金属—有机骨架材料柔性力场开发及其动力学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属—有机骨架材料(metal—organic frameworks, MOFs)是一种新型的纳米多孔材料,其在储气、催化和分离等领域有很大的潜在应用价值,MOFs已经成为当今在材料领域中的一个研究的前沿与热点。到目前为止,已经合成出来的MOF材料达到成千上万种,再加上此类材料的结构相当复杂多变。所以,如果单纯的采用实验的方法很难对其进行比较系统的研究。随着计算化学理论的发展,计算机模拟计算已经开始用于探索MOF材料的结构和性质。在计算结果指导下,进行材料的合成与筛选,可以节省大量的资源,促进MOF材料的实际应用。到目前为止,大多数工作都是局限在把MOF材料看做不运动的,来研究客体分子在其中的吸附和扩散行为。但是已有的实验和理论研究表明,某些MOF材料表现出明显的可变形性质,MOF材料自身的动力学特性的研究越来越受到国内外研究人员的关注,因此针对MOF材料开发可描述其柔性的力场,并且研究其动力学性质具有非常重要的意义。
     本文针对MOF材料开发柔性骨架力场,并且研究其动力学性质,主要内容如下:
     1、针对一种非常有代表性的MOF材料Cu-BTC,开发了其柔性力场,其参数来源主要是三个方面:其它力场,量化计算和根据实验数据拟合,通过与实验的晶体数据以及实验测得的热收缩性质、振动频率、体积模量相比较,证明我们的新力场可以很好的描述材料本身的结构以及运动情况。此外,通过计算CO2吸附等温线并且与实验值和传统的刚性力场结果相比较,证明我们的新力场不但可以很好的描述材料本身的运动性质,还可以描述材料与客体分子之间的作用力。
     2、基于Cu-BTC的柔性力场,开发出PCN-6’以及MOF-HTB'的柔性力场,此力场能很好的描述晶体的结构性质,证明我们的Cu-BTC柔性力场可以很容易的推广到其它类似材料力场的开发中。首次通过模拟预测出PCN-6’和MOF-HTB'也是具有负热膨胀性质的MOF材料,并研究了其机理。通过计算得到膨胀系数分别为a=-9.2x10-6 K-1和a=-11.5x10-6K-1。比较三种材料的负热膨胀系数,得出MOF材料负的热膨胀系数的绝对值与有机配体的长度有关,配体越长,负的热膨胀系数的绝对值越大。另外,研究了加入CO2分子对Cu-BTC的负热膨胀系数产生的影响,由于C02的膨胀系数为正,两者发生中和,而改变了Cu-BTC膨胀系数。
     3、通过设计材料,以及针对新材料开发柔性力场,利用分子动力学模拟,对材料的负热膨胀行为进行了系统研究,证明我们所开发的Cu-BTC柔性力场可以推广应用的新材料的性质预测。结果表明,通过改变配体的长度可以控制其膨胀系数,可以为正或为负,这就为以后设计目标膨胀系数的材料提供了理论基础。通过比较,本工作还得出一个结论,除了长度,有机配体的自身的性质也会影响材料的膨胀系数。
     4、研究了Cu-BTC, PCN-6'和MOF-HTB'的体积模量和杨氏模量。通过分子动力学模拟,发现Cu-BTC, PCN-6'和MOF-HTB'在压力到达一定值的时候会发生形状改变,Cu-BTC的抗压能力要远远的大于后两种MOF材料。通过截取构型文件分析,得到发生突变的机理:主要是克服两种力发生变形,即二面角Cu-O-C(1)-C(2)和有机配体之间的范德华作用。当外部的压力足够大到能克服此能垒的情况下,材料的形状发生突变。通过对比三种材料的结构特点,得出Cu-BTC比另外两种材料硬的原因,主要是有机配体和金属簇的连接方式不同。
     5、通过模拟预测出COF-102是具有负热膨胀性质的材料,其膨胀系数为-1.51x10-6K-1,比MOF材料的负热膨胀系数要小,比MOF材料的负热膨胀系数小的原因是由于其本身的结构造成的。通过动力学轨迹分析,发现COF-102的负的热膨胀行为是由于苯环的摆动引起的,与MOF材料的机理一致。从机理上可以得到结论,其它的三维COF材料也应该同样具有负热膨胀性质。
Metal-organic frameworks (MOFs) have been recognized as a new family of nanoporous materials with a wide range of possible applications in gas storage, separation and catalysis etc. The study of MOFs has become a research frontier area of materials, and hotspots. Up to now, many kinds of MOFs have been synthesized and because of the complex structure of MOFs, it is insufficient to conduct systematic studies by purely experimental approach. With the development of chemical theory, computational chemistry has been used to study the structure and properties of MOFs. It can provides theoretical guidance for the design of MOFs and the determination of optimal industrial operation conditions, which also saves a lot of time for complicated experimental works. Extensive molecular simulations have been performed on the adsorption and diffusion in MOFs. However, most of them used rigid frameworks with the framework atoms in MOFs fixed in their experimentally determined crystallographic positions. Since MOFs are flexible and may exhibit substantial changes in unit cell volume upon external stimulus such as temperature and guest molecules, it is highly needed to develop flexible force fields to study their dynamic properties.
     In this work, flexible force fields for MOFs have been developed and dynamic properties of MOFs have also been studied. The main contents and findings are summarized as follows.
     1. A new force field that can describe the flexibility of Cu-BTC was developed in this work. Part of the parameters were obtained using density functional theory calculations or fitting by us to reproduce the experimental values, and the other part were taken from other force fields. The new force field could reproduce well the experimental crystal structure, negative thermal expansion, vibrational properties, and bulk modulus as well as adsorption behavior in Cu-BTC. We believe the new force field is useful in understanding the structure-property relationships for MOFs.
     2. Base on the new force field of Cu-BTC, force fields can describe the flexibility of PCN-6'and MOF-HTB'were further developed in this work, indicating that the approach can be extended to other MOFs easily. The results of molecular simulations demonstrate that PCN-6'and MOF-HTB'also show negative thermal expansion (NTE), and the origin of the NTE behavior is the motion of the aromatic carbon rings with temperature. The NTE coefficients are-9.2×10-6 K-1 and-11.5×10-6 K-1, respectively. By the comparison of the NTE coefficients of the three MOFs, it is clear that the length of the organic linker has an effect on the NTE coefficients of MOFs. The thermal expansion behavior of Cu-BTC with CO2 adsorption has also been studied. Because CO2 expands with the increase of temperature, the NTE coefficients of Cu-BTC will be changed when adding CO2.
