具有负热膨胀和近零膨胀行为的多孔NiTi合金及其复合材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究以制备近零膨胀的NiTi合金为目标,采用粉末烧结法成功制备出Ni/Ti原子比为43.8:56.2的多孔NiTi合金和NiTiCu合金,然后利用无压浸渗工艺制备出AZ91D/NiTi复合材料。采用物相分析(XRD)、热分析(DSC)以及压缩力学试验全面表征了材料的相组成、相变行为和循环压缩载荷下的力学性能,并对材料的热膨胀行为进行了全面研究,分析了影响材料负热膨胀性能的因素。
     研究结果表明,Ni/Ti的原子比显著影响多孔NiTi合金的热膨胀性能。当Ni原子百分含量小于46%时,多孔NiTi合金在100-150℃温度范围内具有一定的负热膨胀性能,其负热膨胀温度区间的大小随Ni含量的增加先增大后减小,其中具有Ni_(43.8)Ti_(56.2)成分的多孔合金具有最宽的负热膨胀温度区间。
     多孔Ni_(43.8)Ti_(56.2)合金中主要相为NiTi(B2和B19′)和NiTi_2相,在冷却和加热过程分别发生B2→B19′和B19′→B2相变。规则或球形的孔隙有利于降低负热膨胀行为出现的起始温度与结束温度。研究发现,孔隙率的增加使合金发生负热膨胀行为的起始温度和结束温度先增大后减小,负热膨胀温度区间变窄,压缩强度降低,强度下降率也增大。
     熔融镁合金可以在毛细附加压力作用下填充多孔NiTi合金中的开孔,制备的AZ91D/NiTi复合材料中尽管出现了MgO、MgO_2、Mg_(17)Al_(12)、MgAl)2O_4几种新相,但其相变行为与多孔NiTi合金相似。AZ91D合金对复合材料的性能影响很大,控制AZ91D含量在8.20-13.95 wt.%之间有利于获得近零膨胀材料;AZ91D可增强多孔预制体的压缩强度,但当含量超过15.66 wt.%时复合材料会在较低应变下提前失效。另外,复合材料的强度下降率随着多孔预制体孔隙率的增大而增大,其形状回复率在40%-70%之间。
     Cu原子可以很好地在NiTi合金中固溶,易于制备出NiTiCu合金,其相变过程只发生马氏体相变及其逆相变。Cu含量的增加时,合金的相变温度降低,压缩强度降低,强度下降率增大,负热膨胀行为的结束温度降低,负热膨胀系数趋近于零,负热膨胀温度区间也变窄;但当Cu的含量超过10 wt.%时,NiTiCu合金不具有负热膨胀性能。
Aiming at development of near zero thermal expansion NiTi alloys, in this research the porous NiTi alloys and NiTiCu alloys as well as AZ91D/NiTi composites, all three materials have the same Ni/Ti atomic ratio of 43.8:56.2, have been successfully fabricated by using powder sintering and pressureless infiltration process. Phase analysis (XRD), thermal analysis (DSC) and mechanical compression test were employed to characterize systematically the phase components, phase transformation behavior and mechanical properties under cycling compression loading. As the focus of this thesis study, the thermal expansion behavior of the fabricated materials was characterized systematically, and the influential factors on negative thermal expansion behavior of the materials were analyzed.
     The results show that the Ni/Ti atomic ratio has a significant influence on the thermal expansion properties of porous NiTi alloys. When the Ni/Ti atomic ratio is less than 0.46 the porous NiTi alloys exhibit negative thermal expansion property in the temperature range of 100-150℃, and the width of the temperature range increases initially and then decreases with increasing Ni content. The porous Ni_(43.8)Ti_(56.2) alloy shows the widest negative thermal expansion temperature range.
     XRD analysis results show that the major phases in porous Ni_(43.8)Ti_(56.2) alloy are NiTi (B2 and B19′) and NiTi_2, and B2→B19′or B19′→B2 phase transformation happens in the alloy during cooling or heating process. The regular pores could lower the starting temperature and end temperature of negative thermal expansion behavior. It has been proved that with increasing the porosity, both of the starting temperature and end temperature of negative thermal expansion behavior increase at first, then decrease; and the width of the temperature range of negative thermal expansion decreases, compressive strength of the alloy decreases and the strength of the alloy decreases greatly.
