内部热耦合精馏塔的建模与优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
内部热耦合精馏塔(ITCDIC)是精馏塔节能研究的前沿。目前,主要是日本和我国在进行研究。研究表明ITCDIC的节能效果与常规精馏塔最小回流比下的能耗相比可节能30%~40%以上,操作费用与常规精馏塔最小回流比下的费用相比可节省近30%,具有极大的工业应用前景和理论研究价值。
     其基本原理是:精馏段和提馏段被分为两个塔,热耦合通过两段之间的热交换来实现;为了提供传热必须的推动力,精馏段将在较高的压强下进行操作,为了调整压强,两段之间安装了压缩机和调节阀;由于内部热耦合,使精馏段产生向下的液相流,提馏段产生向上的蒸汽流,从而可以减少热负荷甚至去掉常规的再沸器和冷凝器,达到节能目的。
     本研究课题属于国家环保局1997年中日环境保护正式合作项目,项目14,“在石油企业进行节能及减轻环境负荷的研究”,由浙江大学工业控制技术研究所和日本通商产业省物质工学工业技术研究所共同承担(国家环保局,环科科,1997,006号文),旨在通过合作研究进一步了解内部热耦合精馏过程的操作特性、控制特性,加速内部热耦合精馏过程的开发研究,为工业化奠定基础。
     目前,已经完成了ITCDIC过程的理想物系和非理想物系的建模、仿真、控制和集成优化的研究工作。成功地建立了ITCDIC过程的稳态和动态数学模型、操作参数的集成优化模型;给出了相应的仿真和优化算法;进行了详细的热耦合机理、操作特性、动态品质和参数优化研究。为进一步的理论研究、中试和工业化奠定了扎实的基础。研究成果已处于国际领先水平,并开发出了相应的系列软件。主要内容如下:
     ● 提出了一个新的ITCDIC过程数学模型并给出了相应的仿真算法,通过对该模型的仿真不仅可以得到ITCDIC静态和动态操作特性,而且可以得到与常规精馏塔相较的比较特性,比如节能百分率、热力学效率上升百分率。
The Internal Thermally Coupled Distillation Column (ITCDIC) is the frontier of distillation energy saving research. The researches are mainly in Japan and Institute of Industrial Process Control of Zhejiang University. The research results show that the energy saving percent of ITCDIC is up to 30%~40% and the operation expense saving percent of ITCDIC is close to 30%, compared with the energy consumption and operation expenses of conventional distillation column (CDIC) under the minimum reflux ratio operation respectively.
    The manipulation of internal thermal coupling is accomplished through heat exchange between the rectifying and the stripping sections. In order to provide the necessary temperature driving force for the heat to be transferred from the rectifying section to the stripping section, the former must be operated at a higher pressure than the latter. For adjusting the pressure, a compressor and a throttling valve are installed between the two sections. Due to the internal thermal coupling, a certain amount of heat is transferred from the rectifying section to the stripping section and brings the downward reflux flow for the rectifying section and the upward vapor flow for the stripping section. As a result, the condenser and reboiler are not required, and energy savings are realized.
