Y_(2-x)Er_xMo_4O_(15)与Y_(2-x)Sm_xW_3O_(12)系列复合氧化物材料的合成、结构表征和负热膨胀性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了寻找新的负热膨胀材料,深入探讨负热膨胀机理,研究其基本物理性能,本文利用固相合成法合成了Y_(2-x)Er_xMo_4O_(15)与Y_(2-x)Sm_xW_3O_(12)两个系列,并利用常温X-ray粉末衍射、高温X-ray粉末衍射和热重分析等手段系统地研究了其晶体结构及热膨胀等一些物理性能,主要研究内容及结果如下:
     (1)合成了系列新型稀土化合物Y_(2-x)Er_xMO_4O_(15)(x=0.0-2.0)。通过X-ray粉末衍射实验研究发现:结构上与典型的负热膨胀材料ZrW_2O_8和ZrV_2O_7有拓扑相似性,其晶格参数a,b,c,β和晶胞体积V随着Er含量的增加线性减小。高温X-ray粉末衍射结果显示此系列的化合物有相似的正热膨胀性能。通过衍射数据的分析,得出:共有边O14-O23是阻碍负热膨胀产生的主要因素,弱键Mo2-O14是正热膨胀产生的主要原因。通过类比,探讨了ZrW_2O_8的W1-O3键随着温度的升高对晶格产生的影响,提出了ZrW_2O_8相变的可能模型。
     (2)合成了系列新型稀土固溶体Y_(2-x)Sm_xW_3O_(12)(x=0.0-0.4),并利用X-ray粉末衍射研究了其结构。所有的样品以Pnca的正交空间群结晶。它们的晶胞参数和晶胞体积随着Sm含量的增加而增加。本文也通过X-ray粉末衍射研究了纯Sm_2W_3O_(12)的结构。常温Y_(2-x)Sm_xW_3O_(12)的吸水性能通过热重分析和高温X-ray粉末衍射得到了研究。本文也讨论了水分子在晶体结构和热膨胀性能的改变方面所扮演的角色。利用高温X-ray粉末衍射实验研究了Y_(2-x)Sm_xW_3O_(12)系列的热膨胀性能。在研究的200—600℃温区范围内,这个系列的化合物在a,b,c三个方向表现出很强的负热膨胀行为。通过调节Y_(2-x_Sm_xW_3O_(12)中的Sm的含量,成功地制备了具有可变热膨胀系数的化合物。所制备的化合物随着Sm含量的增加,其负热膨胀性能变小,室温下的晶胞吸水量变少。通过分析,探讨了Sm含量的掺杂所产生的影响。
To search for more negative thermal expansion(NTE) materials, better understand mechanisms of NTE and study their physical properties, new series of rare earth compounds Y_(2-x)Er_xMo_4O_(15) and Y_(2-x)Sm_xW_3O_(12) were prepared successfully by the conventional solid state reaction technique. Their structures, thermal expansion properties and other physical properties were studied systematically by ambient X-ray diffraction, high temperature X-ray diffraction, thermogravimetric analysis etc. The main research contents and results are as follows:
     (1) A new series of rare earth compounds Y_(2-x)Er_xMo_4O_(15)(x=0.0-2.0) were prepared successfully. Their structures have been studied using powder X-ray diffraction(XRD) and were found to have the topological similarity to the structures of typical NTE materials ZrW_2O_8 and ZrV_2O_7. The lattice parameters a, b, e,βand the unit cell volume V decrease linearly with increasing Er content. Thermal expansion properties have been investigated by high-temperature X-ray diffraction. The results indicate that the compounds of this series have similar normal positive thermal expansion behavior. According to the analysis of diffraction data, the common edge O14-O23 should be the main resistance for NTE behavior and the weak bond M02-O14 should be responsible for the positive thermal expansion in these compounds. By comparison, the effect of band W1-O3 in ZrW_2O_8 is discussed. As a result, a possible model for the phase transition of ZrW_2O_8 is put forward.