     3. Three kinds of material are constructed, deduced from Cu-BTC and MOF-HTB' by changing the organic linkers. Then, the flexible force fields for them were developed, and molecular simulations were performed on their thermal expansion behavior. The results demonstrate that the thermal expansion coefficients could be adjusted by changing the length of the organic linkers. In addition, the property of the organic linker is another factor that influences the thermal expansion coefficient of material.
     4. The bulk and Young's modulus of Cu-BTC, PCN-6'and MOF-HTB'were predicted using molecular simulations. The structures of Cu-BTC, PCN-6'and MOF-HTB'will distort when the pressure is up to certain values, and Cu-BTC is less flexible than the other two MOFs. The mechanism is that when the pressure adding to the materials is large enough to overcome the two kinds of force, the torsion of Cu-O-C(1)-C(2) and van der Waals force between the organic linkers, the structure will distort. And the structure of Cu-BTC makes it more rigid than the other two MOFs.
     5. We performed a computational study on the thermal expansion behavior of covalent organic frameworks (COFs). The results demonstrate that COFs show negative thermal expansion (NTE), and the origin of the NTE behavior is the motion of the aromatic carbon rings with temperature, providing a better understanding of this new family of materials.
引文
[1]Young David C. Computational Chemistry:A practical Guide for Applying Techniques to Real-World Problems [M]. John Wiley & Sons, Inc.:New York,2001
    [2]李以圭,刘金晨.分子模拟与化学工程[J].现代化工,2001,21:10-15
    [3]Rosi N L, Eckert J, Eddaoudi M, Vodak D T, Kim J, O'Keeffe M, Yaghi O M. Hydrogen Storage in Microporous Metal-Organic Frameworks. [J] Science,2003,300:1127-1129
    [4]Rowsell J L C, Yaghi O M. Strategies for Hydrogen Storage in Metal-Organic Frameworks. [J] Angew. Chem. Int. Ed.,2005,44:4670-4679
    [5]Lee J Y, Pan L, Kelly S P, Jagiello J, Emge T J, Li J. Achieving Hing Density of Adsorbed Hydrogen in Microporous Metal Organic Frameworks [J]. Adv. Mater.,2005,17:2703-2706
    [6]Kesanli B, Cui Y, Smith M R, Bittner E W, Bockrath, B C., Lin W. Highly Interpenetrated Metal-Organic Frameworks for Hydrogen Storage. [J] Angew. Chem. Int. Ed.,2005,44: 72-75
    [7]Dybesev D N, Chun H, Yoon S H, Kim D, Kim K. Microporous Manganese Formate:A Simple Metal-Organic Porous Material with High Framework Stability and Hingely Selective Gas Sorption Properties [J]. J. Am. Chem. Soc.,2004,126:32-33
    [8]Lin X, Jia J, Zhao X, Thomas K M, Blake A J, Walker G S, Champness N R, Hubberstey P, Schroder M. High H2 Adsorption byCoordination-Framework Materials [J]. Angew. Chem. Int. Ed.2006,45:7358-7364
    [9]Pan L, Olson D H, Ciemnolonski L R, Heddy R, Li J. Separation of Hydrocarbons with a Microporous Metal-Organic Framework [J]. Angew. Chem. Int. Ed.2006,45:616-619
    [10]Latroche M, Surble S, Serre C, Mellot-Draznieks C, Llewellyn P L, Lee J, Chang J, Jhung S H, Ferey G. Hydrogen Storage in the Giant-Pore Metal-Organic Frameworks MIL-100 and MIL-101 [J]. Angew.Chem. Int. Ed.2006,45:8227-8231
    [11]Li Y W, Yang R T. Significantly Enhanced Hydrogen Storage in Metal-Organic Frameworks via Spillover [J]. J. Am. Chem. Soc.2006,128:726-727
    [12]Rowsell J L C, Yaghi O M. Effects of Functionalization, Catenation, and Variation of the Metal Oxide and Organic Linking Units on the Low-Pressure Hydrogen Adsorption Properties of Metal-Organic Frameworks [J]. J. Am. Chem. Soc.2006,128:1304-1305
    [13]Pan L, Parker B, Huang X, Olson D H, Lee J Y, Li J. Zn(tbip)(H2tbip=5-tert-Butyl Isophthalic Acid):A Highly Stable Guest-Free Microporous Metal Organic Framework with Unique Gas Separation Capability [J]. J. Am. Chem. Soc.2006,128:4180-4181
    [14]Wong-Foy A G, Matzger A J, Yaghi O M. Exceptional H2 Saturation Uptake in Microporous Metal-Organic Frameworks [J]. J. Am. Chem. Soc.2006,128:3494-3495
    [15]Sun D, Ma S, Ke Y, Collins D J, Zhou H. An Interweaving MOF with High Hydrogen Uptake [J]. J. Am. Chem. Soc.2006,128:3896-3897
    [16]Li Y, Yang R T. Hydrogen Storage in Metal-Organic Frameworks by Bridged Hydrogen Spillover [J]. J. Am. Chem. Soc.2006,128:8136-8137
    [17]Dinca M, Yu A F, Long J R. Microporous Metal-Organic Frameworks Incorporating 1,4-Benzeneditetrazolate:Syntheses, Structures, and Hydrogen Storage Properties [J]. J. Am. Chem. Soc.2006,128:8904-8913
    [18]Dinca M, Dailly A, Liu Y, Brown C M, Neumann D A, Long J R. Hydrogen Storage in a Microporous Metal-Organic Framework with Exposed Mn2+Coordination Sites [J]. J. Am. Chem. Soc.2006,128:16876-16883
    [19]Culp J T, Matranga C, Smith M, Bittner E W, Bockrath B.Hydrogen Storage Properties of Metal Nitroprussides M[Fe(CN)5NO], (M=Co, Ni) [J]. J. Phys. Chem. B 2006,110: 8325-8328
