内部能量耦合精馏塔及其节能效果的模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文介绍了一种新型高效的精馏节能技术—内部能量耦合精馏技术。应用化工流程模拟软件ASPEN PLUS和面向对象编程语言VB6.0对内部能量耦合精馏塔进行模拟研究。以苯-甲苯和丙烯-丙烷物系为例,模拟分析内部能量耦合精馏塔(HIDiC)的特性及其节能效果,将模拟结果与传统精馏塔(CDIC)及热泵精馏塔(VRC)进行比较。结果显示,内部能量耦合精馏塔的温度、流率和浓度分布都与传统精馏塔存在较大的差别。对苯-甲苯物系,热泵精馏塔的节能效果最好,节能百分率可达40%。对丙烯-丙烷物系,理想内部能量耦合精馏塔的节能优势明显,节能百分率在60%~80%。
     鉴于换热量平均分布方式在现实中难以实现,本文提出了更合理的热温匹配方式,分析了压缩比、进料热状态及换热量分布方式对内部能量耦合精馏塔特性和节能效果的影响。压缩比和进料热状态对内部能量耦合精馏塔特性和节能效果的影响作用显著。压缩比越小,节能效果越好,但压缩比的下限为最小压缩比,否则会产生逆向传热。内部能量耦合精馏塔的节能效果随进料热状态的增加而增大。两种换热量分布方式的节能效果基本一致,而热温匹配方式可以在压缩比较小时大幅度减小传热面积。
     将内部能量耦合精馏塔应用于分离多组元物系,得出与二组元物系基本一致的结论,表明内部能量耦合精馏塔同样适用于多组元物系的分离,只要物系的相对挥发度足够小,内部能量耦合精馏塔就可以显示出良好的节能效果。
As a new and energy-efficient distillation technology, internally heat-integrated distillation column (HIDiC) is studied by means of simulation in this paper. The simulation is performed with commercial software ASPEN PLUS and object-oriented programming language VB6.0. The mixture of benzene-toluene and that of propylene-propane systems are taken as the base cases in the simulations of the characteristics and the energy-saving effect of HIDiC,then the results are compared with those of conventional distillation column (CDIC) and heat-pump distillation column (VRC). The results show that the distributions of temperature, flow rate and composition of HIDiC are different from those of CDIC. For benzene-toluene system, the energy-saving performance of VRC, with the value of 40% compared with the CDIC, is the best and in the case of propylene-propane system,the HIDiC provides the best energy-saving performance of 60%~80%.
     Since the mode of averaged heat duty (AH) distribution is difficult to achieve in reality, a more reasonable heat duty distribution mode called temperature and heat duty matching (THM) is proposed. The influence of compression ratio, feed thermal condition and distribution mode of heat duty on the characteristics and energy-saving performance of HIDiC was analyzed. It is found that the characteristics and energy-saving performance of HIDiC were influenced significantly by compression ratio and feed thermal condition. The energy-saving performance increases with the decrease of the compression ratio, and the compression ratio is however lower bounded by a limit value beyond which the temperature difference between the rectifying section and the striping section will become negative and a reverse heat-transfer will happen. The energy-saving effect of HIDiC increases with the increasing of vapor ratio in the feed (feed thermal condition). In applying THM,the energy-saving effect is nearly the same as AH, but THM can reduce heat transfer area significantly when the compression ratio is small enough.
     In the case of separation of multi-component mixture in HIDiC, we get the same trends with the binary systems. It is concluded in general that HIDiC favors the separation of mixtures with smaller relative volatility.