    This research project is China-Japan cooperative project "Research on energy savings and alleviating environmental burden in petroleum enterprises" between Institute of Industrial Process Control of Zhejiang University and National Institute of Material and Chemical Research of Japan, supported by National Environmental Protection Bureau of P. R. China (Huan-Ke-Ke, 1997, No 006, Project 14). The purpose is to research the operational characteristics, dynamic behaviors and control
引文
Ballman, S. H., and Gaddy, J. L.; Optimization of Methanol Process by Flowsheet Simulation, I&EC Proc. Des. Dev., Vol. 16, No. 3, 337~341, 1977
    Batista, E., and Meirelles, A.; Simulation and Thermal Integration SRV in Extractive Distillation Column, J. Chem. Eng. Japan, vol. 30, No. 1, 45~51, 1997
    Bema, T. J., Locke, M. H. and Westerberg, A. W.; A New Approach to Optimization of Chemical Processes, AIChE J., Vol. 26, No. 1, 37~43, 1980
    Biegler, L. T., and Hughes, R. R.; Approximation Programming of Chemical Processes With Q/LAP, Chem. Eng. Progress, Vol. 77, No. 4, 76~83, 1981
    Biegler, L. T., and Hughes, R. R.; Infeasible Path Optimization with Sequential Modular Simulator, AIChE J., Vol. 28, No. 6, 994~1002, 1982
    Biegler, L. T.; Chemical Process Simulation, Chem. Eng. Progress, Vol. 85, No. 10, 50~61, 1989
    Biegler, L. T.; Tailoring Optimization Algorithms to Process Applications, European Symposium on Computer Aided Process Engineering, ESCAPE-1, Supplement to Computers Chem. Engng. Vol. 16, Supp., 81~96, 1992
    Biegler, L. T., Nocedal, J., and Blau, G. E.; A Reduced Hessian Method for Largescale Constrained Optimization, SIAM J. Optimization, 5(2), 314~347, 1995
    Bird, R. D., Stewart, W. E., and Lightfoot, E. N.; Transport Phenomena, Chapt.21, John Wiley & Sons, New York, 1960
    Boston, J. F.; Process Modeling Works, Chem. Tech., Vol. 20, No. 2, 100~105, 1990
    Box, G. E. P., et al; Evolutionary Operation, John Wiley Inc., 1969
    Brousse, E., Claudel, B., and Jallut, C.; Modeling and Optimization of the Steady State Operation of a Vapor Reeompression Distillation Column, Chem. Eng. Sci., Vol. 40, No. 11, 2073~2078, 1985
    Canales, E. R., and Femando, E.M.; Operation and Experimental Results on a Vapor Recompression Pilot Plant Distillation Column, Ind. Eng. Chem. Res., Vol. 31, No. 11 2547~2555, 1992
    Chen, Bingzhen, and Westerberg, A. W.; Structural Flexibility for Heat integrated Distillation Columns—1 Analysis, Chem. Eng. Sci., 41(2), 355~363, 1986
    Chen, H. S., and Stadtherr, M. A.; A Simultaneous-Modular Approach to Process Flowsheeting and Optimization--Part Ⅰ: Theory and Implementation, AIChE J, Vol. 31, No. 11, 1843~1856, 1985a
    Chen, H. S., and Stadtherr, M. A.; A Simultaneous-Modular Approach to Process Flowsheeting and Optimization—Part Ⅱ: Performance on Simulation Problems, AIChE J., Vol. 31, No. 11, 1857~1868, 1985bChen, H. S., and Stadtherr, M. A.; A Simultaneous-Modular Approach to Process Flowsheeting and Optimization—Part Ⅲ: Performance on Optimization Problems, AIChE J., Vol. 31, No. 11, 1868~1881, 1985c
    Cho, Y. S., and Joseph, B.; Reduced-Order Steady-State and Dynamic Models for Separation Processes—Part1: Development of the Model Reduction Procedure, AIChE J., vol. 29, No. 2, 261~269, 1983a