    [20]Dailly A, Vajo J J, Ahn C C. Saturation of Hydrogen Sorption in Zn Benzenedicarboxylate and Zn Naphthalenedicarboxylate [J]. J. Phys. Chem. B 2006,110:1099-1011
    [21]Jia H P, Li W, Ju Z F, Zhang J. Synthesis, Structure and Magnetism of Metal-Organic Framework Materials with Doubly Pillared Layers [J]. Eur. J. Inorg. Chem.,2006, 4264-4270
    [22]Kitagawa S, Kitaura R, Noro S. Functional Porous Coordination Polymers [J]. Angew. Chem. Int. Ed.,2004,43:2334-2375
    [23]James S L. Metal-Organic Frameworks [J]. Chem. Soc. Rev.,2003,32:276-288
    [24]Chen B, Eddaoudi M, Hyde S T, O'Keeffe M, Yaghi O M. Interwoven Metal-Organic Framework on a Periodic Minimal Surface with Extra-Large Pores [J]. Science,2001,291: 1021-1023
    [25]Rosi N L, Eckert J, Eddaoudi M, Vodak D T, Kim J, O'Keeffe M, Yaghi O M. Hydrogen Storage in Microporous Metal-Organic Frameworks [J]. Science,2003,300:1127-1129
    [26]Chael H K, Siberio-Pe'rez D Y, Kim J, Go Y, Eddaoudi M, Matzger A J, O'Keeffe M, Yaghi O M. A Route to High Surface Area, Porosity and Inclusion of Large Molecules in Crystals [J]. Nature,2004,427:523-527
    [27]Chen B, Millward A R, Contreras D S, Yaghi O M. High H2 Adsorption in a Microporous Metal-Organic Framework with Open Metal Sites [J]. Angew. Chem. Int. Ed.,2005,44: 4745-4749
    [28]Lee J Y, Pan L, Kelly S P, Jagiello J, Emge T J, Li J. Achieving High Density of Adsorbed Hydrogen in Microporous Metal Organic Frameworks [J]. Adv. Mater.,2005,17:2703-2706
    [29]Kesanli B, Cui Y, Smith M R, Bittner E W, Bockrath B C, Lin W. Highly Interpenetrated Metal-Organic Frameworks for Hydrogen Storage [J]. Angew. Chem. Int. Ed.,2005,44: 72-75
    [30]Navarro J A R, Barea E, Salas J M, Masciocchi N, Galli S, Sironi A, Ania C O, Parra J B. H2, N2, CO, and CO2 Sorption Properties of a Series of Robust Sodalite-Type Microporous Coordination Polymers [J]. Inorg. Chem.,2006,45:2397-2399
    [31]Millward A R, Yaghi O M. Metal-Organic Frameworks with Exceptionally High Capacity for Storage of Carbon Dioxide at Room Temperature [J]. J. Am. Chem. Soc.,2005,127: 17998-17999
    [32]Dietzel P D C, Panell B, Hirscher M, Bloma R, Fjellvag H. Hydrogen Adsorption in a Nickel Based Coordination Polymer with Open Metal Sites in the Cylindrical Cavities of the Desolvated Framework [J]. Chem. Commun.,2006,959-961
    [33]Humphrey S M, Chang J S, Jhung S H, Yoon J W, Wood P T. Porous Cobalt (Ⅱ)-Organic Frameworks with Corrugated Walls:Structurally Robust Gas-Sorption Materials [J]. Angew. Chem. Int. Ed.,2007,46:272-275
    [34]Mohamed E, Kim J, Rosi N, Vodak D, Wachter J, O'Keeffe M, Yaghi O M. Systematic Desigh of Pre Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage. [J] Science,2002,295:469-472
    [35]Rowsell J L C, Millward A R, Park K S, Yaghi O M. Hydrogen Sorption in Functionalized Metal-Organic Frameworks. [J] J. Am. Chem. Soc.,2004,126:5666-5667
    [36]Chui S S Y, Lo S M F, Charmant J P H, Orpen A G, Williams I D. A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n[J]. Science,1999,283: 1148-1150
    [37]Ma S, Sun D, Ambrogio M, Fillinger J A, Parkin S, Zhou H C. Framework-Catenation Isomerism in Metal-Organic Frameworks and Its Impact on Hydrogen Uptake. [J] J. Am. Chem. Soc.,2007,129:1858-1859
    [38]Gao Q, Guillou N, Nogues M, Cheetham A K, Ferey G Structure and Magnetism of VSB-2,-3 and-4 or Ni4(O3P-(CH2)-PO3)2.(H2O)n(n=3,2,1), the First Ferromagnetic Nickel (Ⅱ) Diphosphonates:Increase of Dmensionality and Multiple Coordination Changes during a Quasi Topotactic Dehydration. [J] Chem. Mater.,1999,11:2937-2947
    [39]Barthelet K, Riou D, Nogues M, Ferey G Synthesis, Structure, and Magnetic Properties of Two New Vanadocarboxylates with Three-Dimensional Hybrid Frameworks. [J] Inorg. Chem.,2003,42:1739-1743
    [40]Barthelet K, Marrot J, Riou D, Ferey G. A Breathing Hybrid Organic Inorganic Solid with Very Large Pores and High Magnetic Characteristics. [J] Angew. Chem. Int. Ed.,2002,41: 281-284
    [41]Mellot-Draznieks C, Serre C, Surble S, Audebrand N, Ferey G. Very Large Swelling in Hybrid Frameworks:A Combined Computational and Powder Diffraction Study. [J] J. Am. Chem. Soc.,2005,127:16273-16278
    [42]Loiseau T, Lecroq L, Volkringer C, Marrot J, Ferey G, Haouas M, Taulelle F, Bourrelly S, Llewellyn P L, Latroche M. MIL-96, a Porous Aluminum Trimesate 3D Structure Constructed from a Hexagonal Network of 8-Membered Rings and μ3-Oxo-Centered Trinuclear Units. [J] J. Am. Chem.Soc.,2006,128:10223-10230
    [43]Llewellyn P L, Bourrelly S, Serre C, Vimont A, Daturi M, Hamon L, Weireld G D, Chang J S, Hong D Y, Hwang Y K, Jhung S H, Ferey G. High Uptakes of CO2 and CH4 in Mesoporous MetalsOrganic Frameworks MIL-100 and MIL-101. [J] Langmuir,2008,14: 7245-7250
    [44]Surble S, Millange F, Serre C, Duren T, Latroche M, Bourrelly S, Llewellyn P L., Ferey G Synthesis of MIL-102, a Chromium Carboxylate Metal-Organic Framework, with Gas Sorption Analysis. [J] J. Am. Chem. Soc.,2006,128:14889-14896
