负热膨胀材料ZrW_2O_8、ZrV_2O_7及其与金属Cu、Al的复合技术与特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ZrW_2O_8、ZrV_2O_7是具有各向同性,负热膨胀系数大且响应温度范围宽的两类负热膨胀材料,但均存在一定不足。本项研究旨在通过两者的复合克服其不足,发挥各自的优势,并在此基础上研究ZrW_2O_8/Cu、ZrV_2O_7/Al的复合技术及其热膨胀特性,以期研制热膨胀特性可控,更便于应用的低热膨胀材料,扩大其应用领域。
     ZrV_2O_7与ZrW_2O_8的复合,采用氧化物固相煅烧合成法与液相法预制前驱体粉末,再经煅烧合成两种方法进行。通过对实验产物进行结构(XRD)、组织(SEM)、电子能谱成分分析(EPS)和热膨胀特性测试分析,结果表明:两种方法均可实现ZrV_2O_7与ZrW_2O_8之间的复合。在650℃~700℃煅烧合成,可获得Zr(V、W)xOy质复合陶瓷,其结构保持与ZrV_2O_7完全相同的点阵结构,属于一种掺杂有W6+的ZrV_2O_7质陶瓷材料,此材料仍保持着ZrV_2O_7的负热膨胀特性。在20℃~120℃温度范围内的热膨胀系数显著下降,降至2.9×10-6/℃,已接近理想电子封装材料的要求。而且,采用液相法预制前驱体—煅烧合成制备的复合产物的烧结性能好,更有利于工程应用。
     ZrW_2O_8与Cu的复合,采用向ZrW_2O_8前驱体/Cu粉复合烧结工艺过程中引入CuO与Al的放热反应工艺技术。经对产物进行XRD、SEM、EPS和热膨胀特性测试分析,结果表明:采用该工艺技术可制备出组织致密,形成具有Cu网架结构的ZrW_2O_8、Al2O3/Cu基复合材料。该材料在30℃~60℃间为零膨胀;60℃~300℃间的平均线膨胀系数仅为4.2×10-6/℃,显示出非常优异的低热膨胀特性。
     ZrV_2O_7与Al的复合,采用ZrV_2O_7、Al混合粉末无压渗透烧结及ZrV_2O_7前驱体包覆Al粉末烧结合成两种工艺方法进行。经对实验产物进行XRD、SEM、EPS和热膨胀特性分析测试,结果表明:采用ZrV_2O_7前驱体包覆Al粉末烧结合成的ZrV_2O_7/Al复合材料,其中的ZrV_2O_7纯度更高,ZrV_2O_7与Al之间具有更好的界面结合性和热膨胀特性。此材料在室温~120℃间平均线膨胀系数为18.0×10-6/℃;120~400℃间为4.04×10-6/℃;400~500℃间为7.3×10-6/℃。虽仍具有高的正热膨胀系数,但较Al的热膨胀率(23.0×10-6/℃)已显著下降。在此基础上,采用粉末冶金法制备的ZrV_2O_7/Al梯度材料亦呈现出高的组织致密性,并表现出良好的抗热震性能。
ZrW_2O_8 and ZrV_2O_7 demonstrated the isotropic and a large negative thermal expansion coefficient over a wide range of temperatures, but they both existed certainly defects. The purpose of this research aimed to overcome the inadequacies of the two compounds, and displayed their respective advantages. In order to facilitate the application of the thermal expansion materials and expand its application areas, compound technology and thermal expansion characteristics of ZrW_2O_8/Cu、ZrV_2O_7/Al were further studied.
     ZrV_2O_7 and ZrW_2O_8 were compounded by two different methods: directly-calcined synthesis from oxides and calcined synthesis with the precursor. The results by XRD、SEM、EPS and thermal-expansion test indicated that the composite can be achieved by both methods. The ceramics of Zr(V、W)xOy was obtained from 650℃~700℃by calcined, and its structure kept the identical lattice structure with ZrV_2O_7. The ceramics kept NTE and belonged to one kind of doping W6+ in ZrV_2O_7. But the thermal expansion coefficient was remarkably dropped to -2.9×10-6/℃from 20℃to 120℃, and the thermal expansion coefficient already closed to the request of the ideal electronic packing materials. Moreover, the method of calcined synthesis with the precursor is advantageous, and more useful for engineering applications.