     (2) A new series of rare earth solid solutions Y_(2-x)Sm_xW_3O_(12)(x=0.0-0.4) were synthesized successfully and studied by means of powder X-ray diffraction. All samples crystallize in an orthorhombic space group Pnca. The lattice parameters a, b, c and unit-cell volume V of Y_(2-x)Sm_xW_3O_(12) increase monotonically with increasing Sm content. The structure of pure Sm_2W_3O_(12) was also studied by powder X-ray diffraction. The hygroscopic property of Y_(2-x)Sm_xW_3O_(12) at room temperature was studied by TG analysis and high temperature X-ray diffraction. The role of water molecules, in determining the change of crystal structures and thermal expansion behavior has been discussed. The thermal expansion behavior of the Y_(2-x)Sm_xW_3O_(12) compositions has been studied by high temperature X-ray diffraction. In the studied temperature range, 200-600℃, the compounds of this series show strong negative thermal expansion along all three axes(a, b and c). By adjusting the Sm content in Y_(2-x)Sm_xW_3O_(12), compounds with variable thermal expansion coefficient can be prepared. The prepared compound becomes less pronounced in negative thermal expansion and stores less water content with increasing Sm content at room temperature. The effect of the intermingle of Sm content has been speculated in this paper.
引文
[1] 谭强强,张中太,方克明,功能材料,2003年,4(34),353—356
    [2] 山井岩,日本名古屋工业大学窑业技术研究施设年报,1983年,10,21—33
    [3] I.Yamai, T.Oota, J.Am.Ceram.Soc, 1985, 68(5), 273-278
    [4] 山井岩,太田敏孝,日本名古屋工业大学窑业技术研究施设年报,1981,8,13—18
    [5] T.R.Ravindran, Akhilesh K.Arora, T.A.Mary, Phys.Rev.Lett., 2000, 84 (17), 3879—3882
    [6] D.Givord, R.Lemaire, W.J.James, J.M.Moreau, J.S.Shah, IEEE Trans.Magn., 1971, MAG-7, 657-659
    [7] D.Givord, R.Lemaire, IEEE Trans. Magn., 1974, MAG-10, 109-113
    [8] V.Korthuis, N.Khosrovani, A.W.Sleight, Chem. Mater., 1995, 7, 412-417
    [9] A.W.Sleight, T.A.Mary, J.S.O.Evans, U.S. Patent, 5514360, 1995
    [10] T.A.Mary, J.S.O.Evans, T.Vogt and A.W.Sleight, Science, 1996, 272, 90-92
    [11] J.S.O.Evans, T.A.Mary and A.W.Sleight, J. Solid State Chem., 1997, 133,580-583
    [12] N.Khosrovani, A.W.Sleight, T.Vogt, J. Solid State Chem., 1997, 132, 355-360
    [13] J.S.O.Evans, T.A.Mary andA.W.Sleight, J. Solid State Chem., 1998, 137, 148-160
    [14] EM.Forster, A.Yokochi, A.W.Sleight, J.Solid State Chem., 1998, 140, 157-158