     During the fabrication of porous NiTi matrix composites, the molten AZ91D could infill successfully the open pores of porous NiTi alloys under the capillary force at the optimized processing temperature. AZ91D/NiTi composites exhibit the phase transformation behavior very similar to that of porous NiTi alloys, despite some new phases, such as MgO, MgO_2, Mg_(17)Al_(12) and MgAl_2O_4, formed. It has been shown that AZ91D has a significant influence on AZ91D/NiTi composites’properties, the AZ91D content between 8.20 and 13.95 wt.% is beneficial for fabrication of near zero thermal expansion AZ91D/NiTi composites. Further, AZ91D could increase compressive strength of porous NiTi alloys, but if AZ91D content in the composit is too high, for example over 15.66 wt.%, early failure of the material may occur at a small strain. In addition, the strength of AZ91D/NiTi composites decreases greatly with increasing porosity of the preformed porous NiTi alloys, and the rates of shape recovery of the composites are in the range of 40%-70%.
     Moreover, as Cu atoms could form solid solution with NiTi, thus NiTiCu alloy can be fabricated easily. In NiTiCu alloys martensitic phase transformation and austenitic phase transformation occur during cooling and heating process. With increasing Cu content, the phase transformation temperatures decrease and the compressive strength of the alloy decreases strongly; in particular the end temperature of negative thermal expansion behavior decreases with the negative thermal expansion coefficient close to zero and the width of temperature range of negative thermal expansion decreasing. It is worth noticing that the NiTiCu alloys with the Cu content over 10 wt.% would not exhibit negative thermal expansion behavior.
引文
[1] (O|¨)lander A. An electrochemical investigation of solid cadmium-gold alloy [J]. Journal of the American Chemical Society, 1932, 54(10):3819-3833.
    [2] Chang L.C., Read T.A. Plastic deformation and diffusionless phase changes in metals-the gold-cadmium beta phase [J]. Journal of Metals, 1951, 189:47-52.
    [3]杨杰,吴月华.形状记忆合金及其应用[M].合肥:中国科学技术大学出版社,1993.
    [4] Buehler W.J., Gilfrich J.V., Wiley R.C. Effect of low temperature phase changes on the mechanical properties of alloys near composition TiNi [J]. Journal of Applied Physics, 1963, 34: 1475-1477.
    [5] Ullakko K., Huang J. K., Kantner C., et al. Large magnetic-field-induced strains in Ni2MnGa single crystals [J]. Applied Physics Letter, 1996, 69(13): 1966-1968.
    [6]朱玉萍,兑关锁.铁磁形状记忆合金的力学行为研究进展[J].力学进展, 2008, 38(3): 303-313.
    [7]徐祖耀.形状记忆材料[M].上海:上海交通大学出版社, 2000.
    [8]杨杰.形状记忆合金及其应用[M].北京:机械工业出版社, 1993.
    [9]舟久保,熙康.形状记忆合金[M].北京:机械工业出版社, 1984.
    [10]杨大智,吴明雄. NiTi形状记忆合金在生物医学领域的应用[M].北京:冶金工业出版社, 2003.
    [11] Honma T. The mechanism of the all-round shape memory effect [J]. Proceedings of the international symposium of shape memory alloys (Shape Memory Alloy’86). Guilin, China, 1986, 83-88.
    [12]赵连城,蔡伟,郑玉峰.合金的形状记忆效应与超弹性[M].北京:国防工业出版社, 2002.
    [13]郑玉峰,赵连城.生物医用镍钛合金[M].北京:科学出版社, 2004.
    [14]胡益丰,邓文,黄乐. NiTi合金形状记忆效应的微观机制研究进展[J].材料导报, 2006, 20(2): 114-117.
    [15]张新平,张宇鹏.多孔NiTi形状记忆合金研究进展[J].材料研究学报, 2007, 21(6): 561-569.
    [16] Haga Y., Mizushima M., Matsunaga T., et al. Medical and welfare applications of shapememory alloy microcoil actuators [J]. Smart Materials and Structures, 2005, 14: S266-S272.
    [17]诸幼义.形状记忆合金在医学应用研究的新动向[J].医用生物力学, 1995, 10(2): 1-3.
    [18] Li B. Y., Rong L. J., Li Y. Y. Porous NiTi alloy prepared from element powder sintering [J]. J. Mater. Res., 1998, 13(10):2847-2851.
    [19] Itin V. I., Gyunter V. E., Shabalovskaya S. A., et al. Mechanical properties and shape memory of porous Nitinol [J]. Materials Characterization, 1994, 32: 179-187.
    [20] Kujala S., Ryh?nen J., Danilov A., et al. Effect of porosity on the osteointegration and bone ingrowth of a weight-bearing nickel-titanium bone graft substitute [J]. Biomaterials, 2003, 24(25): 4691-4697.
    [21] Biswas A. Porous NiTi by thermal explosion mode of SHS: processing, mechanism and generation of single phase microstructure [J]. Acta Materialia, 2005, 53: 1415-1425.
    [22] Bobet J. L., Chevalier B. Reactive mechanical grinding applied to a (Ti plus Ni) mixture and to a TiNi compound [J]. Intermetallics, 2002, 10: 597-601.