     ZrW_2O_8/Cu composites was obtained by exothermic reaction of Al、CuO and ZrW_2O_8. The results by XRD、SEM、EPS and thermal-expansion test indicated that the microstructure by this method was compacted and formed spatial grid structure of Cu. The thermal expansion of this material was performance zero inflation from 30℃to 60℃, and the coefficient was 4.2×10-6/℃from 60℃to 300℃. This material shows very excellent thermal expansion characteristics.
     ZrV_2O_7/Al was compounded by two different methods: one was pressureless sintering by the powder of ZrV_2O_7 and Al, and another was the precursor of ZrV_2O_7 coated Al powder. The result by XRD、SEM、EPS and thermal-expansion test indicated that the ZrV_2O_7/Al compositeby the precursor coated Al had the good contact surface between Al and ZrV2O7, and the purity of ZrV2O7 was high. The thermal expansion coefficient is 18.5×10-6/℃from 10℃to 120℃. And the thermal expansion coefficient is 4.04×10-6/℃from 120℃to 400℃. From 400℃to 500℃the thermal expansion coefficient is 7.3×10-6/℃. This material displayed normal thermal expansion, but compared Al remarkably dropped. Based the foundation, the gradient material of ZrV2O7/Al was achieved by the method of powder metallurgy. This material had the good microstructure and fine heat-resistant performance.
引文
【1】谭强强,方可明.复合氧化物材料的负热膨胀机理[J].耐火材料,2001, 35(5):296-298
    【2】王明松,张跃,宋强,王聪.负热膨胀材料立方 ZrMo2O8合成研究[J].中国稀土学报,2003, 21(增刊):94-97
    【3】谭强强,张中太,方克明.复合氧化物负热膨胀材料研究进展[J].功能材料,2003,34(4):353-356
    【4】Korthuis V, Khosrovani N, Sleight A W, et al. Negative Thermal Expansion and Phase Transition in the ZrV2-XPXO7 Series[J],Chem. Mater, 1995,7:412-417
    【5】Sleight A W, Mary T A, Evans J S O. Negative Thermal Expansion Materials[P],U S A,Patent: No.5514360, May 7, 1995
    【6】Mary T A, Evans J S O, Vogt T, et al. Negative Thermal Expansion from 0.3-1050Kelvin in ZrW208 [J].Science, 1996, 272(5):90-92
    【7】R L Withers, J S O Evans. An in Situ Temperature-Dependent Electron and X-ray Diffraction Study of Structural Phase Transition in ZrV2O7 [J]. Journal of Solid State Chenistry, 1998, 137:161-167
    【8】Evans J S O, Mary T A, Sleight A W Negative Thermal Expansion in Sc2(WO4)3[J]. Journal of Solid State Chemistry,1998,137:148-160
    【9】Forster P M, Yokochi A, Sleight A W. Enhanced Negative Thermal Expansion in Lu2W3012 [J]. Journal of Solid State Chemistry, 1998,140:157-158
    【10】S. Sumithra, A.M. Umarji. Hygroscopicity and bulk thermal expansion in Y2W3O12 [J]. Materials Research Bulletin, 2005, 40:167-176
    【11】刘克文,赵新华.热致收缩化合物及研究进展[J].太原师范学院学报(自然科学版),2003,2(4):53-57
    【12】沈容,王聪,王天民.“负热膨胀”氧化物材料 ZrW2O8的研究现状[J].无机材料学报,2002, 17(6):1089-1094