    [45]Serre C, Taulelle F, Ferey G. Synthesis and Characterization of New Lamellar Templated Titanium(Ⅳ) Phosphates with Perforated Layers:MIL-28n or Ti3O2X2(HPO4)x(PO4)y.(N2CnH2n+6)z.(H2O)2 (n= 2,3; x=0,2; y=4,2; z=3,2; X=F, OH).[J] Chem. Mater.,2002,14:998-1003
    [46]Serre C, Pelle F, Gardant N, Ferey G. Synthesis and Characterization of MIL-79 and MIL-80:Two New Luminescent Open-Framework Rare-Earth Dicarboxylates with Unusual 1D Inorganic Subnetworks. [J] Chem. Mater.,2004,16:1177-1182
    [47]Serre C, Groves J A, Lightfoot P, Slawin A M Z, Wright P A, Stock N, Bein T, Haouas M, Taulelle F, Ferey G. Synthesis, Structure and Properties of Related Microporous N, N'-Piperazinebismethylenephosphonates of Aluminum and Titanium. [J] Chem. Mater.,2006, 18:1451-1457
    [48]Allinger N L, Yuh Y H, Lii J-H. Molecular Mechanics. The MM3 Force Field for Hydrocarbons. 1.[J] J. Am. Chem. Soc.1989,111:8551-8566
    [49]Allinger N L, Yuh Y H, Lii J-H. Molecular Mechanics. The MM3 Force Field for Hydrocarbons.2. Vibrational Frequencies and Thermodynamics [J] J. Am. Chem. Soc. 1989, 111:8566-8575
    [50]Allinger N L, Yuh Y H, Lii J-H. Molecular Mechanics. The MM3 Force Field for Hydrocarbons.3. The van der Waals'Potentials and Crytstal Data for Aliphatic and Aromatic Hydrocarbons [J] J. Am. Chem. Soc.1989,111:8576-8582
    [51]Timofeeva T V, Mazurek U, Allinger N L. Molecular Mechanics Calculations on Carboranes and Metallocarboranes [J] J. Molecular Structure 1996,363:35-42
    [52]Hoshino H, Asami M, Sakakibara K, Lii J-H, Allinger N L. MM3 Force Field Prediction of the Enantioselective Preference in the Asymmetric Synthesis of a Chiral 2-cyclohexen-1-ol using a Chiral Lithium Amide Reagent [J] Tetrahedron 2008,64:575-581
    [53]Chen K-H, Walker G A, Allinger N L. J. A Molecular Mechanics (MM3) Study of Fluorinated Hydrocarbons [J] Molecular Structure 1999,490:87-107
    [54]Hay B P, Yang L, Lii Jenn-Huei, Allinger N L. An Extended MM3(96) Force Field for Complexes of the Group 1A and 2A Cations with Ligands Bearing Conjugated Ether Donor Groups [J] Journal of Molecular Structure (Theochem) 1998,428:203-219
    [55]Cornell W D, Cieplak P, Nayly C I, Gould I R, Merz K M, Ferguson D M, Spellmeyer D C, Fox T, Caldwell J W, Kollman P A, A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules [J] J. Am. Chem. Soc.1995,117:5179-5197
    [56]Mackerell A D, Karplus M. An All-Atom Empirical Energy Function for the Simulation of Nucleic Acids [J] J. Am. Chem. Soc.1995,117:11946-11975
    [57]Dauber-Osguthorpe P, Roberts V A, Osguthorpe D J, Wolff J, Genest M, Hagler A T. Structure and Energetics of Ligand Binding to Proteins:Escherichia coli Dihydrofolate Reductase-Trimethoprim, A Drug-Receptor System [J] PROTEINS: Struture, Function, and Genetics 1988,4:31-47
    [58]Jorgensen W L, Maxwell D S, Tirado-Rives J. Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids [J]. J. Am. Chem. Soc.,1996,118:11225-11236
    [59]Allured V S, Kelly C M, Landis C R SHAPES Empirical Force Field:New Treatment of Angular Potentials and Its Application to Square-Planar Transition-Metal Complexes [J] J. Am. Chem. Soc.,1991,113:1-11
    [60]Martin M G and Siepmann J I Transferable Potentials for Phase Equilibria.1. United-Atom Description of n-Alkanes [J] J. Phys. Chem. B 1998,102:2569-2577
    [61]Martin M G and Siepmann J I. Novel Configurational-Bias Monte Carlo Method for Branched Molecules.Transferable Potentials for Phase Equilibria.2. United-Atom Description of Branched Alkanes [J] J. Phys. Chem. B 1999,103:4508-4517
    [62]Chen B and Siepmann J I Transferable Potentials for Phase Equilibria.3. Explicit-Hydrogen Description of Normal Alkanes [J] J. Phys. Chem. B 1999,103:5370-5379
    [63]Chen B and Siepmann J I Monte Carlo Calculations for Alcohols and Their Mixtures with Alkanes. Transferable Potentials for Phase Equilibria.5. United-Atom Description of Primary, Secondary, and Tertiary Alcohols [J] J. Phys. Chem. B 2001,105:3093-3104
    [64]Stubbs J M, Potoff, J J, Siepmann J I Transferable Potentials for Phase Equilibria.6. United-Atom Description for Ethers, Glycols, Ketones, and Aldehydes [J] J. Phys. Chem. B 2004,108:17596-17605
    [65]Wick C D, Stubbs J M, Rai N, Siepmann J I Transferable Potentials for Phase Equilibria.7. Primary, Secondary, and Tertiary Amines, Nitroalkanes and Nitrobenzene, Nitriles, Amides, Pyridine, and Pyrimidine [J] J. Phys. Chem. B 2005,109:18974-18982
    [66]Rai N and Siepmann J I. Explicit Hydrogen Description of Benzene and Five-Membered and Six-Membered Heterocyclic Aromatic Compounds [J] J. Phys. Chem. B 2007,111: 10790-10799
    [67]Hwang M J, Stochfisch T P, Hagler A T Derivation of Class Ⅱ Force Fields.2. Derivation and Characterizaion of a Class Ⅱ Force Field, CFF93, for the Alkyl Functional Group and Alkane Molecules [J] J. Am. Chem. Soc.1994,116:2515-2525