    [23] Yuan B., Zhang X. P., Chung C. Y., et al. A comparative study of the porous TiNi shape memory alloys fabricated by three different processes [J]. Metallurgical and Materials Transactions, 2006, 37(3): 755-761.
    [24] Bansiddhi A., Sargeant T. D., Stupp S. I., et al. Porous NiTi for bone implants: A review [J]. Acta Biomaterials, 2008, 4(4): 773-782.
    [25] Igharo M., Wood J. V. Compaction and sintering phenomena in titanium-nickel shape memory alloys [J]. Powder Metallurgy, 1985, 28(3): 131-139.
    [26]陶亦亦,戈晓岚,姜左.多孔NiTi形状记忆合金的制备工艺研究[J].机械设计与制造, 2006, 11: 96-97.
    [27] Li B. Y., Rong L. J., Li Y. Y. Anisotropy of dimensional change and its corresponding improvement by addition of TiH2 during elemental powder sintering of porous NiTi alloy [J]. Materials Science and Engineering, 1998, A255: 70-74.
    [28]中南矿冶学院粉末冶金教研室编.粉末冶金基础[M].北京:冶金工业出版社, 1974.
    [29]李丙运,戎利建,李依依.生物医用多孔Ti-Ni形状记忆合金的研究进展[J].材料77研究学报, 2000, 14(6): 561-567.
    [30]白玉俊,陈蕴博,徐庆莘.医用多孔Ni-Ti形状记忆合金的研究与应用进展[J].材料导报, 2002, 16(9): 11-12.
    [31] Li B. Y., Rong L. J., Li Y. Y., et al. Synthesis of porous Ni-Ti shape memory alloys by self-propagating high-temperature synthesis reaction mechanism and anisotropy in pore structure [J]. Acta Materialia, 2000, 48: 3895-3904.
    [32] Yuan B., Chung C. Y., Zhang X. P., et al. Control of porosity and superelasticity of porous NiTi shape memory alloys prepared by hot isostatic pressing [J]. Smart Materials and Structures, 2005, 14: S201-S206.
    [33] Yuan B., Zhang X. P., Chung C. Y., et al. The effect of porosity on phase transformation behavior of porous Ti-50.8at.%Ni shape memory alloys prepared by capsule-free hot isostatic pressing [J]. Materials Science and Engineering, 2006, A438-440: 585-588.
    [34] Hey J. C., Jardine A. P. Shape memory TiNi synthesis from elemental powders [J]. Materials Science and Engineering, 1994, A188: 291-300.
    [35]李锡武,郑子樵,李劲风,等.热处理工艺对NiTi合金负热膨胀行为的影响[J].稀有金属材料与工程, 2007, 36(5): 879-883.
    [36]蔡方硕,黄荣进,李来风.负热膨胀材料研究进展[J].科技导报, 2008, 26(12): 84-88.
    [37]殷海荣,吕承珍,李慧,等.先进负热膨胀材料的最新研究进展[J].中国陶瓷, 2008, 44(9): 14-17.
    [38] Hummel F. A. Thermal expansion properties of some synthetic Lithia minerals [J]. Journal of the American Ceramic Society, 1951, 34(8): 235-239.
    [39] Korthuis V., Khosrovani N., Sleight A. W. Negative thermal-expansion and phase-transitions in the ZrV2-xPxO7 series [J]. Chem Mater, 1995, 7, 412-417.
    [40] Sleight A. W., Mary T. A., Evans J. S. O. Negative thermal expansion of ZrW2O8 [P]. US Patent, 1995-05.
    [41] Mary T. A., Evans J. S. O., Vogt T., et al. Negative thermal expansion from 0.3 to 1050 Kelvin in ZrW2O8 [J]. Science, 1996, 272(5258): 90-92.
    [42] Evans J. S. O., Mary T. A., Sleight A. W. Negative thermal expansion in a large molybdate and tungstate family [J]. Journal of Solid State Chemistry, 1997, 133(2):580-583.
    [43] Evans J. S. O., Mary T. A., Sleight A. W. Negative thermal expansion in Sc2(WO4)3 [J]. Journal of Solid Chemistry, 1998, 137(1): 148-160.
    [44] Forster P. M., Yokochi A., Sleight A. W. Enhanced negative thermal expansion in Lu2W3O12 [J]. Journal of Solid State Chemistry, 1998, 140(1): 157-158/
    [45] Cora L., Angus P. W., Hu Z. B., et al. Synthesis and properties of the negative thermal expansion material cubic ZrMo2O8 [J]. Chem Mater, 1998, 10(9): 2335-2337.
    [46] David A. W., Philip L., Lius A. V., et al. Negative thermal expansion in the siliceous zeolites chabazite and ITQ-4: a neutron powder diffraction study [J]. Chem Mater, 1999, 11(9): 2508-2514.