    Cho, Y. S., and Joseph, B.; Reduced-Order Steady-State and Dynamic Models for Separation Processes—Part2: Application to Nonlinear Multi-component Systems, AIChE J., vol. 29, No. 2, 270~277, 1983b
    Choe, Y. S., Luyben, W. L.; Rigorous Dynamic Models of Distillation Columns, Ind. Eng. Chem. Res., Vol. 26, 2158~2161, 1987
    Coppus, G. W., Shah, S. L., and Wood, R. K., Robust Multivariable control of a Binary Distillation Column: IEE Proceedings, Vol. 130, No. 5, 1983
    Cuthrell, J. E., Biegler, L. T.; On the Optimization of Differential-Algebraic process Systems, AIChE J, 33(8): 1257, 1987
    Dartt, S. R.,; A Survey on Process control on Application Needs, Chem. Eng. Progress, Vol. 81, No. 12, 1985
    Deshpande, EB.; Distillation Dynamics and control, Instr. Soci. of American, 1985 Distefano, G. E, AIChE J., Vol. 14, 190, 1968
    Edgar, T. F., Himmelblau, D. M.; Opt. of Chem. Pro., McGraw-Hill, 1988
    Edgar, T. E, Schwanke, C. D.; A Review of the Application of Modem Control Theory to Distillation Column, Proceeding of JACC, Vol. 2, 1977
    Ellingson, W. R.; Operation Cost Optimization Using a Dynamic Process Model, Chem. Eng. Progress, Vol. 79, No. 2, 1983
    Fidkowski, Z, Krolikowski, L.; Thermally Coupled System of Distillation Columns: Optimization Procedure, AIChE J, 32(4), 537, 1986
    Fidkowski, Z, Krolikowski, L.; Minimum Energy Requirements of Thermally Coupled Distillation Systems, AIChE J, 33(4), 643~653, 1987
    Fidkowski, Z, Krolikowski, L.; Energy Requirements of Nonconventional Distillation Systems, AIChE J,, 36(8), 1275~1278, 1990
    Finco, M. V., and Luyben, W. L.; Control of Distillation Columns with Low Relative Volatilities, Ind. Eng. Chem. Res., Vol. 28, No. 1, 75~83, 1989
    Finn, A. J.; Consider Thermally Coupled Distillation, Chem. Eng. Pro., Oct., 41, 1993
    Fitzmorris, R. E., and R. S. H. Mah, Improving Distillation Columns Design Using Thermodynamic Availability Analysis, AIChE J., 26(2), 265, 1980
    Franks, R. G. E.; Modeling and Simulation in Chemical Engineering, New York, Wiley-Interscience, 1972Friedman, P., Pinder, K. L; Optimization of a Simulation Model of a Chemical Plant, I&ECProc. Des. Dev., Vol. 11, No. 4, 512~520, 1972
    Fuentes C., and Luyben, W. L.; Control of High-Purity distillation Columns, Ind Eng. Chem. Process Des. Dev., Vol. 22, 361~366, 1983
    Gaines, L. D. and Gaddy J. L.; Process Optimization by Flowsheet Simulation, I&EC Proc. Des. Dev., Vol. 15, No. 1, 206~211, 1976
    Galler, EW., Kisala, T. P.; Process Optimization by Simulation, Chem. Eng. Progress, Vol. 83, No. 8, 1987
    Gallun, S. E., Lueche, R. H., et al; Use Open Equations for Better Models, Hydrocarbon Proc., vol. 71, No. 7, 78~90, 1992
    Glinos K, Malone M F.; Optimality Regions for Complex Column Alternatives in Distillation Systems, Chem. Eng. Res. Des., 66(5), 229, 1988
    Gorezynski, E. W., hutchison, H. E, and Wajih, A. R. M.; Development of a Modularly Organised Equation-Oriented Process Simulator, Comput. Chem. Engng., vol. 3, 353~356, 1979
    Halemane, K. P., and Grossmann, I. E.; Optimal Process Design under Uncertainty, AIChE J., Vol29, No. 3, 425~433, 1983
    Han, M., and Park, S.; Control of High-Purity Distillation Column Using a Nonlinear Wave Theory, AIChE J., Vol. 39, No. 5, 787~796, 1993
    Han, S. P.; Supperlinearly Convergent Variable Metric Algorithms for General Nonlinear Programming Problems, Math. Prog., Vol. 11, 263, 1976