引文
[1] Linnhoff B, Dunford H, Smith R. 1983a. Heat integration of Distillation Columns into Overall Processes. Chem.Eng.Sci.,38(8):1175~1188
    [2] MixTJ,DweckJ S,Weinberg M,Armstrong R C.1978.Chem.Eng.Prog.,74(4):49
    [3]韩志伟,精馏技术进展与设计,南化科技信息,1996,1:48~52
    [4]钱建兵,朱慎林,板式塔及分离技术最新进展,浙江化工,2003,34(11):
    [5]余国琮,袁希钢,我国蒸馏技术的现状与发展,现代化工,1996,16(10):7~12
    [6]徐世民,王军武,许松林,新型蒸馏技术及应用,化工机械,2004,31(3):183~187
    [7]周明,许春建,吸附蒸馏-复合新分离过程,自然科学进展-国家重点实验室通讯,1995,5(2):147~152
    [8]谷明星,余国琮,一种新型复合分离过程—吸附蒸馏,化工进展,1992,11(5):2~5
    [9]林浩,甄卫军,膜蒸馏分离技术研究的进展及其应用,新疆石油学院学报,2001,13(3):56~61
    [10]刘立华,膜蒸馏技术进展,唐山师范学院学报,2002,24(5):27~29
    [11]杨志才,李伯春,有惰性气体存在的精馏过程,石油化工,1992,21(4):237~241
    [12]曹国锋,刘红天,脱臭馏出物中天然维生素E提取,粮食与油脂,2001(5):42~43
    [13]刘兴高,精馏过程的建模、优化与控制,北京:科学出版社,2007.5~6
    [14]邹仁鋘,石油化工分离原理与技术,北京:化学工业出版社,1988.189
    [15]《化学工程手册》编辑委员会,化学工程手册,第11篇,精馏,化学工业出版社,1989,158~163
    [16]王梦华,精馏过程节能技术探讨,齐鲁石油化工,2003,31(4):324~326
    [17]冯霄,化工节能原理与技术,北京:化学工业出版社,2004.100
    [18]冯霄,化工节能原理与技术,北京:化学工业出版社,2004.99~101
    [19]王建忠,马文婵,王鹏辉,精馏过程的节能现状与对策,河北化工,2006,29(4):27~30
    [20]冯霄,化工节能原理与技术,北京:化学工业出版社,2004.103
    [21] Freshwater,D.C.Thermal economy in distillation.Transactions,IchemE,29,149
    [22] Mah Jr, R. J. N., Wodnik, R., Distillation with secondary reflux and vaporization: A comparative evaluation, AIChE J., 1977, 23(5), 651-658
    [23] Haselden.Distillation processes and apparatus[P].US:4025398,1977-05-24
    [24] Seader.Distillation processes and apparatus[P].US:4234391,1980-11-18
    [25] Govond.Dual distillation columns[P].US:4681661,1987-07-21
    [26] Z.Olujic,F.Fakhri,et al .Internal heat integrated-the key to an energy-conserving distillation column .Journal of Chemical Technology and Biotechnology,78(2003), 241-248.
    [27] Z.Olujic,L.Sun,et al .Conceptual design of an internally heat integrated propylene-propane splitter .ENERGY,31(2006),3083-3096.
    [28] M.Gadalla, L.Jimenez, Z.Olujic, P.J.Jansens, A thermo-hydraulic approach to conceptual design of an internally heat-integrated distillation columns (i-HIDiC). Computers and Chemical Engineering ,31(2007) ,1346-1354.
    [29] Mamdouh A . GADALLA, Zarko Olujic, Peter J. Jansens, Megan Jobson , Robin Smith, Reducing CO2 Emissions and Energy Consumption of Heat-Integrated Distillation Systems, Environ. Sci. Technol. 2005, 39, 6860-6870
    [30] T.TAKAMAYSU,V.LUEPRASITSAKUL,et al.Modeling and Design method for internal heat-integrated packed distillation column. Journal of Chemical Engineering of Japan ,1988 , 21(6) , 595-601.
    [31] K.Naito,M.Nakaiwa,K.Huang,et al. Operation of a bench-scale ideal integrated distillation column(HIDiC):an experimental study . Computers and Chemical Engineering ,24 (2000), 239-245.
    [32] M.Nakaiwa, K.Huang, K.Naito, A.Endo, M.Owa, T.Akiya, T.Nakane, T.Takamsu, A new configuration of ideal heat integrated distillation columns (HIDiC). Computers and Chemical Engineering ,24 (2000) ,239-245.
    [33] T.FUKUSHIMA,M.KANO,et al .Dynamics and Control of Heat integrated Distillation column(HIDiC). Journal of Chemical Engineering of Japan ,2006 , 39(10) , 1096-1103.