    [68]Halgen T A Merck Molecular Force Field. Ⅰ. Basis Form, Scope, Parameterization, and Performance of MMFF94 [J] J. C. C.1996,17:490-519
    [69]Halgen T A Merck Molecular Force Field. Ⅱ. MMFF94 van Waals and Electrostatic Parameters for Intermolecular Interactions [J] J. C. C.1996,17:520-552
    [70]Halgen T A Merck Molecular Force Field. Ⅲ. Molecular Geometries and Vibrational Frequencies for MMFF94 [J] J. C. C.1996,17:553-586
    [71]Halgen T A Merck Molecular Force Field. Ⅳ. Conformational Energies and Geometries for MMFF94 [J] J. C. C.1996,17:587-615
    [72]Halgen T A Merck Molecular Force Field. Extension of MMFF94 Using Experimental Data, Additional Computational Data, and Empirical Rules [J] J. C. C.1996,17:490-519
    [73]Rappe A K, Casewit C J, Colwell K S, Goddard Ⅲ W A, Skiff W M. UFF, A Full Periodic Table Force Field for Molecular Mechanics and Molecular Dynamics Simulations [J] J. Am. Chem. Soc.1992,114:10024-10035
    [74]Rappe A K, Colwell K S, Casewit C J Application of a Universal Force Field to Metal Complexes [J] Inorg. Chem.1993,32:3438-3450
    [75]Mayo S L, Olafon B D, Goddard Ⅲ W A. DREIDING:A Generic Force Field for Molecular Simultions [J] J. Phys. Chem.1990,94:8897-8909
    [76]Sun H. COMPASS:An ab Initio Force-Field Optimized for Condensed-Phase Applications-Overview with Details on Alkane and Benzene Compounds [J] J. Phys. Chem. B 1998,102:7338-7364
    [77]林梦海.量子化学—计算方法与应用[M].科学出版社:北京,2004
    [78]Segal G and Pople J Approximate Self-Consisent Molecular Orbital Theory. Ⅲ. CNDO Results for AB2 and AB3 systems [J] J. Chem. Phys.1966,44:3289-3297
    [79]Dewar M and Thiel W, Cadmium-113 nuclear magnetic resonance studies of 113 Cd(II)-substituted human carbonic anhydrase B [J] J. Am. Chem. Soc.1977,99:4499-4500
    [80]Davis L P, et. al., MNDO Calulations for Compounds Containing Aluminum and Boron [J] J. Comp. Chem.1981,2:433-445
    [81]Dewar M J S, McKee M L, Rzepa H S MNDO parameters for third period elements [J] J. Am. Chem. Soc.1978,100:3607
    [82]Dewar M J S and Reynolds C H, An Improved Set of Mndo Parameters for Sulfur [J] J. Comp. Chem.1986,2:140-143
    [83]Stewart J J P, Optimization of Parameters for Semiempirical Methods Ⅰ. Method [J] J. Comp. Chem.1989,10:209-220
    [84]Stewart J J P, Optimization of Parameters for Semiempirical Methods Ⅱ. Applications [J] J. Comp. Chem.1989,10:221-264
    [85]Nagy A. Density Functional Theory and Application to Atoms and Molecules [J]. Physics 109 Reports,1998,298:1-79
    [86]Becke A D Density-functional Exchange-energy Approximation with Correct Asymptotic Behavior [J] Phys. Rev. A 1988,38:3098-3100
    [87]Becke A D Density-Functional Thermochemistry.Ⅲ. The Role of Exact Exchange [J] J. Chem. Phys.1993,98:5648-5653
    [88]Lee C, Yang W, Parr R G. Development of the Colle-Salvtti Correlation-energy Formula into a Functional of the Electrom Density [J] Phys Rev B 1988,37:785-789
    [89]Head-Gordon M, Pople J A, Frisch M J MP2 Energy Evaluation by Direct Methods [J] Chem. Phys. Lett.1988,153:503-506
    [90]Frisch M J, Head-Gordon M, Pople J A A Direct MP2 Gradint-Method [J] Chem. Phys. Lett. 1990,166:275-280
    [91]Frisch M J, Head-Gordon M, Pople J A Semidirect Algorithms for MP2 Energy and Graient [J] Chem. Phys. Lett.1990,166:281-289
    [92]Krishnan R, Schlegel H B, Pople J A Derivative Studies in Configuration-interaction Theory [J] J. Chem. Phys.1980,72:4654-4655
    [93]Purvis G D and Bartlett R J A Full Coupled-Cluster Singles and Doubles Model:The Inclusion of Disconnected Triples [J] J. Chem. Phys.1982,76:1910-1919
    [94]Scuseria G E, Janssen C L, Schaefer III H F An Efficient Reformulation of the Closed-Shell Coupled Cluster Single and Double Excitation (CCSD) Equations [J] J. Chem. Phys.1988, 89:7382-7388
    [95]Scuseria G E, Schaefer Ⅲ H F Is Coupled Cluster Singles and Doubles (CCSD) More Computationally Intensive than Quadratic Configuration Interaction Interaction (QCISD) [J] J. Chem. Phys.1989,90:3700-3704
    [96]吉青,杨小震.分子力场发展的新趋势[J].化学通报,2005,111-116
    [97]Alder B J, Wainwright T E. Studies in Molecular Dynamics. I:General Methed [J]. J. Chem. Phys.,1959,31:459-466
    [98]Berendsen H. J. C., Postma J. P. M., Gunsteren W. F. van,. DiNola A., Haak, J R Molecular Dynamics with Coupling to an External Bath,[J] J. Chem. Phys.,1984,81:3684-3690
    [99]Hoover W G, Canonical dynamics:Equilibrium Phase-space Distributions. [J] Phys. Rev. A 1985,31:1695-1697
    [100]Nose S A. Unified Formation of the Constant Temperature Molecular Dynamics Methods [J]. J. Chem. Phys.,1984,81:511-519
    [101]Evans D J. Computer "Experiment" for Nonlinear Thermodynamics of Couette Flow [J]. J. Chem. Phys.,1983,78:3297-3302
    [102]Frenkel D, Smit B. Understanding Molecular Simulation 2nd:From Algorithms to Applications. [M]. San Diego:Academic Press,2002.