    Han, S. P.; A Globally Convergent Method for Nonlinear Programming, J. Opt. Theory Appl., Vol. 22, 297, 1977
    Himmelblau, D. M.; Applied Nonlinear Programming, McGraw-Hill, New York, 1972
    Hlavacek, V.; analysis of a Complex Plant-Steady State and Transient Behavior, Comput. Chem. Engng., vol. 1, No. 1, 75~100, 1977
    Homsak, M., Glavic, P.; Pressure Exchangers in Pinch Technology, Computers Chem. Engng., Vol. 20, No. 6/7, 711~715, 1996
    Hu, Y. C., and Ramirez, W. F.; Application of Modern Control Theory to Distillation Columns, AIChE J., Vol. 8, No. 3, 1972
    Huang, K. J., M. Nakaiwa, T. Akiya, K. Aso, and T. Takamatsu, A Numerical Consideration on Dynamic Modeling and Control of Ideal Heat Integrated Distillation Columns, J. Chem. Eng. Japan, 29(2), 344, 1996
    Huang, K. J.; Nakaiwa, M.; Akiya, T.; Owa, M.; Takamatsu, T., Performance Evaluation of Ideal Heat Integrated Distillation Columns, J. Chem. Eng. Japan 30(1), 108~115, 1997a
    Huang, K. J., Nakaiwa, M., Akiya, T., et al; Determining Appropriate Configuration??of an Ideal Heat integrated Distillation Column (HIDIC), J. Chem. Eng. Japan 30(3), 575~579, 1997b
    Huang, K. J., Nakaiwa, M., et al; Identification an Internal Model control of an Ideal Heat integrated Distillation Column (HIDIC), J. Chem. Eng. Japan 31(1), 159~164, 1998
    Huthison, H. P., Jackson, D. J., and Morton, W.; the Development of an Equationoriented Flowsheet Simulation and Optimization Package—Ⅰ: The Quasilin Program, Comp. Chem. Eng., Vol. 10, No. 1, 19~29, 1986a
    Huthison, H. P., Jackson, D. J., and Morton, W.; the Development of an Equationoriented Flowsheet Simulation and Optimization Package—Ⅱ: Examples and Results, Comp. Chem. Eng., Vol. 10, No. 1, 31~47, 1986b
    Josep, A. F., Francesc, C., and Joaquln, E; Optimization of a Distillation Column with a Direct Vapor Recompression Heat Pump, Ind. Eng. Chem. Process Des. Dev., Vol. 24, No. 1, 128~132, 1985
    Kane, L.; Handbook of Advance Process Control and Instrumentation, Gulf Publishing Company, 1987
    Knapp, J P, Doherty, M F.; Thermal Integration of Homogeneous Azeotropic Distillation Sequences, AIChE J., Vol. 36, No. 7, 969~984, 1990
    Koch, D. H.; the Future: Benefiting from New Tools, Techniques, and Teaching, Chem. Eng. Progr., vol. 93, No. 1, 66~72, 1997
    Krajnc, M., and Glavic, P.; The Influence of Different Temperature Contributions on Heat Integrated Process Structure, Trans IChemE, Vol. 73, Part A, Nov., 880~888, 1995
    Lang, L.; Dynamic Behavior and Operational Aspects of Heat-Integrated Distillation Processes, Chem. Eng. Tech., Vol. 19, 498-497, 1996
    Lau, H., Alvarez, J., and Jensen, K. F.; Synthesis of Control Structures by Singular Value Analysis: Dynamic Measures of Sensitivity and Interaction, AIChE J., Vol. 31, No. 3, 427~439, 1985
    Lauks, U. E., Vanbinder, R. J., et al, On-Line Optimization of an Ethylene Plant, European Sym. On Computer Aided Process Engineering, ESCAPE-1 Supplement to Comput. Chem. Engng., Vol. 16, 213~220, 1992
    Lestak, F.; Smith, R.; Dhole, V. R., Heat Transfer Across the Wall of Dividing Wall Columns, Trans. IChemE., 72(A9), 639~644, 1994
    Levien, K. L., Morari, M.; Internal Model Control of Coupled distillation Columns, AIChE J., 33(1), 83~98, 1987
    Lirmhoff, B., Flower, J. R.; synthesis of Heat Exchanger Networks, AIChE J. Vol. 34, No. 4, 633~654, 1978Linnhoff, B., Mason, D. R., and Wardle, I.; Understanding heat Exchanger Networks, Comput. Chem. Eng., Vol. 3, 295~302, 1979