    【13】Jose M G, Ulises A,Emilio M, Miguel A.XRD study of ZrW2O8 versus temperature and pressure[J].Inorganic Materials,2000,(2):123-129
    【14】李钢,姚杰,王克宇.一种负热膨胀性材料的物相结构分析[J].南京师大学报,2000,23(1):56-60
    【15】邢献然.氧化物材料负热膨胀机理[J].北京科技大学学报,2000,22(1):56-58
    【16】周曦亚,郑洁如.负热膨胀化合物 ZrW2O8研究进展[J].材料导报,2006, 20(5):278-280
    【17】Tobias Merkel, Michael Graeber,Lienhard Pagel. A new Technology for Fluid IC Micro-Systems Based on PCB Technology[J]. Sensors and Actuators, 1999, (77):98-105
    【18】况延香,赵光云.迅速发展的三维电子封装技术[J].电子产品世界,1998,(9):47-48
    【19】Carl Zweben. Metal-atrix Composites for Electronic Packing [J]. JOM, 1992, 44(7): 15-24
    【20】郑小红,胡明,周国柱.新型电子封装材料的研究现状及展望[J].佳木斯大学学报(自然科学 版),2005,23(3):460-464
    【21】张臣,沈能钰.电子封装材料现状与发展[J].新材料产业,2003, 112(3):5-11
    【22】聂存珠,赵乃勤.金属基电子封装复合材料的研究进展[J].金属热处理,2003, 28(6):1-5
    【23】张海波,阮建明.电子封装材料及其技术发展状况[J].粉末冶金材料科学与工程,2003,(3): 216-222
    【24】童震松,沈卓身.金属封装材料的现状及发展[J].电子与封装,2005,5(3):6-14
    【25】阳范文,赵耀明.电子封装用环氧树脂的研究现状及发展趋势[J].电子工艺技术,2001,22 (6): 238-241
    【26】贾松良.微电子封装业在我国的发展[J].世界电子元器件,2001,3:46-47
    【27】李志民.高密度电子封装的最新进展和发展趋势[J].元器件装配, 2004,6:82-84
    【28】黄强,顾明元,金燕萍.电子封装材料的研究现状[J].材料导报,2000,14(9):28-32
    【29】童志义.高密度电子封装现状及发展趋势[J].电子工业专用设备,2000,29(2):1-9
    【30】杨邦朝,胡永达.高密度微电子封装技术[J].世界产品与技术,2000,5:48-55
    【31】 喻学斌,吴人杰,张国定.金属基电子封装复合材料的研究现状及发展[J].材料导报,1994,8 (3):64-66
    【32】宋伟.金属基复合材料的发展与应用[J].铸造设备研究,2004,5:48-50
    【33】郑小红,胡明,周国柱.新型电子封装材料的研究现状与展望[J].佳木斯大学学报(自然科学版), 2005,23(3):460-464
    【34】江东亮,郭景坤. 复相陶瓷[J].硅酸盐学报,1991,19(3):258
    【35】周曦亚,邓再德,英廷照.陶瓷复合材料及其制备技术[J].中国陶瓷,1997,33(1):41-42
    【36】宋桂明,周玉.复相陶瓷设计进展[J].宇航材料工艺,1999, 29(1):12-14
    【37】郭景坤,诸培南.复相陶瓷材料的设计原则[J].硅酸盐学报,1996,24(1):7
    【38】蒋俊.氧化铝基复相陶瓷的制备、结构与性能研究[D].武汉:武汉理工大学,2002:5-12
    【39】辜萍,傅正义,王为民.复相陶瓷的制备与研究[J].武汉工业大学学报,1999,21(2):7-8
    【40】龚道仁.W-Mo-Ti 功能梯度材料组成连续的设计、致密化及制备[D].武汉:武汉理工大学,2004: 8-15
    【41】S Lopez-Esteban, J F Bartolome, et al. Zirconia/stainless-steel continuous functionally graded material [J]. Journal of the European Ceramic Society, 2002, 22: 2799-2804
    【42】李碧容,雍岐龙,张国亮.功能梯度材料的进展、制备方法与应用前景综述[J].云南工业大学学 报,1999,15(4):56-58
    【43】庞建超,高福宝,曹晓明.功能梯度材料的发展与制备方法的研究[J].金属制品,2005,34(4): 5-9
    【44】袁秦鲁,胡锐,李金山,吕振林.梯度复合材料制备技术研究进展[J].兵器材料科学与工程, 2003, 26(6):66-68
    【45】唐新锋,张联盟,袁润章.PSZ-Mo 系功能梯度材料的热应力缓和设计与制备[J].硅酸盐学报, 1994,22(1):44-48
    【46】沈强,张联盟.Ni/Ni3Al-Ni 系梯度功能材料的组成结构设计与制备[J].硅酸盐学报,1997,25(4): 406-411
    【47】李耀天.梯度功能材料研究与应用[J].金属功能材料, 2000,17(4):15-23
    【48】马世昌.化学物质辞典[M].西安:陕西科学技术出版社,1999,第 1 版:108-110
    【49】潘金生,田民波等.材料科学基础[M].北京:清华大学出版社,1998,第 1 版:97-100
    【50】四川大学工科基础化学教学中心.近代化学基础(上册)[M].北京:高等教育出版社,2002, 第 1 版:26-30