    [103]Allen M P, Tildesley D J. Computer Simulation of Liquids [M]. Clarendon press:Oxford, 1987
    [104]Vlugt, T. J. H.; Schenk, M. Influence of Framework Flexibility on the Adsorption Properties of Hydrocarbons in the Aeolite Silicalite. [J] J. Phys. Chem. B 2002,106:12757-12763
    [105]Chempath, S.; Clark, L. A.; Snurr, R. Q. Two General Methods for Grand Canonical Ensemble Simulation of Molecules with Internal Flexibility [J] J. Chem. Phys.2003,118: 7635-7643
    [106]Frost H, Duren T, Snurr R Q. Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metal-organic frameworks [J] J. Phys. Chem. B,2006,110:9565-9580
    [107]Frost H, Snurr R Q. Design requirements for metal-organic frameworks as hydrogen storage materials. J. Phys. Chem. C,2007,111:18794-18803
    [108]Duren T, Snurr R Q. Assessment of Isoreticular Metal-Organic Frameworks for Adsorption Separations:A Molecular Simulation Study of Methane/n-butane Mixtures [J] J. Phys. Chem. B,2004,108:15703-15708
    [109]Dubbeldam D, Frost H, Walton K S, Snurr R Q. Molecular simulation of adsorption sites of light gases in the metal-organic framework IRMOF-1. [J] Fluid Phase Equilib.,2007,261: 152-164
    [110]Keskin S, Sholl D S. Screening Metal-Organic Framework Materials Formenbrane-based Methane/carbon Dioxide Separations [J] J. Phys. Chem. C,2007,111:14055-14059
    [111]Keskin S, Liu J, Johnson J K, Sholl D S. Testing the accuracy of Correlations for Multi-component mass Transport of Adsorbed Gases in Metal Organic Frameworks: Diffusion of H2/CH4 Mixture in Cu-BTC [J] Langmuir,2008,24:8254-8261
    [112]Krishna R, van Baten J M. Onsager Coefficients for Binary Mixture Diffusion in Nanopores [J] Chem. Eng. Sci.,2008,63:3120-3140
    [113]Babarao R, Jiang J W. Diffusion and Separation of CO2 and CH4 in Silicalite, C168 Schwarzite, and IRMOF-1:A Comparative Study From Molecular Dynamics Simulation [J] Langmuir,2008,24:5474-5484
    [114]Skoulidas A I. Molecular Dynamics Simulations of Gas Diffusion in Metal-organic Frameworks:Argon in Cu-BTC [J] J. Am. Chem. Soc.,2004,126:1356-1357
    [115]Skoulidas A I, Sholl D S. Self-diffusion and Transport Diffusion of Light Gases in Metal-organic Framework Materials Assessed Using Molecular Dynamics Simulations [J] J. Phys. Chem. B,2005,109:15760-15768
    [116]Yang Q Y, Zhong C L. Molecular simulation of adsorption and diffusion of hydrogen in me tal-organic frameworks [J] J. Phys. Chem. B,2005,109:11862-11866
    [117]Yang Q Y, Zhong C L. Electrostatic-field-induced enhancement of gas mixture separation in metal-organic frameworks:A computational study [J] ChemPhysChem,2006,7: 1417-1420
    [118]Yang Q Y, Zhong C L. Molecular simulation of carbon dioxide/methane/hydrogen mixture adsorption in metal-organic frameworks [J] J. Phys. Chem. B,2006,110:17776-17789
    [119]Wang S. Comparative molecular simulation study of methane adsorption in metal-organic frameworks [J] Energy Fuels,2007,21:953
    [120]Yang Q Y, Zhong C L, Chen J F. Computational study of CO2 storage in metal-organic frameworks. [J] J. Phys. Chem. C,2008,112:1562.
    [121]Yang Q, Xue C, Zhong C, Chen J-F. Molecular simulation of separation of CO2 from flue gases in Cu-BTC metal-organic framework [J] AIChE J.,2007,53:2832.
    [122]Liu B, Yang Q Y, Xue C Y, Zhong C L, Chen B H, Smit B. Enhanced adsorption selectivity of hy drogen/methane mixtures in metal-organic frameworks with interpenetration:a molecular simulation study [J] J. Phys. Chem. C,2008,112:9854.
    [123]Beerdsen E, Dubbeldam D, Smit B. Loading Dependence of the Diffusion Coefficient of Methane in Nanoporous Materials. [J] J. Phys. Chem. B,2006,110:22754
    [124]Dubbeldam D, Beerdsen E, Vlugt T J H, Smit B. Molecular simulation of loading-dependent diffusion in nanoporous materials using extended dynamically corrected transition state theory. [J] J. Chem. Phys.,2005,122:224712
    [125]Liu B, Yang Q Y, Xue C Y, Zhong C L, Smit B. Molecular Simulation of Hydrogen Diffusion in Interpenetrated Metal-Organic Frameworks [J] Phys. Chem. Chem. Phys.,2008, 10:3244-3249
    [126]Susumu K, Kazuhiro U. Dynamic Porous Properties of Coordination Polymers Inspired by Hydrogen Bonds [J] Chem. Soc. Rev.,2005,34:109-119
    [127]Kazuhiro U, Ryotaro M, Susumu K. Flexible Microporous Coordination Polymers [J]. J. Solid State Chem.,2005,178:2420-2429
    [128]Huang B L, McGaughey A J H, Kaviany M. Thermal Conductivity of Metal-Organic Framework 5 (MOF-5) (I):Molecular Dynamics Simulations.[J] Int. J. Heat Mass Transfer, 2007,50:393-404
    [129]Greathouse J A, Allendorf M D The Interaction of Water with MOF-5 Simulated by Molecular Dynamics [J] J. Am. Chem. Soc.2006,128:10678-10679
    [130]Greathouse J A, Allendorf M D Force Field Validation for Molecular Dynamics Simulations of IRMOF-1 and Other Isoreticular Zinc Carboxylate Coordination Polymers [J] J. Phys. Chem. C 2008,112:5795-5803
    [131]Dubbeldam D, Walton K S, Ellis D E, Snurr R Q Exceptional Negative Thermal Expansion in Isoreticular Metal-Organic Frameworks [J] Angew. Chem., Int. Ed.2007,46:4496-4499
    [132]Tafipolksy M, Amirjalayer S, Schmid R. Ab Initio Parametrized MM3 Force Field for the Metal-Organic Framework MOF-5 [J] J. Comp. C.,2007,28:1169-1176
    [133]Amirjalayer S, Tafipolsky M, Schmid R. Molecular Dynamics Simulation of Benzene Diffusion in MOF-5:Importance of Lattice Dynamics [J] Angew.Chem., Int. Ed.2007,46: 463-466
    [134]Amirjalayer S, Schmid R.Conformational Isomerism in the Isoreticular Metal-Organic Framework Family:A Force Field Investigation [J] J. Phys. Chem. C,2008,112: 14980-14987
    [135]Tafipolksy M, Schmid R. Systematic First Principles Parameterization of Force Fields for Metal-Organic Frameworks using a Genetic Algorithm Approach [J] J. Phys. Chem. B, 2009,113:1341-1352
    [136]Xue C, Zhong C, Molecular Simulation Study of Hexane Diffusion in Dynamic Metal-Organic Frameworks. [J] Chinese J. Chem.,2009,27:472-478
    [137]Salles F, Ghoufi A, Maurin G, Bell R G, Mellot-Draznieks C, Ferey G Molecular Dynamics Simulations of Breathing MOFs:Structural Transformations of MIL-53(Cr) upon Thermal Activation and CO2 Adsorption [J] Angew. Chem., Int. Ed.2008,47: 8487-8491
    [138]Garberoglio G, Skoulidas A I, Johnson J K. Adsorption of Gases in Metal-Organic Materials:Comparison of Simulations and Experiments [J] J. Phys. Chem. B,2005,109: 13094-13103
    [139]Liu J C, Lee J Y, Pan L, Obermyer R T, Simizu S, Zande B, Li J, Sankar S G, Johonson J K. Adsorption and Diffusion of Hydrogen in a New Metal-Organic Framework Material: [Zn(bdc)(ted)0.5] [J] J. Phys. Chem. C,2008,112:2911-2917
    [140]McLean A D, Chandler G S [J] Contracted Gaussian Basis Sets for Molecular Calculations. I. Second Rou Atoms, Z=11-18J. Chem. Phys.,1980,72:5639-5649
    [141]Krishnan R, Binkley J S, Seeger R, Pople J A Self-Consistent Molecular Orbital Methods. XX. A Basis Set for Correlated Wave Functions [J] J. Chem. Phys.,1980,72:650-655
    [142]Wachters A J H Gaussian Basis Set for Molecular Wavefunctions Containing Third-Row Atoms [J] J. Chem. Phys.,1970,52:1033-1037
    [143]Hay P J Gaussian Basis Sets for Molecular Calculations. The Representation of 3d Orbitals in Transition-Metal Atoms [J] J. Chem. Phys.,1977,66:4377-4385
    [144]Dunning Jr T H, Hay P J, [M] in Modern Theoretical Chemistry, Ed. H. F. Schaefer Ⅲ, Vol.3 (Plenum, New York,1976) 1-28.