    Linnhoff, B.; Pinch Analysis-A State of the Art Review, Trans. IChemE, 71A, 503, 1993
    Linnhoff, B., Dunford, H., and Smith, R.; Heat integration of Distillation Columns into Overall Proesses, Chem. Eng. Sci., Vol. 38, No. 8, 1175~1188, 1983a
    Linnhoff, B., Hindmarsh, E.; The Pinch Design Method for Heat Exchanger Networks, Chem. Eng. Sci., Vol. 38, No. 5, 745~763, 1983b
    Liu Xingao, Ma Longhua and Qian Jixin; Thermodynamic analysis, simulation and optimization of Internal Thermally Coupled Distillation Columns, Chinese J. of Chem. Eng. (English), 1998a. (in press)
    Liu Xingao, Qian Jixin, Optimization of Internal Thermally Coupled Distillation Columns, Dev. in Chem. Eng. & Min. Pro., (in Press), 1999a
    Locke, M.H., and Westerberg, A.W.; The ASCEND-Ⅱ System-A Flowsheeting Application of a Successive Quadratic Programming Methodology, AIChE Ann. Meet., Los Angeles, 1982
    Locke, M.H., Edahl, R., and Westerberg, A. W.; Improved Successive Quadratic Programming Optimization Algodthm for Engineering Design Problems, AIChE J., Vol. 29, No. 5, 871~874, 1983
    Lueprasitsakul, V., S. Hasebe, I. Hashimsto, and T. Takamatsu, Analyses of the Characteristics of a Binary Packed Distillation Column with Internal Heat Integration, J. Chem. Eng. Japan, 23(6), 686, 1990a
    Lueprasitsakul, V., S. Hasebe, I. Hashimsto, and T. Takamatsu, Study of Energy Effieiency of a Wetted-wall Distillation Column with Internal Heat Integration, J. Chem. Eng. Japan, 23(5), 580, 1990b
    Luyben, W. L.; Simple Method for Tuning SISO Controllers inMultivariable Systems, Ind. Eng. Chem. Process Des. Dev., Vol. 25, 654~660, 1986
    Luyben, W. L.; Derivation of Transfer Functions for Highly Nonlinear Distillation Columns, Ind. Eng. Chem. Res., Vol. 26, 2490~2495, 1987
    Luyben, W. L.; Dynamics and Control of Recycle Systems—1: Simple Open-Loop and Closed-Loop Systems, 1rid. Eng. Chem. Res., Vol. 32, 466~475, 1993a
    Luyben, W. L.; Dynamics and Control of Recycle Systems—2: Comparison of Alternative Process Designs, Ind. Eng. Chem. Res., Vol. 32, 476~486, 1993b
    Luyben, W. L.; Dynamics and Control of Recycle Systems—3: Alternative Process Designs in a Ternary System, Ind. Eng. Chem. Res., Vol. 32, 1142~1153, 1993c
    Luyben, W. L.; Dynamics and Control of Recycle Systems—4: Ternary Systems with One or Two Recycle Streams, Ind. Eng. Chem. Res., Vol. 32, 1154~1162, 1993dMah, R. S. H., Michaelson, S., and Sargent, R. W. H.; Chem. Eng. Sci., 17, 619, 1982
    Mah, R. S. H., Nicholas, J. J., and Wodnik, R. B.; Distillation with Secondary Reflux and Vaporization: A Comparative Evaluation, AIChE J., 23(5), 651, 1977
    Mahalec, V., Kluzik, H., and Evans, L. B.; Simultaneous Modular Algorithm for Steady State Flowsheet Simulation and Design, 12th Eur. Sym. Computers in Chem. Eng., Montreux, Switzerland, 1979
    Marqurdt, W.; Trends in Computer-Aided Process Modeling, Comput. Chem. Eng., Vol. 20, No. 6/7, 591~609
    Mclane, M., Sood, M. K., and Reklaitis, G. V.; A Hierarchical Strategy for Large-Scale Process Calculations, Comput. Chem. Engng., vol. 3, 383~394, 1979
    Metcalfe, S. R., and Perkins, J. D.; Information Flow in Modular Flowsheeting Systems, Trans. IchemE., Vol. 6, 210, 1978