    [15] Cora Lind, Angus P.Wilkinson, Zhongbo Hu, Simine Short, and James D.Jorgensen, Chem. Mater., 1998, 10(9), 2335-2337
    [16] David A.Woodcoek, Philip Lightfoot and Clemens Ritter, J. Solid State Chem., 2000, 149, 92-98
    [17] L.Sebastian, S.Sumithra, J.Manjanna, A.M.Umarji, J.Gopalakrishnan, Mat. Sci. Eng. B Solid, 2003, 103,289-296
    [18] Volker Heine, Patrick R.L.Welche, Martin T.Dove, J.Am.Ceram.Soc, 1999, 82(7), 1793-1802
    [19] 关振铎,张中太,焦金生,无机材料物理性能,北京,清华大学出版社,1992
    [20] 曾竟成,罗青,唐羽章,复合材料理化性能,长沙,国防大学出版社,1998
    [21] I. D. Brown, D. Altermatt, Acta Cryst. B, 1985, 41, 244-247
    [22] N. E. Brese, O'Keeffe, Acta Cryst. B, 1991, 47, 192-197
    [23] G. A. Rossetti, J. P. Cline and A. Navrotsky, J. Mater. Res., 1998, 13, 3197
    [24] A. M. Glazer and S. A. Mabud, Acta Crystallogr. Sect. B, 1978, 34, 1065
    [25] D. Gignoux, D. Givord, F. Givord, R. Lemaire, J. Magn. Magn. Mater., 1979, 10, 288
    [26] 薛艳杰,中国原子能科学研究院博士学位论文《ThMn_12型稀土永磁材料的结构、磁性及反常热膨胀研究》,第二章,2005
    [27] J. S. O. Evans, Z. Hu, J. D. Jorgensen, D. N. Argyriou, S. Short, A. W. Sleight, Science, 1997, 275, 61
    [28] J. S. O. Evans, T. A. Mary, T. Vogt, M. A. Subramanian, A. W. Sleight, Chem. Mater., 1996, 8, 2809
    [29] Z Hu, J. D. Jorgensen, S. Teslic, S. Short, D. N. Argyrou, J. S. O. Evans, A. W. Sleight, Physica B, 1998, 241-243, 370
    [30] A. W. Sleight, Inorg. Chem., 1998, 37, 2854
    [31] A. W. Sleight, Annu. Rev. Mate. Sci., 1998, 28, 29
    [32] J. D. Jorgensen, Z. Hu, S. Teslic, D. N. Argyriou, S. Short, J. S. O. Evans, A. W. Sleight, Phys. Rev. B, 1999, 59, 215
    [33] G. D. Fallon, B. M. Gatehouse, J. Solid State Chem., 1982, 44, 156
    [34] V. A. Efremov, N. N. Davydova, L. Z. Gokhman, A. A. Evdokimov, V. K. Trunov, Russ. J. Inorg. Chem., 1988, 33, 1732
    [35] V. A. Efremov, N. N. Davydova, V. K. Trunov, Russ. J. Inorg. Chem., 1988, 33, 1729
    [36] F. Dubois, F. Goutenoire, Y. Laligant, E. Suard, P. Lacorre, J. Solid State Chem., 2001, 159, 228
    [37] H. Naruke, T. Yamase, J. Solid State Chem., 2003, 173, 407
    [38] H. Naruke, T. Yamase, Acta. Crystallogr. E, 2001, 57, i106-i108
    [39] H. Naruke, T. Yamase, Inorg. Chem., 2002, 41, 6514
    [40] B. A. Marinkovic, P. M. Jardim, R. R. de Avillez, F. Rizzo, Solid State Sci., 2005, 7, 1377
    [41] P. M. Forster, A. W. Sleight, Inter. J. Inorg. Mater., 1999, 1, 123
    [42] S.Sumithra, A.K.Tyagi,A.M.Umarji, Mat.Sci.Eng.B Solid, 2005,116,14
    