    [47] Takenaka K., Takagi H. Giant negative thermal expansion in Ge-doped anti-perovskite manganese nitrides [J]. Applied Physics Letters, 2005, 87(26): 261902.
    [48] Mavoori H., Jin S. Low-thermal-expansion copper composites via negative CTE metallic elements [J]. Journal of the Minerals, 1998, 50(6): 70-72.
    [49] Sleight A. W. Compounds that contract on heating [J]. Inorg Chem, 1998, 37(12): 2854-2860.
    [50]谭强强,张中太,方克明.复合氧化物负热膨胀材料研究进展[J].功能材料, 2003, 4(34): 353-356.
    [51] Sleight A. W. Negative thermal expansion materials [J]. Current Opinion in Solid State & Materials Science, 1998, 3(2): 128-131.
    [52]张振禹,刘蔚玲,耿建刚.堇青石低热膨胀机理研究[J].地质科学, 1997, 32(1): 308-312.
    [53] Sleight A. W. Thermal contraction [J]. Endeavour, 1995, 19(2): 64-68.
    [54]刁志聪,林伟林.负热膨胀材料的研究现状及展望[J].中国钨业, 2010, 25(2): 38-42.
    [55] Kang S. B., Yoon K. S., Kim J. S., et al. In vivo results of porous TiNi shape memory alloy: Bone response and growth [J]. Materials Transactions, 2002, 43(5): 1045-1048.
    [56]方前锋,朱震刚,葛庭燧.高阻尼材料的阻尼机理及性能评估[J].物理, 2000, 29(9): 541-545.
    [57] Janke L., Czaderski C., Motavalli M., et al. Applications of shape memory alloys in civilengineering structures—Overview, limits and new ideas [J]. Materials and Structures, 2005, 38(5): 578-592.
    [58]王辉,陈再良.形状记忆合金材料的应用[J].机械工程材料, 2002, 26(3): 5-8.
    [59] Whitney M., Corbin S. F., Gorbet R. B. Investigation of the mechanisms of reactive sintering and combustion synthesis of NiTi using differential scanning calorimetry and microstructural analysis [J]. Acta Materialia, 2008, 56: 559-570.
    [60]董群,陈礼清,赵明久,等.镁基复合材料制备技术、性能及应用发展概况[J].材料导报, 2004, 18(4): 86-90.
    [61]王玲.金属基复合材料及其浸渗制备的理论与实践[M].北京:冶金工业出版社, 2005.
    [62]边涛,潘颐,崔岩,等.金属基复合材料的自发浸渗制备工艺[J].材料导报, 2002, 16(1): 21-24.
    [63]杨淑启,袁卫华,王守仁.网络结构陶瓷增强金属基复合材料浸渗行为研究进展[J].机械工程材料, 2006, 30(4): 1-4.
    [64]于良,余新泉,邵磊.无压浸渗制备B4C/Al复合材料工艺的研究现状[J].材料导报, 2007, 21(10): 106-108.
    [65] Siwonis D., Naoumidis A., Dias F. J., et al. Material characterization in support of the development of an anode substrate for solid oxide fuel cells [J]. Journal of Material Reviews, 1997, 12(6): 1508-1518.
    [66]张诗昌,段汗桥,蔡启舟,等.镁合金熔炼工艺现状及发展趋势[J].特种铸造及有色合金, 2000, 6: 51-57.
    [67]吉蕾蕾,耿浩然,王瑞,等.新型镁合金覆盖剂熔体物性的研究[J].中国基础科学, 2004, 5: 14-17.
    [68]李大圣,张宇鹏,熊志鹏,等.轻质高强NiTi形状记忆合金的制备及其超弹性行为[J].金属学报, 2008, 44(8): 995-1000.
    [69]刘培生,马晓明.多孔材料检测方法[M].北京:冶金工业出版社, 2006.
    [70] GB/T6342 1996,泡沫塑料与橡胶:线性尺寸的测定[S].中华人民共和国国家标准, 1996.
    [71]华祝元,刘佳琪,严学华.负热膨胀系数材料的研究现状与展望[J].硅酸盐通报, 2010, 29(5): 1086-1102.
    [72]王姬,王铀.负热膨胀材料ZrW2O8研究现状[J].热处理技术与装备, 2009, 30(3): 39-41.
    [73]佟林松,樊建中,肖伯律.低热膨胀铝基复合材料的研究进展[J].稀有金属, 2008, 32(3): 375-380.
    [74] ASTM E9-89a, Standard test methods of compression testing of metallic materials at room temperature [S]. US: ASTM International, 100 Barr Harbor Drive, 2000.
    [75]关锐峰,李大圣,张新平.采用新型硬脂酸造孔剂烧结制备多孔NiTi合金的结构及性能[J].机械工程材料, 2010, 34(11): 37-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700