    Mix, T. J., Dweck, J. S., Weinberg, M., and Armstrong, R. C.; Chem. Eng. Pro., Vol. 74, No. 4, 49, 1978
    Morari, M., and Faith, D. C.; The synthesis of distillation Trains with Heat Integration, AIChE J., Vol. 26, No.6, 916~928, 1980
    Moser, F., and Schnitzer, H.; Heat Pump in Industry, New York, 1985
    Motard, R. L., Shacham,. M., and Rosen, E. M.; Steady State Chemical Process Simulation, AIChE J., vol. 21, No. 3, 417~436, 1975
    Muhrer, C. A., Collura, M. A., Luyben, W. L.; Control of Vapor Recompression Distillation Columns, Ind Eng. Chem. Res., Vol. 29, 59~71, 1990
    Mutalib, M. I. A., Zeglam, A. O.; Smith, R., Operation and Control of Dividing Wall Distillation Columns, Part 2, Trans. IChemE., 76(A3), 319, 1998a
    Mutalib, M. I. A., Smith, R.; Operation and Control of Dividing Wall Distillation Columns, Part 1, Trans. IChemE, 76(A3), 308, 1998
    Null, H. R.; Heat Pumps in Distillation, Chem. Eng. Pro., July, 1976
    Pantelides, C. C.; SPEEDUP: Recent Advances in Process Simulation, Paper at AIChE Annual Conf., Miami, 1986
    Peiser, A. M., and Grover, S. S., Chem. Eng. Prog., Vol. 58, 65, 1962
    Pemberton, R. C., and Mash, C. J.; Thermodynamic Properties of aqueous Nonelectrolyte Mixtures—Ⅱ Vapour Pressures and Excess Gibbs Energies for water+Ethanol at 303..15 to 363.15 K Determined by an Accurate Static Method, J. Chem. Thermodynamics, Vol. 10, 867~888, 1978
    Perkins, J. D.; Efficient Solution of Design Problems Using a Sequential-Modular Flowsheeting program, Comput. Chem. Engng., Vol. 3, 375~381, 1979
    Perkins, J. D., and Sargent, R. W. H.; SPEEDUP: A computer Program for Steady-State and Dvnamic Simulation of chemical Processes, Selected Topics on Computer-??Aided Process Design and Analysis, R. S. H. Mah and G. V. Reklaitis, Eds., AIChESymp. Ser., Vol. 78, 1, 1982
    Piela, P. C., Epperly, T. G. Westerberg, K. M., and Westerberg, A. W.; ASCEND: An Object-oriented Environment for Modeling and Analysis: The Modeling Language, Comput. Chem. Engng., Vol. 15, 53~72, 1991
    Prokopakis, G. J., and Seider, W. D.; AIChE J., Vol. 29, 1017, 1983
    Rademaker, O., Rijnsdorp, J. E., and Marleveld, A.; Dynamics and Control of Continuous Distillation Units, Elsevier Scientific Publishing Company, 1975
    Rathore, R. N. S., K. A. V. Wormer, and G. J. Powers; Synthesis Strategies for Multicomponent Separation Systems with Energy Integration, AIChE J., 20(3), 491, 1974
    Rev, E., and Fonyo, Z.; Diverse Pinch concept for Heat Exchange Network Synthesis: The Case of Different heat Transfer Conditions, Chem. Eng. Sci., Vol. 46, No. 7, 1623~1634, 1991
    Roffel, B., Kanters, E. M. W.; Multivariable control of Integrated Distillation Towers with Heat Pump, Hydrocarbon pro, December, 87~92, 1996
    Rosen, E. M.; Steady State chemical Process Simulation-state of the Art Review, Comput. Appl. To chem. Engng., 1980
    Rovaglio, M., Ranzi, E., Biardi, G., and Faravelli, T.; Rigorous Dynamics and Control of Continuous Distillation Systems—Simulation and Experimental Results, Comput. Chem. Engng., Vol. 14, No. 8, 871~887, 1990
    Rys, R. A.; Advanced Control Techniques for Distillation Columns, Chem. Eng., Vol. 91, No. 25, 1984
    Samir, I. A. E., and Luybeh, W. L.; Design and Control of a Two-Column Azeotropic Distillation System, Ind. Eng. Chem. Process Des. Dev., Vol. 24, 132-140, 1985