    [43] S.Sumithra, A.M.Umarji, Solid State Sci., 2004,6,1313
    
    [44] T.A.Mary, A.W.Sleight, J.Mat.Res., 1999, 14(3), 912
    
    [45] G D Barrera, J A O Bruno, T H K Barron, N L Allan, J. Phys.: Condens. Matter 2005,17,R217
    
    [46] S.Sumithra, A.M.Umarji, Mater.Res.Bull., 2005,40,167
    
    [47] A.K.Tyagi, S.N.Achary, M.D.Mathews, J.AUoy Compd., 2002, 339,207
    
    [48] M.Gartner, DAbeln, A.Pring, M.Wilde, A.Reller, J.Solid State Chem., 1994, 111, 128
    
    [49] D.H.Templeton,A.Zalkin,Acta.Crystallogr., 1963,16, 762
    [1] H. P. Klug, L. E. Alexander, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, New York, John Wiley & Sons, 1974
    [2] 梁敬魁,粉末衍射法测定晶体结构 (上册),北京,科学出版社,2003
    [3] 梁敬魁,粉末衍射法测定晶体结构(下册),北京,科学出版社,2003
    [4] 培根,中子衍射,科学出版社,1987
    [5] 薛艳杰,中国原子能科学研究院博士学位论文(ThMn_12型稀土永磁材料的结构、磁性及反常热膨胀研究》,第三章,2005
    [6] 孙凯,中国原子能科学研究院博士学位论文《La(NiMnM)_(5+x)、Ti-Mo和Ti(zr)/Mn_2基Laves相系列储氢合金的结构与性能研究》,第二章,2005
    [7]丁大钊,叶春堂,赵志祥等,中子物理学(下册),北京,原子能出版社,2001
    [8] H. M. Rietveld, Acta Cryst., 1967, 22, 151
    [9] H. M. Rietveld, J. Appl. Cryst., 1969, 2, 65
    [10] A. M. Glazer et al., J. Appl. Cryst., 1978, 11, 165
    [11] R. A. Young, Proceedings of Symposium on Accuracy in Powder Diffraction held at NBS(NBS1980), 1980, 143
    [12] D. B. Wiles, R. A. Young, J. Appl. Cryst., 1981, 14, 149
    [13] R. A. Young, D. B. Wiles, J. Appl. Cryst., 1982, 15, 430
    [14] 杜红林,中国原子能科学研究院博士学位论文《稀土—铁金属间永磁化合物间隙原子效应的研究》,第四章,2001
    [15] R. A. Young, Introduction to the Rietveld method "In" The Rietveld Method, Ed. by R. A. Young, Oxford: IUCr, Oxford University Press, 1995, 1
    [1] C. Kittel, Introduction to Solid State Physics, seventh ed., Wiley, Singapore, 1996, 130
    [2] A. W. Sleight, Inorg. Chem., 1998, 37, 2854
    [3] H. Koinuma, M. Kawasaki, T. Hashimoto, S. Nagata, K. Kitazawa, K. Fueki, K. Masubuchi, M. Kudo, Jpn. J. Appl. Phys., 1987, 26, L763
    [4] L. Sebastian, S. Sumithra, J. Manjanna, A. M. Umarji, J. Gopalakrishnan, Mat. Sci. Eng. B Solid, 2003, 103, 289
    [5] G. D. Fallon, B. M. Gatehouse, J. Solid State Chem., 1982, 44, 156
    [6] V. A. Efremov, N. N. Davydova, L. Z. Gokhman, A. A. Evdokimov, V. K. Trunov, Russ. J. Inorg. Chem., 1988, 33, 1732
    [7] V. A. Efremov, N. N. Davydova, V. K. Trunov, Russ. J. Inorg. Chem., 1988, 33, 1729
    [8] F. Dubois, F. Goutenoire, Y. Laligant, E. Suard, P. Lacorre, J. Solid State Chem., 2001, 159, 228
    [9] H. Naruke, T. Yamase, J. Solid State Chem., 2003, 173, 407
    [10] H. Naruke, T. Yamase, Aeta. Crystallogr. E, 2001, 57, i106-i108
    [11] H. Naruke, T. Yamase, Inorg. Chem., 2002, 41, 6514
    [12] J. Rodriguez-Carvajal, An Introduction to the program Fullprof 2000 (Version July 2001), edited by J. Roddguez-Carvajal, Laboratoire Leon Bdllouin (CEA-CNRS), France, 2001
    [13] J. Rodriguez-Carvajal, Physiea B, 1993, 192, 55
    [14] M. J. Lambregts, S. Frank, Talanta, 2004, 62, 627
    [15] A. R. West, Solid state chemistry and its applications, edited by A. R. West, John wiley & Sons, Chichester, UK, 1984, 278
    [16] U. Hotje, C. Rose, M. Binnewies, Solid state Sci., 2003, 5, 1259
    [17] G. Bergerhoff, M. Berndt, K. Brandenburg, J. Res. Natl. Inst. Stand. Technol., 1996, 101, 221
    [18] W. T. Pennington, J. Appl. Cryst., 1999, 32, 1028
    [19] I. D. Brown, D. Altermatt, Acta Cryst. B, 1985, 41, 244
    [20] N.E. Brese, M. O'Keeffe,Acta Cryst. B, 1991,47,192
    
