiency of a high-purity divided wall column[J].Chemical Engineering Science,2007,62:1010-1025.
    [64]Joseph B,Brosilow C B.Inferential control of processes:part Ⅰ:steady state analysis and design[J].AIChE J.,1978,24:485-492.
    [65]Mejdell T,Skogestad S.Estimation of distillation compositions from multiple temperature measurements using partial-least-squares regression[J].Ind.Eng.Chem.Res.,1991,30:2543-2555.
    [66]Kano K,Miyazaki K,Hasebe S,et.al.Inferential control of distillation compositions:selection of models and control configuration[J].Contr.Eng.Prac.,2003,11:927-933.
    [67]Eliana Z,Barolo M,Seborg D E.Optimal selection of soft sensor inputs for batch distillation columns using principal component analysis[J].J.Proc.Contr.,2005,15:39-52.
    [68]Han M,Park S.Control of high-purity distillation column using a nonlinear wave theory [J].AIChE J.,1993,39:787-796.
    [69]Oisioviciand R M,Cruz S L.State estimation of batch distillation columns using an extended Kalman filter[J].Chem.Eng.Sci.,2000,55:4667-4680.
    [70]Huang S G,Kuo C L,Hung S H,et al.Temperature control of heterogeneous reactive distillation[J].AIChE J.,2004,50:2203-2216.
    [71]Luyben W L.Evaluation of criteria for selecting temperature control trays in distillation column[J].J.Proc.Contr.,2006,16:115-134.
    [72]Luyben William L.Distillation Design and Control Using Aspen~(TM) Simulation[M].United States of America:John Wiley & Sons,Inc.,2006.130-133.
    [73]Finco M,Luyben W L,Polleck R E.Control of distillation columns with low relative volatilities[J].Ind.Eng.Chem.Res.,1987,28:75-83.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700