    Salim, M. A., Sadasivam, M. And Balakrishnan, A. R.; Transient analysis of heat pump assisted distillation systems—1 the Heat Pump, International J. of Energy Res., Vol. 15, 123~135, 1991
    Salim, M. A., Sadasivam, M. And Balakrishnan, A. R.; Transient analysis of heat pump assisted distillation systems—2 Column and System Dynamics, International J. of Energy Res., Vol. 15, 123~135, 1991
    Schmid, C., and Biegler, L. T.; Acceleration of Reduced Hessian Methods for Largescale Nonlinear Programming, Comput. Chem. Engng., Vol. 17, No. 5, 451~463, 1993
    Schmid, C., and Biegler, L. T.; A Simultaneous Approach for Flowsheet Optimization with Existing Modeling Procedures, Trans. IchemE., Vol. 72, Part A, May, 382~388, 1994aSchmid, C., and Biegler, L. T.; Quadratic Programming Methods for Reduced Hessian SQP, Comput. Chem. Engng., Vol. 18, 817~832, 1994b
    Seider, W. D., White, C. W., and Prokopakis, G. J.; Stiff Ordinary Differential Equations in Chemical Process Analysis, Processing of the AIChE-SIESC Meeting in Beijing, China, 1982
    Shacham, M., et al; Eqution-oriented Approach to Process Flowsheeting, Comput. Chem. Engng., Vol. 6, No. 2, 79~95, 1982
    Shinskey, F. G.; Distillation Control for Productivity and Energy Conservation, The Foxboro Company, 1984
    Shimizu, K., B. R. Holt, M. Morafi, and R. S. H. Mah; Assessment of Control Structures for Binary Distillation Columns with Secondary Reflux and Vaporization, Ind Eng. Chem. Pro. Des. Dev., 24, 852, 1985
    Skogestad, S., and Morari, M.; Understanding the Dynamic Behavior of Distillation columns, lnd. Eng. Chem. Res., Vol. 27, 1818~1862, 1988
    Slaby, J.; Rigorous On-line Modeling of an industrial Crude Unit, AIChE Spring National Meeting, Houston, Texas, March, 19~23, 1995Smith, R., and Linnhoff, B.; the Design of Separators in the Context of Overall Processes, Chem. Eng. Res. Des., Vol. 66, May, 195~228, 1988
    Sood, M. K. Reklaitis, G. V., and Woods, J. M.; Solution of Material Balances for Flowsheets Modeled with Elementary Modules: The Unconstrained Case, AIChE J., vol. 25, No. 2, 209~219, 1979a
    Sood, M. K. and Reklaitis, G. V.; Solution of Material Balances for Flowsheets Modeled with Elementary Modules: The Constrained Case, AIChE J., vol. 25, No. 2, 220~229, 1979b
    Sood, M. K., Khanna, R., and Reklaitis, G. V.; A Two-Level Approach Exploiting Sparsity in Flowsheet Material Balancing, AIChE National Meeting, 1979c
    Stadtherr, M. A. and Hilton, C. M.; Development of a New Equation-Based Process Flowsheetion System: Numercal Studies, Selected Topics on Computer-aided Process Design and Analysis, R. S. H. Mah and G. V., Reklaitis, Eds., AIChE Syrup. Set., Vol. 78, 12, 1982a
    Stadtherr, M. A. and Hilton, C. M.; On Efficient Solution of Large-Scale NewtonRaphson-Based Flowsheeting Problems in Limited Core, Comput. Chem. Engng., Vol. 6, No.2, 115~120., 1982b
    Takamatsu, T., Lueprasitsakul, V., Nakaiwa, M.; Modeling and Design Method for Internal Heat Integrated Packed Distillation Column, d. Chem. Eng. Japan Vol.. 21, No. 6, 595, 1988
    Tedder, D. W., and Rudd, D. F.; Parametric Studies in Industrial Distillation, AIChE J.,??Vol. 24, No. 2, 303~315, 1978
    Tian, M. H.; B/T, Vol. 23, 118, 1983
    Tolliver, T. L., and Waggoner, R. C., Distillation Column Control: A Review and Perspective from the CPI, Adv. In Instrumentation, Vol. 35, No. 1, 1980