    [34] Koichi Iwakabe,Masaru Nakaiwa,et al.Energy saving in multicomponent seperation using an internally heat-integrated distillation column(HIDiC).Applied Thermal Engineering,2006,26,1362~1368.
    [35] J.A. Hugill,E.M.van Dorst,The use of compact heat exchangers in heat-integrated distillation columns.5th International conference on Enhanced, Compact andUltra-Compact HeatExchangers: Science, Engineering and Technology, September 2005, Hoboken, NJ,USA.
    [36] M. Gadalla, Z. Olujic, L. Sun, A de Rijke , P. J. Jansens,Pinch Analysis-Based Approach to Conceptual Design of Internally Heat Integrated Distillation Columns.CHISA 2004 (including 6th PRES Conference), 16th International Congress of Chemicaland Process Engineering, Prague, Czech Republic, 22– 26 August 2004.
    [37]李娟娟,陆恩锡,张翼,无冷凝器及再沸器的热集成蒸馏塔技术进展,化学工程,2006,34(9),1-4.
    [38] Xingao Liu,Jixin Qian, Modeling, Control, and Optimization of Ideal Internal Thermally Coupled Distillation Columns. Chem. Eng. & Technol., 2000, 23(3), 235-241.
    [39]孙兰义,扎寇.奥鲁秩驰,内部热耦合精馏塔构型研究.,化学工程,2006,34(11),4-7.
    [40]《化学工程手册》编辑委员会,化学工程手册,第26篇,化工系统工程,化学工业出版社,1986,34-67.
    [41]张志檩主编,企业信息化实用指南,中国石化出版社,1997.
    [42] Biegler L.T., Chemical process simulation, Chen. Eng. Prog., 1989, 85(10): 50-61.
    [43] Perkins J.D. & Sargent R.W.H., SPEEDUP:A computer program for steady-state and dynamic simulation of chemical process,Selected ToPics on Computer-aided process design and analysis,R.S.H.Mah and G.V.Reklaitis, Eds.,AIChE SymP.Ser.,1982,78(1).
    [44] Panteledes C.C.,SPEDUP-Recent advances in process simulation,Paper at AIChE Aninual Conf.Miami,1986.
    [45] Westerberg A.W.,Abbott K. & Allan B.,Plant for ASCEND IV:our next Generation equational-based modeling environment,Paper presented at Aspen World’94,Boston,MA.,1994
    [46] Rosen E.M.,A machine computation method for performing material balances,Chem.Eng.Prog.,1962,58(10):69-73.
    [47] Mahalec V.,Kauzik H. & Evans L.B.,Simultaneous moduler algorithm for Steady state flowsheet simulation and design, 12th Eur.sym. Computers in Chem.Eng.,Montreux, Switzerland,1979
    [48] Sood M.K. & Reklaitis G.V.,Solution of material balances for flowsheetsModeled with elementary modules,AIChE J.,1979,25(2):209-229.
    [49] Metcalfe S.R. & Perkins J.D.,Information flow in modular flowsheeting systems,Trans.Ⅰ.Chem,Eng.,1978,56:210.
    [50] Perkins J.D.,Eficient solution of design problems using a sequential modular flowsheeting program,Comput.Chem.Engng.,1979,3:375-381.
    [51] TAKEICHIRO T., VEERAPOT L., et al. Modeling and design method for internal heat-integrated packed distillation column, Journal of chemical engineering of Japan, 1988, 21(6), 595-601.
    [52]刘兴高,钱积新,内部热耦合精馏塔的初步设计(Ⅰ)*模型化和操作分析,化工学报,2000,51(3),421-424.
    [53]刘兴高,钱积新,内部热耦合精馏塔的初步设计(Ⅱ)*控制分析和参数优化,化工学报,2000,51(3),425-428.
    [54] Koichi Iwakabe, Masaru Nakaiwa, et al. Energy saving in multicomponent seperation using an internally heat-integrated distillation column (HIDiC), Applied Thermal Engineering, 2006, 26, 1362-1368.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700