    [145]Hay P J, Wadt W R Ab Initio Effective Core Potentials for Molecular Calculations. Potentials for the Transition Metal Atoms Sc to Hg [J] J. Chem. Phys.,1985,82:270-284
    [146]Wadt W R, Hay P J Ab Initio Effective Core Potentials for Molecular Calculations. Potentials for Main Group Elements Na to Bi [J] J. Chem. Phys.,1985,82:284-299
    [147]Hay P J, Wadt W R, Ab Initio Effective Core Potentials for Molecular Calculations. Potentials for K to Au Including the Outermost Core Orbitals [J] J. Chem. Phys.,1985,82: 299-311
    [148]Prestipino C, Regli L, Vitillo J G, Bonino F, Damin A, Lamberti C, Zecchina A, Solari P L, Kongshaug K O, Bordiga S Local Structure of Framework Cu(II) in HKUST-1 Metallorganic Framework:Spectroscopic Characterization upon Activation and Interaction with Adsorbates [J] Chem Mater 2006,18:1337-1346
    [149]Frisch, M J; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A.Gaussian 03, revision B.01; Gaussian, Inc.:Pittsburgh PA,2003
    [150]Plimpton S J, Pollock R, Stevens M (1997) Particle-Mesh Ewald and rRESPA for parallel molecular dynamics simulations Eighth SIAM Conference on Parallel Processing for Scientific Computing
    [151]Plimpton S J Fast parallel algorithms for short-range molecular dynamics [J] J. Comput. Phys.1995,117:1-19.
    [152]Goguet-Albiol DFT Computational Rationalization of an Unusual Spin Ground State in an Mn12 Single-Molecule Magnet with a Low-Symmetry Loop Structure [J] Angew. Chem. Int. Ed.2005,44:897-901
    [153]Davidson E R and Clark A E [J] J. Phys. Chem. A.2002,106:7456
    [154]Jr Wilson E B, Decius J C, Boggs J E. Systematic ab initio Gradient Calculation of Molecular Geometries, Force constants, and Dipole Moment Derivatives. [J] J. Am. Chem. Soc,1979,101:2550-2560
    [155]Sipachev V A Calution of Shrinkage Corrections in Harmonic Approximation. [J] J. Mol. Struct (Theochem) 1985,121:143-151
    [156]Wu Y, Kobayashi A, Halder G J, Peterson V K, Chapman K W, Lock N, Southon P D, Kepert C J Negative Thermal Expansion in the Metal-Organic Framework Material Cu3(1,3,5-benzenetricarboxylate)2 [J] Angew Chem Int Ed,2009,47:8929-8933
    [157]Harris J G, Yung K H Carbon dioxide's liquid-vapor coexistence curve and critical properties as predicted by a simple molecular model [J] J. Phys. Chem.1995,99: 12021-12024.
    [158]Chapman K W, Halder G J, Chupas P J Guest-Dependent High Pressure Phenomena in a Nanoporous Metal-Organic Framework Material [J] J. Am. Chem. Soc.2008,130: 10524-10526
    [159]Hummel F A Thermal Expansion Properties of Some Synthetic Lithin Materials [J] J. Am. Ceram. Soc.1951,34:235-239
    [160]Sleight A W, Mary T A, Evans J S O. Negative Thermal Expansion Materials:US Pat, 5514360 [P] 1996-05-07
    [161]Korthuis V, Khosrovain N, Sleight A W, Negative Thermal Expansion and Phase Transitions in a ZrV2-xPxO7 series [J] Chem. Mater.1995,7:412-417
    [162]Evans J S O, David W I F, Sleight A W. Structural Investigation of the Negative-Thermal-Expansion Material ZrW2O8 [J] Acta Crystallogr Sect B,1999,55: 333-340
    [163]Martin P A, Sleight A W, Exceptional Negative Thermal Expansion in AlPO4-17 [J] Chem Mater,1998,10:2013-2019
    [164]Chapman K W, Chupas P J. Pressure Enhancement of Negative Thermal Expansion Behavior and Induced Framework Softening in Zinc Cyanide [J] J. Am. Chem. Soc.,2007, 129:10090-10091
    [165]Serena M, Kosmas P, Fitch A N. Zer Thermal Expansion in a Prussian Blue Analogue [J] J. Am. Chem. Soc.,2004,126:15390-15391
    [166]Chapman K W, Chupas P J, Kepert C J. Compositional Dependence of Negative Thermal Expansion in the Prussian Blue Analogues MⅡPtⅣ(CN)6(M=Mn,Fe,Co,Ni,Cu,Zn,Cd)[J] J. Am. Chem. Soc.,2006,128:7009-7014
    [167]谭强强,张中太,方克明.复合氧化物负热膨胀材料研究进展[J]功能材料,2003,4:235-256
    [168]Sleight A W Compounds That Contract on Heating [J] Inorganic Chemistry,1998,37: 2854
    [169]Pryde A K A, Hammonds K D, Dove M T, et al. Origin of the Negative Thermal Expansion in ZrW2O8 and ZrV3O7 [J] J.Phys.:Condensed Matter,1996,8:10973
    [170]Rowsell J L, Spencer E C, Eckert J, Howard J A K, Yaghi O M Gas Adsorption Sites in a Large-Pore Metal-Organic Framework [J] Science 2005,309:1350-1354.