    Triantafyllou, C., and R.. Smith; The Design and Optimization of Fully Thermally Coupled Distillation Columns, Trans. IChemE, 70(A3), 118~132, 1992
    Tyreus, B. D., Luyben, W. L.; Controlling Heat Integrated Distillation Columns, Chem. Eng. Pro., 72(9), 59~66, 1976
    Tyreus, B. D., Luyben, W. L., and Schiesser, W. E.; I&EC Process Des. Dev., Vol. 14, 427, 1985
    Umeda, T., K. Niida, K. Shiroko; A Thermodynamic Approach to Heat Integration in Distillation Systems, AIChE J., 25(3), 423, 1979
    Vasantharajan S., and Biegler, L. T.; Large-scale Decomposition for Successive Quadratic Programming, Comput. Chem. Engng., 12(11), 1087~1101, 1988a
    Vasantharajan S., and Biegler, L. T.; Simultaneous Solution of Reactor Models within Flowsheet Optimization, Chem. Eng. Res. Des., Vol. 66, Sep., 396~406, 1988b
    Vasantharajan S., Viswanathan, J., and Biegler, L. T.; Reduced Successive Quadratic Programming Implementation for Large-scale Optimization Problems with Smaller Degrees of Freedom, Comput. Chem. Engng., Vol. 14, 907~915, 1990
    Waggoner, R. C., and Holland, C. D.; AIChE J., Vol. 11, 112, 1985
    Waller, K. V.; University Research on Dual Composition Control of Distillation; A Review, Chemical Process Control, 1981
    Waller, K. V.; An Experimental Comparison of Four Control Structures for Two-Point Control of Distillation, Ind. Eng. Chem. Res., Vol. 27, 624~630, 1988
    Westerberg, A. W., et al; Process Flowsheeting, Cambridge Univ. Press, 1979
    Westerberg, A. W., Abbott, K. And Allan, B.; Plant for ASCEND Ⅳ: Our Next Generation Equational-Based Modeling Environment, Paper Presented at AspenWorld'94, Boston, MA, 1994
    William, J. P.; Control System Engineering, McGraw-Hill, New York, 485~486, 1986
    Yee, T. F., Grossmann, I. E., and Kravanja, Z.; Simultaneous Optimization Models for Heat Integration—Ⅲ Process and Heat Exchanger network Optimization, Comput. Chem. Engng., Vol. 14, No. 11, 1185~1200, 1990
    Yu, C. C., Luyben, W. L.; Design of Multiloop SISO Controllers in Multivariable Processes, Ind Eng. Chem. Process Des. Dev., Vol. 25,498~503, 1986
    陈丙珍,何小荣,沈静珠,逐次二次规划法求解化工流程优化问题的研究,清华大学学报,Vol.28,No.3,33~41,1988陈捷,王树青,王宁,王骥程;多侧线精馏塔的神经网络控制,化工学报,Vol.47.No.3,376~380
    岗崎令司;现有工厂的最佳化方法,化学技术志,Vol.18,No.3
    郭天民;多元汽液平衡和精馏,化学工业出版社,北京,1983
    蒋慰孙,俞金寿;化工过程动态数学模型,化学工业出版社,1986
    蒋慰孙,俞金寿;过程控制工程,烃加工出版社,1988
    金以慧;过程控制,清华大学出版社,1993
    李凤华,樊希山,姚平经:热耦精馏塔在化工节能改造中的可行性,石油化工,Vol.24,No.11,783~796,1995
    李海青;两相流参数检测及其应用,浙江大学出版社,1991
    刘兴高,钱积新,内部热耦合精馏塔的初步设计的模型化和操作分析,化工学报,1998b,已录用。
    刘兴高,钱积新,内部热耦合精馏塔的初步设计的控制分析和参数优化,化工学报,1998c,已录用。
    刘兴高,马龙华,钱积新,理想内部热耦合精馏塔的一体化设计(Ⅰ),制造业自动化,Vol.21(Sup.),349-351,1999b
    刘兴高,马龙华,钱积新,“理想内部热耦合精馏塔的一体化设计(Ⅱ),制造业自动化,Vol.21(Sup.),P352-356,199c
    Luyben,W.L.;化学工程师使用的过程模型化模拟及控制,北京原子能出版社,1988
    秦永胜,徐用懋,方崇智,唐杰;多元精馏过程的非平衡级动态模型,化工学报,Vol.48,No.2,166~174,1997
    邵惠鹤:化工过程最优控制,化学工业出版社,1990
    邵之江:博士学位论文,浙江大学,1997
    沈静珠:过程系统优化,清华大学出版社,北京,1994
    苏永宏:徽型计算机及其在蒸馏控制中的应用,中国石油化工出版社,1990
    王树青:生化反应过程模型化及计算机控制,浙江大学出版社,1998
    徐用懋;微计算机在过程控制中的应用,清华大学出版社,1989
    杨冀宏,麻德贤;过程系统工程导论,北京:烃加工出版社,1989
    杨友麒:化工过程系统的模拟分析与合成,化学工程,Vol.71,No.1,57~68,1984
    杨友麒:热耦合精馏塔操作特性的模拟研究,化工学报,41(4),491~497,1990
    杨友麒;过程流程模拟,计算机与应用化学,Vol.12,No.1,1~6,1995
    余国琮,袁希钢;我国蒸馏技术的现状与发展,现代化工,No.10,7~13,1996
    俞金寿,何衍庆;集散控制系统理论及应用,北京化工出版社,1995
    张余岳:博士学位论文,浙江大学,1998
    周春晖:化工过程控制原理,化学工业出版社,1980

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700