    【51】陆栋,蒋平,徐至中.固体物理学[M].上海:上海科学技术出版社,2003,第 1 版
    【52】张志杰主编.材料物理化学[M].北京:化学工业出版社,2006,第 1 版:247-270
    【53】Chang L L Y,Scroger M G,Philips B. Condensed Phase Relations in the Systems ZrO2-WO2-WO3 and HfO2-WO2-WO3[J]. J Am Ceram Soc, 1967, 50(2):211-215
    【54】沈强,王文涛,张联盟.Ni/Ni3Al-TiC 系梯度功能材料的热应力缓和特性设计.硅酸盐通报[J],1997,(2):34-36
    【55】许杨健,赵志刚,涂代惠.梯度功能材料热弹性应力的研究进展[J].材料导报,1998,12(1):10-12
    【56】李益民,郑子樵等.梯度功能材料的组成设计分析[J].中国有色金属学报,1995,5(1):55-58
    【57】李云凯,王勇.粉末冶金法制备 PSZ/Mo 复合材料的研究[J].材料科学与工程,2002, 20(3):399-402
    【58】王素,陈南飞,朱玉明,高峰.一种新的功能梯度材料实体建模方法[J].吉林大学学报(工学版), 2006, 36(3):376-381
    【59】Arthur W Sleight. Negative thermal expansion materials[J]. Crruent Opinion in Solid State and Material Science, 1998, (3):128-131
    【60】程兰征,章燕豪.物理化学[M].上海:上海科学技术出版社.1998,第 2 版. 230-265
    【61】Chen F C, Ardell A J. Microstructure and mechanical behavior of proton-and ion-irradiated L1 sub 2 intermetallic compounds [J]. J Mater Sci Technol.1994, 10(4):235-245
    【62】N Khosrovani and A W Sleight. Structure of ZrV2O7 from -263 to 470℃[J]. Journal of solid state chemistry.1997, 132: 355-360
    【63】云大钦.电子封装用低热膨胀高导热复合材料—ZrV2O7与 ZrV2O7/Al 复合材料制备及基本特性 研究[D].西安:西安理工大学,2005:60-63
    【64】程晓农,张美芬,严学华.负热膨胀化合物材料 ZrW2O8的机理与制备技术[J].江苏大学学报(自 然科学版),2004, 25(3):243-246
    【65】M A Sobhan, M R Islam, K A Khan. Preparation and properties of V2O5 thin films for energy-efficient selective-surface applications[J]. Applied Energy,1999,64:345-351
    【66】长崎成三,平林真.二元合金状态图集[M].北京:北京冶金工业出版社,2004
    【67】S Allen, etal. Structures and phase transitions of trigonal ZrMo2O8 and HfMo2o8 [J].Acta Crystallo graphica Section B-Structual Science,2004,(60):32-40
    【68】SK J Sikka. Negative expansion and its relation to high pressures Phys[J]. Condens Mater,2004,(16): 1033-1039
    【69】Arthur W Sleight. Negative thermal expansion materials[J]. Crruent Opinion in Solid State and Material Science, 1998, (3):128-131
    【70】Cao D, Bridges F, Kowach G R. Frustrated soft modes and negative thermal expansion in ZrW2O8[J]. Physical Review letters, 2002, 89(21):1-4
    【71】赵新华.热致收缩化合物[J].化学通报,1998,11(11):19-24
    【72】Randall M.German, Karl F.Hens. Powder metallurgy processing of thermal management materials for microelectronic applications[J]. Inter J Powder Metall, 1994, 30(2):205-210
    【73】 H Kerner. The Elastic and thermo-elastic properties of composite media[J].Proc Phys Soc,1956,69B: 808-819
    【74】A Schapery. The elastic and thermo-elastic properties of composite reinforced with discontinues filler [J]. Compos Mater,1968,2:380-390
    【75】罗丰华,陶玉强,戴恩斌,陈康华.热致收缩 ZrW2O8 化合物及其复合材料[J].材料导报,2005, 19(11):73-77

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700