    [171]Han S S, Goddard Ⅲ W A, Metal-Organic Frameworks Provide Large Negative Thermal Expansion Behavior [J] J. Phys. Chem. C 2007,111:15185-15191.
    [172]Xu Q and Zhong C, A General Approach for Estimating ramework Charges in Metal-Organic Frameworks [J] J. Phys. Chem. C,2010,114:5035-5042.
    [173]Duren T, Sarkisov L, Yaghi O M, Snurr R Q. Design of New Materials for Methane Storage [J] Langmuir,2004,20:2683-2689.
    [174]Han S S, Deng W Q, Goddard Ⅲ W A. Improved Designs of Metal-Organic Frameworks for Hydrogen Storage [J] Angew. Chem. Int. Ed.,2007,46:6289-6292.
    [175]Han S S, Goddard Ⅲ W A. Lithium-Doped Metal-Organic Frameworks for Reversible H2 Storage an Ambient Temperature [J] J. Am. Chem. Soc.,2007,129:8422-8423.
    [176]Ryan P, Broadbelt L J, Snurr R Q. Is Catenation Beneficial for Hydrogen Storage in Metal-Organic Frameworks? [J] Chem. Commun.,2008,35:4132-4134.
    [177]Samanta A, Furuta T, Lia J. Theoretical Assessment of The Elastic Constants and Hydrogen Stoage Capacity of Some Metal-Organic Framework Materials [J] J. Chem. Phys.,2006,125:084714.
    [178]Xu Q, Liu D, Yang Q, Zhong C, Mi J. Li-modified Metal-Organic Frameworks for CO2/CH4 Separation:a Route to Achieving High Adsorption Selectivity. [J] J. Mater. Chem.,2010,20:706-714
    [179]刘春延材料的力学性能[M]化学工业出版社北京2009
    [180]Valencia F, Romero A H, Hernandez E, Terrones M, Terrones H Theoretical characterization of several models of nanoporous carbon [J] New J Phys 2003,5: 123.1-123.16.
    [181]Spencer E C, Angel R J, Ross N L, Hanson B E, Howard J A K, Pressure-Induced Cooperative Bond Rearrangement in a Zinc Imidazolate Framework:A High-Pressure Single-Crystal X-Ray Diffraction Study [J] J. Am. Chem. Soc.,2009,131:4022-4026
    [182]Moggach S A, Bennett T D, Cheetham A K, The Effect of Pressure on ZIF-8:Increasing Pore Size with Pressure and the Formation of a High-Pressure Phase at 1.47 GPa [J] Angew. Chem, Int. Ed.2009,48:7087-7089
    [183]Chapman K W, Halder G J, Chupas P J Pressure-Induced Apmorphization and Porosity Modification in a Metal-Organic Framework [J] J. Am. Chem. Soc.,2009,131: 4022-4026.
    [184]Beurrouies I, Boulhout M, Llewellyn P L, Kuchta B, Ferey G, Serre C, Denoyel R. Using Pressure to Provoke the Structural Transition of Metal-Organic Frameworks. [J] Angew. Chem. Int. Ed.2010,49:7526-7529.
    [185]Mattesini M, Soler J M, Yndurain F, Ab Initio Study of Metal-Organic Framework-5 Zn40(1,4-benzenedicarboxylate)3:An Assessment of Mechanical and Spectroscopic Properties [J] Phys. Rev. B 2006,73:094111.
    [186]Samanta A, Furuta T, Li J, Theoretical assessment of the elastic constants and hydrogen storage capacity of some metal-organic framework materials [J] J. Chem. Phys.,2006,125: 084714-084722.
    [187]Zhou W, Yildirim T, Lattice Dynamics of Metal-Organic Frameworks:Neutron Inelastic Scattering and First-principles Calculations [J]. Phys. Rev. B,2006,74:180301.
    [188]Bahr D F, Reid J A, Mook W M, Bauer C A, Stumpf R, Skulan A J, Moody N R, Simmons B A, Shindel M M, Allendorf M D Mechanical Properties of Cubic Zinc Carboxylate IRMOF-1 Metal-Organic Framework Crystals [J] Phys. Rev. B 2007,76:184106.
    [189]Diao J, Gall K, Dunn M L. Atomistic Simulation of the Structure and Elastic Properties of Gold Nanowires [J] J. Mech. Phys. Solids 2004,52:1935-1962.
    [190]EI-Kaderi H M, Hunt J R, Mendoza-Cortes J L, Cote A P, Taylor R E, O'Keeffe M, Yaghi O M, Designed Synthesis of 3D Covalent Organic Frameworks [J] Science 2007,316: 268-272.
    [191]Garberoglio G, [J] Computer Simulation of the Adsorption of Light Gases in Covalent Organic Frameworks Langmuir,2007,23:12154-12158.
    [192]Garberoglio G, Vallauri R, Adsorption and Diffusion of Hydrogen and Methane in 2D Covalent Organic Frameworks [J] Microporous Mesoporous Mater.,2008,116:540-547.
    [193]Klontzas, E, Tylianakis, E, Froudakis G E, Hygrogen Storange in 3D Cobalent Organic Frameworks. A Multiscale Theoretical Investigation [J] J. Phys. Chem. C 2008,112: 9095-9098.
    [194]Han S S, Furukawa H, Yaghi O M, Goddard III W A, Covalent Organic Frameworks as Exceptional Hydrogen Storage Materials [J] J. Am. Chem. Soc.,2008,130:11580-11581.
    [195]Yang Q Y, Zhong C L, Molecular Simulation Study of the Stepped Behaviors of Gas Adsorption in Two-Dimentional Covalent Organic Frameworks [J] Langmuir,2009,25: 2302-2308.
    [196]Schmid R, Tafipolsky M, An Accureate Force Field Model for the Strain Energy Analysis of the Covalent Organic Framework COF-102 [J] J. Am. Chem. Soc.,2008,130: 12600-12601.
    [197]Goldberg D E, [M] Genetic Algorithms in Search, Optimization, and Machine Learning; Addison-Wesley, New York, NJ:1989.
    [198]Ponder J W, Richards F M, An Efficient Newton-Like Method for Molecular Mechanics Energy Minimization of Large Molecules [J] J. Comput. Chem.1987,8:1016-1024.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700