    [21] J.S.O. Evans, T.A. Mary, T. Vogt, M.A. Subramanian, A.W. Sleight, Chem. Mater.,1996, 8, 2809
    
    [22] C. Lind, doctoral dissertation, Negative thermal expansion materials related to cubic zirconium tungstate, Georgia Institute of Technology, March 2001
    
    [23] X.R. Xing, J. Chen, J.X. Deng, G.R. Liu, J. Alloy Compd., 2003, 360, 286
    
    [24] N. Khosrovani, A.W. Sleight, T. Vogt, J. Solid State Chem., 1997,132, 355
    
    [25] R.L. Withers, J.S.O. Evans, J. Hanson, A.W. Sleight, J. Solid State Chem., 1998, 137,161
    
    [26] V. Korthuis, N. Khosrovani, A.W. Sleight, N. Roberts, R. Dupree, W.W. Warren, Jr,Chem. Mater, 1995, 7,412
    
    [27] A.K.A. Pryde, K.D. Hammonds, M.T. Dove, V. Heine, J.D. Gale, M.C. Warren, J.Phys: Condens. Matter, 1996, 8,10973
    
    [28] N. Khosrovani, V. Korthuis, A.W. Sleight, T. Vogt, Inorg. Chem., 1996, 35,485
    
    [29] J.S.O. Evans, J. Chem. Soc., Dalton Trans., 1999,3317
    [1] J.S.O. Evans, T.A. Mary, A.W. Sleight, J. Solid State Chem., 1997,133, 580
    [2] J.S.O. Evans, T.A. Mary, A.W. Sleight, J. Solid State Chem., 1998,137,148
    [3] P.M. Forster, A. Yokochi, A.W. Sleight, J. Solid State Chem., 1998,140, 157
    
    [4] B.A. Marinkovic, P.M. Jardim, R.R. de Avillez, F. Rizzo, Solid State Sci., 2005, 7,1377
    
    [5] D.A. Woodcock, P. Lightfoot, C. Ritter, J. Solid State Chem., 2000, 149,92
    [6] P.M. Forster, A.W. Sleight, Inter. J. Inorg. Mater., 1999, 1,123
    [7] S. Sumithra, A.K. Tyagi, A.M. Umarji, Mat. Sci. Eng. B Solid, 2005,116,14
    [8] S. Sumithra, A.M. Umarji, Solid State Sci., 2004,6,1313
    [9] T.A. Mary, A.W. Sleight, J. Mat. Res., 1999,14(3), 912
    
    [10] T. Varga, A.P. Wilkinson, C. Lind, W.A. Bassett, C.S. Zha, J. Phys.: Condens. Matter,2005,17,4271
    
    [11] S. Sumithra, A.M. Umarji, Mater. Res. Bull., 2005,40,167
    
    [12] A.K. Tyagi, S.N. Achary, M.D. Mathews, J. Alloy Compd., 2002, 339,207
    
    [13] M. Gartner, D. Abeln, A. Pring, M. Wilde, A. Reller, J. Solid State Chem., 1994, 111,128
    
    [14] D.H. Templeton, A. Zalkin, Acta. Crystallogr., 1963,16, 762
    
    [15] MSAL-XD2, Peking University
    
    [16] J. Rodriguez-Carvajal, An Introduction to the program Fullprof 2000 (Version July2001), edited by J. Rodriguez-Carvajal, Laboratoire Leon Brillouin (CEA-CNRS),France, 2001
    
    [17] J. Rodriguez-Carvajal, Physica B, 1993,192, 55
    
    [18] L.L.Y. Chang, M.G Scroger, B. Phillips, J. Inorg. Nucl. Chem., 1966,28, 1179
    
    [19] G. Bergerhoff, M. Berndt, K. Brandenburg, J. Res. Natl. Inst. Stand. Technol., 1996,101,221
    
    [20] W.T. Pennington, J. Appl. Cryst., 1999,32, 1028

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700